FreeCalypso > hg > efr-experiments
view src/inv_sqrt.c @ 5:799b56cbccb6
EFR2 decoder: add post-processing step from AMR
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Wed, 03 Apr 2024 06:09:10 +0000 |
parents | 56410792419a |
children |
line wrap: on
line source
/************************************************************************* * * FUNCTION: Inv_sqrt * * PURPOSE: Computes 1/sqrt(L_x), where L_x is positive. * If L_x is negative or zero, the result is 1 (3fff ffff). * * DESCRIPTION: * The function 1/sqrt(L_x) is approximated by a table and linear * interpolation. The inverse square root is computed using the * following steps: * 1- Normalization of L_x. * 2- If (30-exponent) is even then shift right once. * 3- exponent = (30-exponent)/2 +1 * 4- i = bit25-b31 of L_x; 16<=i<=63 because of normalization. * 5- a = bit10-b24 * 6- i -=16 * 7- L_y = table[i]<<16 - (table[i] - table[i+1]) * a * 2 * 8- L_y >>= exponent * *************************************************************************/ #include "typedef.h" #include "basic_op.h" #include "count.h" #include "inv_sqrt.tab" /* Table for inv_sqrt() */ Word32 Inv_sqrt ( /* (o) : output value */ Word32 L_x /* (i) : input value */ ) { Word16 exp, i, a, tmp; Word32 L_y; test (); if (L_x <= (Word32) 0) return ((Word32) 0x3fffffffL); exp = norm_l (L_x); L_x = L_shl (L_x, exp); /* L_x is normalize */ exp = sub (30, exp); test (); logic16 (); if ((exp & 1) == 0) /* If exponent even -> shift right */ { L_x = L_shr (L_x, 1); } exp = shr (exp, 1); exp = add (exp, 1); L_x = L_shr (L_x, 9); i = extract_h (L_x); /* Extract b25-b31 */ L_x = L_shr (L_x, 1); a = extract_l (L_x); /* Extract b10-b24 */ a = a & (Word16) 0x7fff; logic16 (); i = sub (i, 16); L_y = L_deposit_h (table[i]); /* table[i] << 16 */ tmp = sub (table[i], table[i + 1]); /* table[i] - table[i+1]) */ L_y = L_msu (L_y, tmp, a); /* L_y -= tmp*a*2 */ L_y = L_shr (L_y, exp); /* denormalization */ return (L_y); }