FreeCalypso > hg > efr-experiments
view src/dtx.c @ 5:799b56cbccb6
EFR2 decoder: add post-processing step from AMR
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Wed, 03 Apr 2024 06:09:10 +0000 |
parents | 56410792419a |
children |
line wrap: on
line source
/*************************************************************************** * * File Name: dtx.c * * Purpose: Contains functions for performing DTX operation and comfort * noise generation. * * Below is a listing of all the functions appearing in the file. * The functions are arranged according to their purpose. Under * each heading, the ordering is hierarchical. * * Resetting of static variables of TX DTX: * reset_tx_dtx() * Resetting of static variables of RX DTX: * reset_rx_dtx() * * TX DTX handler (called by the speech encoder): * tx_dtx() * RX DTX handler (called by the speech decoder): * rx_dtx() * Encoding of comfort noise parameters into SID frame: * CN_encoding() * Encoding of SID codeword into SID frame: * sid_codeword_encoding() * Detecting of SID codeword from a frame: * sid_frame_detection() * Update the LSF parameter history: * update_lsf_history() * Update the reference LSF parameter vector: * update_lsf_p_CN() * Compute the averaged LSF parameter vector: * aver_lsf_history() * Update the fixed codebook gain parameter history of the encoder: * update_gain_code_history_tx() * Update the fixed codebook gain parameter history of the decoder: * update_gain_code_history_rx() * Compute the unquantized fixed codebook gain: * compute_CN_excitation_gain() * Update the reference fixed codebook gain: * update_gcode0_CN() * Compute the averaged fixed codebook gain: * aver_gain_code_history() * Compute the comfort noise fixed codebook excitation: * build_CN_code() * Generate a random integer value: * pseudonoise() * Interpolate a comfort noise parameter value over the comfort noise * update period: * interpolate_CN_param() * Interpolate comfort noise LSF pparameter values over the comfort * noise update period: * interpolate_CN_lsf() * interpolate_CN_param() * **************************************************************************/ #include "typedef.h" #include "basic_op.h" #include "cnst.h" #include "sig_proc.h" #include "count.h" #include "dtx.h" /* Inverse values of DTX hangover period and DTX hangover period + 1 */ #define INV_DTX_HANGOVER (0x7fff / DTX_HANGOVER) #define INV_DTX_HANGOVER_P1 (0x7fff / (DTX_HANGOVER+1)) #define NB_PULSE 10 /* Number of pulses in fixed codebook excitation */ /* SID frame classification thresholds */ #define VALID_SID_THRESH 2 #define INVALID_SID_THRESH 16 /* Constant DTX_ELAPSED_THRESHOLD is used as threshold for allowing SID frame updating without hangover period in case when elapsed time measured from previous SID update is below 24 */ #define DTX_ELAPSED_THRESHOLD (24 + DTX_HANGOVER - 1) /* Index map for encoding and detecting SID codeword */ static const Word16 SID_codeword_bit_idx[95] = { 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221 }; Word16 txdtx_ctrl; /* Encoder DTX control word */ Word16 rxdtx_ctrl; /* Decoder DTX control word */ Word16 CN_excitation_gain; /* Unquantized fixed codebook gain */ Word32 L_pn_seed_tx; /* PN generator seed (encoder) */ Word32 L_pn_seed_rx; /* PN generator seed (decoder) */ Word16 rx_dtx_state; /* State of comfort noise insertion period */ static Word16 txdtx_hangover; /* Length of hangover period (VAD=0, SP=1) */ static Word16 rxdtx_aver_period;/* Length of hangover period (VAD=0, SP=1) */ static Word16 txdtx_N_elapsed; /* Measured time from previous SID frame */ static Word16 rxdtx_N_elapsed; /* Measured time from previous SID frame */ static Word16 old_CN_mem_tx[6]; /* The most recent CN parameters are stored*/ static Word16 prev_SID_frames_lost; /* Counter for lost SID frames */ static Word16 buf_p_tx; /* Circular buffer pointer for gain code history update in tx */ static Word16 buf_p_rx; /* Circular buffer pointer for gain code history update in rx */ Word16 lsf_old_tx[DTX_HANGOVER][M]; /* Comfort noise LSF averaging buffer */ Word16 lsf_old_rx[DTX_HANGOVER][M]; /* Comfort noise LSF averaging buffer */ Word16 gain_code_old_tx[4 * DTX_HANGOVER]; /* Comfort noise gain averaging buffer */ Word16 gain_code_old_rx[4 * DTX_HANGOVER]; /* Comfort noise gain averaging buffer */ /************************************************************************* * * FUNCTION NAME: reset_tx_dtx * * PURPOSE: Resets the static variables of the TX DTX handler to their * initial values * *************************************************************************/ void reset_tx_dtx () { Word16 i; /* suppose infinitely long speech period before start */ txdtx_hangover = DTX_HANGOVER; txdtx_N_elapsed = 0x7fff; txdtx_ctrl = TX_SP_FLAG | TX_VAD_FLAG; for (i = 0; i < 6; i++) { old_CN_mem_tx[i] = 0; } for (i = 0; i < DTX_HANGOVER; i++) { lsf_old_tx[i][0] = 1384; lsf_old_tx[i][1] = 2077; lsf_old_tx[i][2] = 3420; lsf_old_tx[i][3] = 5108; lsf_old_tx[i][4] = 6742; lsf_old_tx[i][5] = 8122; lsf_old_tx[i][6] = 9863; lsf_old_tx[i][7] = 11092; lsf_old_tx[i][8] = 12714; lsf_old_tx[i][9] = 13701; } for (i = 0; i < 4 * DTX_HANGOVER; i++) { gain_code_old_tx[i] = 0; } L_pn_seed_tx = PN_INITIAL_SEED; buf_p_tx = 0; return; } /************************************************************************* * * FUNCTION NAME: reset_rx_dtx * * PURPOSE: Resets the static variables of the RX DTX handler to their * initial values * *************************************************************************/ void reset_rx_dtx () { Word16 i; /* suppose infinitely long speech period before start */ rxdtx_aver_period = DTX_HANGOVER; rxdtx_N_elapsed = 0x7fff; rxdtx_ctrl = RX_SP_FLAG; for (i = 0; i < DTX_HANGOVER; i++) { lsf_old_rx[i][0] = 1384; lsf_old_rx[i][1] = 2077; lsf_old_rx[i][2] = 3420; lsf_old_rx[i][3] = 5108; lsf_old_rx[i][4] = 6742; lsf_old_rx[i][5] = 8122; lsf_old_rx[i][6] = 9863; lsf_old_rx[i][7] = 11092; lsf_old_rx[i][8] = 12714; lsf_old_rx[i][9] = 13701; } for (i = 0; i < 4 * DTX_HANGOVER; i++) { gain_code_old_rx[i] = 0; } L_pn_seed_rx = PN_INITIAL_SEED; rx_dtx_state = CN_INT_PERIOD - 1; prev_SID_frames_lost = 0; buf_p_rx = 0; return; } /************************************************************************* * * FUNCTION NAME: tx_dtx * * PURPOSE: DTX handler of the speech encoder. Determines when to add * the hangover period to the end of the speech burst, and * also determines when to use old SID parameters, and when * to update the SID parameters. This function also initializes * the pseudo noise generator shift register. * * Operation of the TX DTX handler is based on the VAD flag * given as input from the speech encoder. * * INPUTS: VAD_flag Voice activity decision * *txdtx_ctrl Old encoder DTX control word * * OUTPUTS: *txdtx_ctrl Updated encoder DTX control word * L_pn_seed_tx Initialized pseudo noise generator shift * register (global variable) * * RETURN VALUE: none * *************************************************************************/ void tx_dtx ( Word16 VAD_flag, Word16 *txdtx_ctrl ) { /* N_elapsed (frames since last SID update) is incremented. If SID is updated N_elapsed is cleared later in this function */ txdtx_N_elapsed = add (txdtx_N_elapsed, 1); /* If voice activity was detected, reset hangover counter */ test (); if (sub (VAD_flag, 1) == 0) { txdtx_hangover = DTX_HANGOVER; move16 (); *txdtx_ctrl = TX_SP_FLAG | TX_VAD_FLAG; move16 (); logic16 (); } else { test (); if (txdtx_hangover == 0) { /* Hangover period is over, SID should be updated */ txdtx_N_elapsed = 0; move16 (); /* Check if this is the first frame after hangover period */ test (); logic16 (); if ((*txdtx_ctrl & TX_HANGOVER_ACTIVE) != 0) { *txdtx_ctrl = TX_PREV_HANGOVER_ACTIVE | TX_SID_UPDATE; move16 (); logic16 (); L_pn_seed_tx = PN_INITIAL_SEED; move32 (); } else { *txdtx_ctrl = TX_SID_UPDATE; move16 (); } } else { /* Hangover period is not over, update hangover counter */ txdtx_hangover = sub (txdtx_hangover, 1); /* Check if elapsed time from last SID update is greater than threshold. If not, set SP=0 (although hangover period is not over) and use old SID parameters for new SID frame. N_elapsed counter must be summed with hangover counter in order to avoid erroneus SP=1 decision in case when N_elapsed is grown bigger than threshold and hangover period is still active */ test (); if (sub (add (txdtx_N_elapsed, txdtx_hangover), DTX_ELAPSED_THRESHOLD) < 0) { /* old SID frame should be used */ *txdtx_ctrl = TX_USE_OLD_SID; move16 (); } else { test (); logic16 (); if ((*txdtx_ctrl & TX_HANGOVER_ACTIVE) != 0) { *txdtx_ctrl = TX_PREV_HANGOVER_ACTIVE | TX_HANGOVER_ACTIVE | TX_SP_FLAG; move16 (); logic16 (); logic16 (); } else { *txdtx_ctrl = TX_HANGOVER_ACTIVE | TX_SP_FLAG; move16 (); logic16 (); } } } } return; } /************************************************************************* * * FUNCTION NAME: rx_dtx * * PURPOSE: DTX handler of the speech decoder. Determines when to update * the reference comfort noise parameters (LSF and gain) at the * end of the speech burst. Also classifies the incoming frames * according to SID flag and BFI flag * and determines when the transmission is active during comfort * noise insertion. This function also initializes the pseudo * noise generator shift register. * * Operation of the RX DTX handler is based on measuring the * lengths of speech bursts and the lengths of the pauses between * speech bursts to determine when there exists a hangover period * at the end of a speech burst. The idea is to keep in sync with * the TX DTX handler to be able to update the reference comfort * noise parameters at the same time instances. * * INPUTS: *rxdtx_ctrl Old decoder DTX control word * TAF Time alignment flag * bfi Bad frame indicator flag * SID_flag Silence descriptor flag * * OUTPUTS: *rxdtx_ctrl Updated decoder DTX control word * rx_dtx_state Updated state of comfort noise interpolation * period (global variable) * L_pn_seed_rx Initialized pseudo noise generator shift * register (global variable) * * RETURN VALUE: none * *************************************************************************/ void rx_dtx ( Word16 *rxdtx_ctrl, Word16 TAF, Word16 bfi, Word16 SID_flag ) { Word16 frame_type; /* Frame classification according to bfi-flag and ternary-valued SID flag. The frames between SID updates (not actually trans- mitted) are also classified here; they will be discarded later and provided with "NO TRANSMISSION"-flag */ test (); test (); test (); test (); test (); test (); if ((sub (SID_flag, 2) == 0) && (bfi == 0)) { frame_type = VALID_SID_FRAME; move16 (); } else if ((SID_flag == 0) && (bfi == 0)) { frame_type = GOOD_SPEECH_FRAME; move16 (); } else if ((SID_flag == 0) && (bfi != 0)) { frame_type = UNUSABLE_FRAME; move16 (); } else { frame_type = INVALID_SID_FRAME; move16 (); } /* Update of decoder state */ /* Previous frame was classified as a speech frame */ test (); logic16 (); if ((*rxdtx_ctrl & RX_SP_FLAG) != 0) { test (); test (); test (); test (); if (sub (frame_type, VALID_SID_FRAME) == 0) { *rxdtx_ctrl = RX_FIRST_SID_UPDATE; move16 (); } else if (sub (frame_type, INVALID_SID_FRAME) == 0) { *rxdtx_ctrl = RX_FIRST_SID_UPDATE | RX_INVALID_SID_FRAME; move16 (); logic16(); } else if (sub (frame_type, UNUSABLE_FRAME) == 0) { *rxdtx_ctrl = RX_SP_FLAG; move16 (); } else if (sub (frame_type, GOOD_SPEECH_FRAME) == 0) { *rxdtx_ctrl = RX_SP_FLAG; move16 (); } } else { test (); test (); test (); test (); if (sub (frame_type, VALID_SID_FRAME) == 0) { *rxdtx_ctrl = RX_CONT_SID_UPDATE; move16 (); } else if (sub (frame_type, INVALID_SID_FRAME) == 0) { *rxdtx_ctrl = RX_CONT_SID_UPDATE | RX_INVALID_SID_FRAME; move16 (); logic16 (); } else if (sub (frame_type, UNUSABLE_FRAME) == 0) { *rxdtx_ctrl = RX_CNI_BFI; move16 (); } else if (sub (frame_type, GOOD_SPEECH_FRAME) == 0) { /* If the previous frame (during CNI period) was muted, raise the RX_PREV_DTX_MUTING flag */ test (); logic16 (); if ((*rxdtx_ctrl & RX_DTX_MUTING) != 0) { *rxdtx_ctrl = RX_SP_FLAG | RX_FIRST_SP_FLAG | RX_PREV_DTX_MUTING; move16 (); logic16 (); logic16 (); } else { *rxdtx_ctrl = RX_SP_FLAG | RX_FIRST_SP_FLAG; move16 (); logic16 (); } } } test (); logic16 (); if ((*rxdtx_ctrl & RX_SP_FLAG) != 0) { prev_SID_frames_lost = 0; move16 (); rx_dtx_state = CN_INT_PERIOD - 1; move16 (); } else { /* First SID frame */ test (); logic16 (); if ((*rxdtx_ctrl & RX_FIRST_SID_UPDATE) != 0) { prev_SID_frames_lost = 0; move16 (); rx_dtx_state = CN_INT_PERIOD - 1; move16 (); } /* SID frame detected, but not the first SID */ test (); logic16 (); if ((*rxdtx_ctrl & RX_CONT_SID_UPDATE) != 0) { prev_SID_frames_lost = 0; move16 (); test (); test (); if (sub (frame_type, VALID_SID_FRAME) == 0) { rx_dtx_state = 0; move16 (); } else if (sub (frame_type, INVALID_SID_FRAME) == 0) { test (); if (sub(rx_dtx_state, (CN_INT_PERIOD - 1)) < 0) { rx_dtx_state = add(rx_dtx_state, 1); move16 (); } } } /* Bad frame received in CNI mode */ test (); logic16 (); if ((*rxdtx_ctrl & RX_CNI_BFI) != 0) { test (); if (sub (rx_dtx_state, (CN_INT_PERIOD - 1)) < 0) { rx_dtx_state = add (rx_dtx_state, 1); move16 (); } /* If an unusable frame is received during CNI period when TAF == 1, the frame is classified as a lost SID frame */ test (); if (sub (TAF, 1) == 0) { *rxdtx_ctrl = *rxdtx_ctrl | RX_LOST_SID_FRAME; move16 (); logic16 (); prev_SID_frames_lost = add (prev_SID_frames_lost, 1); } else /* No transmission occurred */ { *rxdtx_ctrl = *rxdtx_ctrl | RX_NO_TRANSMISSION; move16 (); logic16 (); } test (); if (sub (prev_SID_frames_lost, 1) > 0) { *rxdtx_ctrl = *rxdtx_ctrl | RX_DTX_MUTING; move16 (); logic16 (); } } } /* N_elapsed (frames since last SID update) is incremented. If SID is updated N_elapsed is cleared later in this function */ rxdtx_N_elapsed = add (rxdtx_N_elapsed, 1); test (); logic16 (); if ((*rxdtx_ctrl & RX_SP_FLAG) != 0) { rxdtx_aver_period = DTX_HANGOVER; move16 (); } else { test (); test (); if (sub (rxdtx_N_elapsed, DTX_ELAPSED_THRESHOLD) > 0) { *rxdtx_ctrl |= RX_UPD_SID_QUANT_MEM; move16 (); logic16 (); rxdtx_N_elapsed = 0; move16 (); rxdtx_aver_period = 0; move16 (); L_pn_seed_rx = PN_INITIAL_SEED; move32 (); } else if (rxdtx_aver_period == 0) { rxdtx_N_elapsed = 0; move16 (); } else { rxdtx_aver_period = sub (rxdtx_aver_period, 1); } } return; } /************************************************************************* * * FUNCTION NAME: CN_encoding * * PURPOSE: Encoding of the comfort noise parameters into a SID frame. * Use old SID parameters if necessary. Set the parameter * indices not used by comfort noise parameters to zero. * * INPUTS: params[0..56] Comfort noise parameter frame from the * speech encoder * txdtx_ctrl TX DTX handler control word * * OUTPUTS: params[0..56] Comfort noise encoded parameter frame * * RETURN VALUE: none * *************************************************************************/ void CN_encoding ( Word16 params[], Word16 txdtx_ctrl ) { Word16 i; test (); logic16 (); if ((txdtx_ctrl & TX_SID_UPDATE) != 0) { /* Store new CN parameters in memory to be used later as old CN parameters */ /* LPC parameter indices */ for (i = 0; i < 5; i++) { old_CN_mem_tx[i] = params[i]; move16 (); } /* Codebook index computed in last subframe */ old_CN_mem_tx[5] = params[56]; move16 (); } test (); logic16 (); if ((txdtx_ctrl & TX_USE_OLD_SID) != 0) { /* Use old CN parameters previously stored in memory */ for (i = 0; i < 5; i++) { params[i] = old_CN_mem_tx[i]; move16 (); } params[17] = old_CN_mem_tx[5]; move16 (); params[30] = old_CN_mem_tx[5]; move16 (); params[43] = old_CN_mem_tx[5]; move16 (); params[56] = old_CN_mem_tx[5]; move16 (); } /* Set all the rest of the parameters to zero (SID codeword will be written later) */ for (i = 0; i < 12; i++) { params[i + 5] = 0; move16 (); params[i + 18] = 0; move16 (); params[i + 31] = 0; move16 (); params[i + 44] = 0; move16 (); } return; } /************************************************************************* * * FUNCTION NAME: sid_codeword_encoding * * PURPOSE: Encoding of the SID codeword into the SID frame. The SID * codeword consists of 95 bits, all set to '1'. * * INPUTS: ser2[0..243] Serial-mode speech parameter frame before * writing SID codeword into it * * OUTPUTS: ser2[0..243] Serial-mode speech parameter frame with * SID codeword written into it * * RETURN VALUE: none * *************************************************************************/ void sid_codeword_encoding ( Word16 ser2[] ) { Word16 i; for (i = 0; i < 95; i++) { ser2[SID_codeword_bit_idx[i]] = 1; move16 (); } return; } /************************************************************************* * * FUNCTION NAME: sid_frame_detection * * PURPOSE: Detecting of SID codeword from a received frame. The frames * are classified into three categories based on how many bit * errors occur in the SID codeword: * - VALID SID FRAME * - INVALID SID FRAME * - SPEECH FRAME * * INPUTS: ser2[0..243] Received serial-mode speech parameter frame * * OUTPUTS: none * * RETURN VALUE: Ternary-valued SID classification flag * *************************************************************************/ Word16 sid_frame_detection ( Word16 ser2[] ) { Word16 i, nbr_errors, sid; /* Search for bit errors in SID codeword */ nbr_errors = 0; move16 (); for (i = 0; i < 95; i++) { test (); if (ser2[SID_codeword_bit_idx[i]] == 0) { nbr_errors = add (nbr_errors, 1); } } /* Frame classification */ test (); test (); if (sub (nbr_errors, VALID_SID_THRESH) < 0) { /* Valid SID frame */ sid = 2; move16 (); } else if (sub (nbr_errors, INVALID_SID_THRESH) < 0) { /* Invalid SID frame */ sid = 1; move16 (); } else { /* Speech frame */ sid = 0; move16 (); } return sid; } /************************************************************************* * * FUNCTION NAME: update_lsf_history * * PURPOSE: Update the LSF parameter history. The LSF parameters kept * in the buffer are used later for computing the reference * LSF parameter vector and the averaged LSF parameter vector. * * INPUTS: lsf1[0..9] LSF vector of the 1st half of the frame * lsf2[0..9] LSF vector of the 2nd half of the frame * lsf_old[0..DTX_HANGOVER-1][0..M-1] * Old LSF history * * OUTPUTS: lsf_old[0..DTX_HANGOVER-1][0..M-1] * Updated LSF history * * RETURN VALUE: none * *************************************************************************/ void update_lsf_history ( Word16 lsf1[M], Word16 lsf2[M], Word16 lsf_old[DTX_HANGOVER][M] ) { Word16 i, j, temp; /* shift LSF data to make room for LSFs from current frame */ /* This can also be implemented by using circular buffering */ for (i = DTX_HANGOVER - 1; i > 0; i--) { for (j = 0; j < M; j++) { lsf_old[i][j] = lsf_old[i - 1][j]; move16 (); } } /* Store new LSF data to lsf_old buffer */ for (i = 0; i < M; i++) { temp = add (shr (lsf1[i], 1), shr (lsf2[i], 1)); lsf_old[0][i] = temp; move16 (); } return; } /************************************************************************* * * FUNCTION NAME: update_lsf_p_CN * * PURPOSE: Update the reference LSF parameter vector. The reference * vector is computed by averaging the quantized LSF parameter * vectors which exist in the LSF parameter history. * * INPUTS: lsf_old[0..DTX_HANGOVER-1][0..M-1] * LSF parameter history * * OUTPUTS: lsf_p_CN[0..9] Computed reference LSF parameter vector * * RETURN VALUE: none * *************************************************************************/ void update_lsf_p_CN ( Word16 lsf_old[DTX_HANGOVER][M], Word16 lsf_p_CN[M] ) { Word16 i, j; Word32 L_temp; for (j = 0; j < M; j++) { L_temp = L_mult (INV_DTX_HANGOVER, lsf_old[0][j]); for (i = 1; i < DTX_HANGOVER; i++) { L_temp = L_mac (L_temp, INV_DTX_HANGOVER, lsf_old[i][j]); } lsf_p_CN[j] = round (L_temp); move16 (); } return; } /************************************************************************* * * FUNCTION NAME: aver_lsf_history * * PURPOSE: Compute the averaged LSF parameter vector. Computation is * performed by averaging the LSF parameter vectors which exist * in the LSF parameter history, together with the LSF * parameter vectors of the current frame. * * INPUTS: lsf_old[0..DTX_HANGOVER-1][0..M-1] * LSF parameter history * lsf1[0..M-1] LSF vector of the 1st half of the frame * lsf2[0..M-1] LSF vector of the 2nd half of the frame * * OUTPUTS: lsf_aver[0..M-1] Averaged LSF parameter vector * * RETURN VALUE: none * *************************************************************************/ void aver_lsf_history ( Word16 lsf_old[DTX_HANGOVER][M], Word16 lsf1[M], Word16 lsf2[M], Word16 lsf_aver[M] ) { Word16 i, j; Word32 L_temp; for (j = 0; j < M; j++) { L_temp = L_mult (0x3fff, lsf1[j]); L_temp = L_mac (L_temp, 0x3fff, lsf2[j]); L_temp = L_mult (INV_DTX_HANGOVER_P1, extract_h (L_temp)); for (i = 0; i < DTX_HANGOVER; i++) { L_temp = L_mac (L_temp, INV_DTX_HANGOVER_P1, lsf_old[i][j]); } lsf_aver[j] = extract_h (L_temp); move16 (); } return; } /************************************************************************* * * FUNCTION NAME: update_gain_code_history_tx * * PURPOSE: Update the fixed codebook gain parameter history of the * encoder. The fixed codebook gain parameters kept in the buffer * are used later for computing the reference fixed codebook * gain parameter value and the averaged fixed codebook gain * parameter value. * * INPUTS: new_gain_code New fixed codebook gain value * * gain_code_old_tx[0..4*DTX_HANGOVER-1] * Old fixed codebook gain history of encoder * * OUTPUTS: gain_code_old_tx[0..4*DTX_HANGOVER-1] * Updated fixed codebook gain history of encoder * * RETURN VALUE: none * *************************************************************************/ void update_gain_code_history_tx ( Word16 new_gain_code, Word16 gain_code_old_tx[4 * DTX_HANGOVER] ) { /* Circular buffer */ gain_code_old_tx[buf_p_tx] = new_gain_code; move16 (); test (); if (sub (buf_p_tx, (4 * DTX_HANGOVER - 1)) == 0) { buf_p_tx = 0; move16 (); } else { buf_p_tx = add (buf_p_tx, 1); } return; } /************************************************************************* * * FUNCTION NAME: update_gain_code_history_rx * * PURPOSE: Update the fixed codebook gain parameter history of the * decoder. The fixed codebook gain parameters kept in the buffer * are used later for computing the reference fixed codebook * gain parameter value. * * INPUTS: new_gain_code New fixed codebook gain value * * gain_code_old_tx[0..4*DTX_HANGOVER-1] * Old fixed codebook gain history of decoder * * OUTPUTS: gain_code_old_tx[0..4*DTX_HANGOVER-1] * Updated fixed codebk gain history of decoder * * RETURN VALUE: none * *************************************************************************/ void update_gain_code_history_rx ( Word16 new_gain_code, Word16 gain_code_old_rx[4 * DTX_HANGOVER] ) { /* Circular buffer */ gain_code_old_rx[buf_p_rx] = new_gain_code; move16 (); test (); if (sub (buf_p_rx, (4 * DTX_HANGOVER - 1)) == 0) { buf_p_rx = 0; move16 (); } else { buf_p_rx = add (buf_p_rx, 1); } return; } /************************************************************************* * * FUNCTION NAME: compute_CN_excitation_gain * * PURPOSE: Compute the unquantized fixed codebook gain. Computation is * based on the energy of the Linear Prediction residual signal. * * INPUTS: res2[0..39] Linear Prediction residual signal * * OUTPUTS: none * * RETURN VALUE: Unquantized fixed codebook gain * *************************************************************************/ Word16 compute_CN_excitation_gain ( Word16 res2[L_SUBFR] ) { Word16 i, norm, norm1, temp, overfl; Word32 L_temp; /* Compute the energy of the LP residual signal */ norm = 0; move16 (); do { overfl = 0; move16 (); L_temp = 0L; move32 (); for (i = 0; i < L_SUBFR; i++) { temp = shr (res2[i], norm); L_temp = L_mac (L_temp, temp, temp); } test (); if (L_sub (L_temp, MAX_32) == 0) { norm = add (norm, 1); overfl = 1; move16 (); /* Set the overflow flag */ } test (); } while (overfl != 0); L_temp = L_add (L_temp, 1L); /* Avoid the case of all zeros */ /* Take the square root of the obtained energy value (sqroot is a 2nd order Taylor series approximation) */ norm1 = norm_l (L_temp); temp = extract_h (L_shl (L_temp, norm1)); L_temp = L_mult (temp, temp); L_temp = L_sub (805306368L, L_shr (L_temp, 3)); L_temp = L_add (L_temp, L_mult (24576, temp)); temp = extract_h (L_temp); test (); logic16 (); if ((norm1 & 0x0001) != 0) { temp = mult_r (temp, 23170); norm1 = sub (norm1, 1); } /* Divide the result of sqroot operation by sqroot(10) */ temp = mult_r (temp, 10362); /* Re-scale to get the final value */ norm1 = shr (norm1, 1); norm1 = sub (norm1, norm); test (); if (norm1 >= 0) { temp = shr (temp, norm1); } else { temp = shl (temp, abs_s (norm1)); } return temp; } /************************************************************************* * * FUNCTION NAME: update_gcode0_CN * * PURPOSE: Update the reference fixed codebook gain parameter value. * The reference value is computed by averaging the quantized * fixed codebook gain parameter values which exist in the * fixed codebook gain parameter history. * * INPUTS: gain_code_old[0..4*DTX_HANGOVER-1] * fixed codebook gain parameter history * * OUTPUTS: none * * RETURN VALUE: Computed reference fixed codebook gain * *************************************************************************/ Word16 update_gcode0_CN ( Word16 gain_code_old[4 * DTX_HANGOVER] ) { Word16 i, j; Word32 L_temp, L_ret; L_ret = 0L; move32 (); for (i = 0; i < DTX_HANGOVER; i++) { L_temp = L_mult (0x1fff, gain_code_old[4 * i]); for (j = 1; j < 4; j++) { L_temp = L_mac (L_temp, 0x1fff, gain_code_old[4 * i + j]); } L_ret = L_mac (L_ret, INV_DTX_HANGOVER, extract_h (L_temp)); } return extract_h (L_ret); } /************************************************************************* * * FUNCTION NAME: aver_gain_code_history * * PURPOSE: Compute the averaged fixed codebook gain parameter value. * Computation is performed by averaging the fixed codebook * gain parameter values which exist in the fixed codebook * gain parameter history, together with the fixed codebook * gain parameter value of the current subframe. * * INPUTS: CN_excitation_gain * Unquantized fixed codebook gain value * of the current subframe * gain_code_old[0..4*DTX_HANGOVER-1] * fixed codebook gain parameter history * * OUTPUTS: none * * RETURN VALUE: Averaged fixed codebook gain value * *************************************************************************/ Word16 aver_gain_code_history ( Word16 CN_excitation_gain, Word16 gain_code_old[4 * DTX_HANGOVER] ) { Word16 i; Word32 L_ret; L_ret = L_mult (0x470, CN_excitation_gain); for (i = 0; i < (4 * DTX_HANGOVER); i++) { L_ret = L_mac (L_ret, 0x470, gain_code_old[i]); } return extract_h (L_ret); } /************************************************************************* * * FUNCTION NAME: build_CN_code * * PURPOSE: Compute the comfort noise fixed codebook excitation. The * gains of the pulses are always +/-1. * * INPUTS: *seed Old CN generator shift register state * * OUTPUTS: cod[0..39] Generated comfort noise fixed codebook vector * *seed Updated CN generator shift register state * * RETURN VALUE: none * *************************************************************************/ void build_CN_code ( Word16 cod[], Word32 *seed ) { Word16 i, j, k; for (i = 0; i < L_SUBFR; i++) { cod[i] = 0; move16 (); } for (k = 0; k < NB_PULSE; k++) { i = pseudonoise (seed, 2); /* generate pulse position */ i = shr (extract_l (L_mult (i, 10)), 1); i = add (i, k); j = pseudonoise (seed, 1); /* generate sign */ test (); if (j > 0) { cod[i] = 4096; move16 (); } else { cod[i] = -4096; move16 (); } } return; } /************************************************************************* * * FUNCTION NAME: pseudonoise * * PURPOSE: Generate a random integer value to use in comfort noise * generation. The algorithm uses polynomial x^31 + x^3 + 1 * (length of PN sequence is 2^31 - 1). * * INPUTS: *shift_reg Old CN generator shift register state * * * OUTPUTS: *shift_reg Updated CN generator shift register state * * RETURN VALUE: Generated random integer value * *************************************************************************/ Word16 pseudonoise ( Word32 *shift_reg, Word16 no_bits ) { Word16 noise_bits, Sn, i; noise_bits = 0; move16 (); for (i = 0; i < no_bits; i++) { /* State n == 31 */ test (); logic32 (); if ((*shift_reg & 0x00000001L) != 0) { Sn = 1; move16 (); } else { Sn = 0; move16 (); } /* State n == 3 */ test (); logic32 (); if ((*shift_reg & 0x10000000L) != 0) { Sn = Sn ^ 1; logic16 (); } else { Sn = Sn ^ 0; logic16 (); } noise_bits = shl (noise_bits, 1); noise_bits = noise_bits | (extract_l (*shift_reg) & 1); logic16 (); logic16 (); *shift_reg = L_shr (*shift_reg, 1); move32 (); test (); logic16 (); if (Sn & 1) { *shift_reg = *shift_reg | 0x40000000L; move32 (); logic32 (); } } return noise_bits; } /************************************************************************* * * FUNCTION NAME: interpolate_CN_param * * PURPOSE: Interpolate a comfort noise parameter value over the comfort * noise update period. * * INPUTS: old_param The older parameter of the interpolation * (the endpoint the interpolation is started * from) * new_param The newer parameter of the interpolation * (the endpoint the interpolation is ended to) * rx_dtx_state State of the comfort noise insertion period * * OUTPUTS: none * * RETURN VALUE: Interpolated CN parameter value * *************************************************************************/ Word16 interpolate_CN_param ( Word16 old_param, Word16 new_param, Word16 rx_dtx_state ) { static const Word16 interp_factor[CN_INT_PERIOD] = { 0x0555, 0x0aaa, 0x1000, 0x1555, 0x1aaa, 0x2000, 0x2555, 0x2aaa, 0x3000, 0x3555, 0x3aaa, 0x4000, 0x4555, 0x4aaa, 0x5000, 0x5555, 0x5aaa, 0x6000, 0x6555, 0x6aaa, 0x7000, 0x7555, 0x7aaa, 0x7fff}; Word16 temp; Word32 L_temp; L_temp = L_mult (interp_factor[rx_dtx_state], new_param); temp = sub (0x7fff, interp_factor[rx_dtx_state]); temp = add (temp, 1); L_temp = L_mac (L_temp, temp, old_param); temp = round (L_temp); return temp; } /************************************************************************* * * FUNCTION NAME: interpolate_CN_lsf * * PURPOSE: Interpolate comfort noise LSF parameter vector over the comfort * noise update period. * * INPUTS: lsf_old_CN[0..9] * The older LSF parameter vector of the * interpolation (the endpoint the interpolation * is started from) * lsf_new_CN[0..9] * The newer LSF parameter vector of the * interpolation (the endpoint the interpolation * is ended to) * rx_dtx_state State of the comfort noise insertion period * * OUTPUTS: lsf_interp_CN[0..9] * Interpolated LSF parameter vector * * RETURN VALUE: none * *************************************************************************/ void interpolate_CN_lsf ( Word16 lsf_old_CN[M], Word16 lsf_new_CN[M], Word16 lsf_interp_CN[M], Word16 rx_dtx_state ) { Word16 i; for (i = 0; i < M; i++) { lsf_interp_CN[i] = interpolate_CN_param (lsf_old_CN[i], lsf_new_CN[i], rx_dtx_state); move16 (); } return; }