FreeCalypso > hg > fc-magnetite
comparison src/cs/layer1/p_cfile/l1p_sync.c @ 302:0740b5ff15f6
reconstructed L1_GPRS source imported from tcs211-l1-reconst
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Tue, 31 Oct 2017 03:42:35 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
301:a963c5c35f8d | 302:0740b5ff15f6 |
---|---|
1 /************* Revision Controle System Header ************* | |
2 * GSM Layer 1 software | |
3 * L1P_SYNC.C | |
4 * | |
5 * Filename l1p_sync.c | |
6 * Copyright 2003 (C) Texas Instruments | |
7 * | |
8 ************* Revision Controle System Header *************/ | |
9 | |
10 #define L1P_SYNC_C | |
11 | |
12 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
13 | |
14 #include "l1_macro.h" | |
15 #include "l1_confg.h" | |
16 | |
17 #if L1_GPRS | |
18 | |
19 #if (CODE_VERSION == SIMULATION) | |
20 #include <string.h> | |
21 #include "l1_types.h" | |
22 #include "sys_types.h" | |
23 #include "l1_const.h" | |
24 #include "l1_time.h" | |
25 #include <l1_trace.h> | |
26 #if TESTMODE | |
27 #include "l1tm_defty.h" | |
28 #endif | |
29 #if (AUDIO_TASK == 1) | |
30 #include "l1audio_const.h" | |
31 #include "l1audio_cust.h" | |
32 #include "l1audio_defty.h" | |
33 #endif | |
34 #if (L1_GTT == 1) | |
35 #include "l1gtt_const.h" | |
36 #include "l1gtt_defty.h" | |
37 #endif | |
38 #if (L1_MP3 == 1) | |
39 #include "l1mp3_defty.h" | |
40 #endif | |
41 #if (L1_MIDI == 1) | |
42 #include "l1midi_defty.h" | |
43 #endif | |
44 #include "l1_defty.h" | |
45 #include "cust_os.h" | |
46 #include "l1_msgty.h" | |
47 #include "l1_varex.h" | |
48 #include "l1_signa.h" | |
49 #include "l1_proto.h" | |
50 | |
51 #if L2_L3_SIMUL | |
52 #include "hw_debug.h" | |
53 #endif | |
54 | |
55 #include "l1p_cons.h" | |
56 #include "l1p_msgt.h" | |
57 #include "l1p_deft.h" | |
58 #include "l1p_vare.h" | |
59 #include "l1p_prot.h" | |
60 #include "l1p_mfta.h" | |
61 #include "l1p_sign.h" | |
62 #include "l1p_macr.h" | |
63 #include "l1p_proto.h" | |
64 #else | |
65 #include <string.h> | |
66 #include "l1_types.h" | |
67 #include "sys_types.h" | |
68 #include "l1_const.h" | |
69 #include "l1_time.h" | |
70 | |
71 #if TESTMODE | |
72 #include "l1tm_defty.h" | |
73 #endif | |
74 #if (AUDIO_TASK == 1) | |
75 #include "l1audio_const.h" | |
76 #include "l1audio_cust.h" | |
77 #include "l1audio_defty.h" | |
78 #endif | |
79 #if (L1_GTT == 1) | |
80 #include "l1gtt_const.h" | |
81 #include "l1gtt_defty.h" | |
82 #endif | |
83 #if (L1_MP3 == 1) | |
84 #include "l1mp3_defty.h" | |
85 #endif | |
86 #if (L1_MIDI == 1) | |
87 #include "l1midi_defty.h" | |
88 #endif | |
89 #include "l1_defty.h" | |
90 #include "cust_os.h" | |
91 #include "l1_msgty.h" | |
92 #include "l1_varex.h" | |
93 #include "l1_signa.h" | |
94 #include "l1_proto.h" | |
95 #include "l1_trace.h" | |
96 | |
97 #if L2_L3_SIMUL | |
98 #include "hw_debug.h" | |
99 #endif | |
100 | |
101 #include "l1p_cons.h" | |
102 #include "l1p_msgt.h" | |
103 #include "l1p_deft.h" | |
104 #include "l1p_vare.h" | |
105 #include "l1p_prot.h" | |
106 #include "l1p_mfta.h" | |
107 #include "l1p_sign.h" | |
108 #include "l1p_macr.h" | |
109 #endif | |
110 | |
111 #if(RF_FAM == 61) | |
112 #include "l1_rf61.h" | |
113 #include "tpudrv61.h" | |
114 #endif | |
115 | |
116 #if (GSM_IDLE_RAM !=0) | |
117 #if (OP_L1_STANDALONE == 0) | |
118 #include "csmi/sleep.h" | |
119 #else | |
120 #include "csmi_simul.h" | |
121 #endif | |
122 #endif | |
123 | |
124 /*-------------------------------------------------------*/ | |
125 /* Prototypes of external functions used in this file. */ | |
126 /*-------------------------------------------------------*/ | |
127 void l1ps_tcr_ctrl (UWORD8 pm_position); | |
128 void l1pddsp_meas_ctrl (UWORD8 nbmeas, UWORD8 pm_pos); | |
129 void l1pddsp_meas_read (UWORD8 nbmeas, UWORD8 *pm_read); | |
130 void l1pctl_transfer_agc_init(); | |
131 UWORD8 l1pctl_pgc (UWORD8 pm, UWORD8 last_known_il, UWORD8 lna_off, UWORD16 radio_freq); | |
132 void l1ps_bcch_meas_ctrl (UWORD8 ts); | |
133 | |
134 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END | |
135 | |
136 | |
137 #if (MOVE_IN_INTERNAL_RAM == 0) // Must be followed by the pragma used to duplicate the funtion in internal RAM | |
138 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
139 | |
140 /*-------------------------------------------------------*/ | |
141 /* l1ps_transfer_mode_manager() */ | |
142 /*-------------------------------------------------------*/ | |
143 /* Parameters : */ | |
144 /* Return : */ | |
145 /* Functionality : */ | |
146 /*-------------------------------------------------------*/ | |
147 void l1ps_transfer_mode_manager() | |
148 { | |
149 BOOL block_boundary = TRUE; | |
150 UWORD8 current_assignment_command = NO_TBF; | |
151 #if FF_TBF | |
152 BOOL tbf_update_synchro_forced = FALSE; | |
153 #endif | |
154 | |
155 //==================================== | |
156 // NEW configuration management | |
157 //==================================== | |
158 | |
159 if(!l1pa_l1ps_com.transfer.semaphore) | |
160 // IF Transfer parameter structure protected, | |
161 // No action within L1S. | |
162 { | |
163 WORD8 i; | |
164 UWORD8 min_synchro_ts = 7; | |
165 BOOL new_tbf_installed = FALSE; | |
166 T_PACKET_TA *current_ta_config; | |
167 | |
168 // In packet transfer mode, we only detect STI at block boundaries in order to udpate the | |
169 // ASET structure after the last Control of the previous TBF | |
170 if (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) | |
171 { | |
172 if ((l1s.next_time.fn_mod13 != 0)&&(l1s.next_time.fn_mod13 != 4)&& | |
173 (l1s.next_time.fn_mod13 != 8)) | |
174 { | |
175 block_boundary = FALSE; | |
176 } | |
177 } | |
178 // Delay STI detection when a poll response hasn't already been answered | |
179 // for transition to Packet transfer mode | |
180 else if (l1a_l1s_com.l1s_en_task[POLL] == TASK_ENABLED) | |
181 { | |
182 block_boundary = FALSE; | |
183 } | |
184 | |
185 // LOOK FOR NEW ASSIGNMENT... | |
186 //=========================== | |
187 | |
188 // Consider both FREE SET... | |
189 for(i=0;i<2;i++) | |
190 { | |
191 // Is there a new transfer channel provided in "fset[i]"? | |
192 if(((l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_ASSIGNMENT_REQ) && (block_boundary == TRUE)) || | |
193 (l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_SINGLE_BLOCK_REQ)) | |
194 { | |
195 if(l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present) | |
196 // Starting time present. | |
197 // Rem: starting time detected 1 frame in advance, this frame is used by | |
198 // SYNCHRO task. | |
199 { | |
200 WORD32 time_diff; | |
201 WORD8 frame_shift=0; | |
202 WORD8 tn_diff; | |
203 | |
204 | |
205 // In packet idle mode, L1 must detect if the synchronization change will happen | |
206 // from a timeslot N to a timeslot M < N because in this case, a frame is skipped | |
207 // and the MS is ready two frames after the synchronization change... a radio | |
208 // block can be missed... | |
209 // In packet transfer, the SYNCHRO task will always been executed on BURST 1, that let | |
210 // 2 frames before the new TBF starts | |
211 if (l1a_l1s_com.l1s_en_task[PDTCH] != TASK_ENABLED) | |
212 { | |
213 frame_shift -= 1; | |
214 | |
215 tn_diff = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot - | |
216 l1a_l1s_com.dl_tn; | |
217 | |
218 if(tn_diff < 0) | |
219 frame_shift -= 1; | |
220 } | |
221 //TBF_changes | |
222 | |
223 #if FF_TBF | |
224 // PDTCH task is enabled | |
225 else | |
226 { | |
227 // Pseudo TBF for Two phase access, new TBF configuration has to | |
228 // be installed for Starting Time taking into account that a | |
229 // SYNCHRO task has to be scheduled before. | |
230 if ((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) && | |
231 (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc)) | |
232 { | |
233 // Note: We are at block boundary. | |
234 if ((l1s.next_time.fn_mod13 == 0) || (l1s.next_time.fn_mod13 == 4)) | |
235 frame_shift -= 4; | |
236 else // i.e. (l1s.next_time.fn_mod13 == 8) | |
237 frame_shift -= 5; | |
238 } | |
239 | |
240 // Two phase access establishment on PACCH (therefore there is an | |
241 // ongoing uplink TBF). | |
242 if ((l1pa_l1ps_com.transfer.fset[i]->allocated_tbf == UL_TBF) && | |
243 (l1pa_l1ps_com.transfer.fset[i]->pseudo_tbf_two_phase_acc)) | |
244 { | |
245 // Make sure single/multi block allocation | |
246 // if a synchro task has to be inserted i.e. : | |
247 // -> we are currently in EGPRS mode | |
248 // -> and/or we change synchronization timeslot | |
249 if ( (l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot != l1a_l1s_com.dl_tn) | |
250 #if L1_EGPRS | |
251 || (l1pa_l1ps_com.transfer.aset->egprs_param.tbf_mode == TBF_MODE_EGPRS) | |
252 #endif | |
253 ) | |
254 { | |
255 // Note: We are at block boundary. | |
256 if ((l1s.next_time.fn_mod13 == 0) || (l1s.next_time.fn_mod13 == 4)) | |
257 frame_shift -= 4; | |
258 else // i.e. (l1s.next_time.fn_mod13 == 8) | |
259 frame_shift -= 5; | |
260 } | |
261 } | |
262 } | |
263 #endif | |
264 | |
265 | |
266 time_diff = ( (l1pa_l1ps_com.transfer.fset[i]->tbf_sti.absolute_fn) + | |
267 frame_shift - (l1s.next_time.fn % 42432) + 2*42432) % 42432; | |
268 | |
269 if((time_diff >= (32024)) && (time_diff <= (42431))) | |
270 // Starting time has been passed... | |
271 //--------------------------------- | |
272 { | |
273 // For SINGLE BLOCK case, an error must be reported to L3. | |
274 if(l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_SINGLE_BLOCK_REQ) | |
275 { | |
276 xSignalHeaderRec *msg; | |
277 | |
278 // Send confirmation msg to L3/MACA. | |
279 msg = os_alloc_sig(sizeof(T_MPHP_SINGLE_BLOCK_CON)); | |
280 DEBUGMSG(status,NU_ALLOC_ERR) | |
281 | |
282 ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->purpose = | |
283 l1pa_l1ps_com.transfer.fset[i]->assignment_command; | |
284 ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->assignment_id = | |
285 l1pa_l1ps_com.transfer.fset[i]->assignment_id; | |
286 | |
287 ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->status = SINGLE_STI_PASSED; | |
288 | |
289 msg->SignalCode = L1P_SINGLE_BLOCK_CON; | |
290 | |
291 // send message... | |
292 os_send_sig(msg, L1C1_QUEUE); | |
293 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
294 | |
295 // Do not reset "tbf_sti.present". | |
296 | |
297 // Ignore the SINGLE BLOCK requested. | |
298 l1pa_l1ps_com.transfer.fset[i]->SignalCode = NULL; | |
299 } | |
300 else | |
301 { | |
302 // Reset "tbf_sti.present" flag to take into account the new | |
303 // configuration. | |
304 l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present = FALSE; | |
305 } | |
306 } | |
307 else | |
308 if(time_diff == 0) | |
309 // Starting time corresponds to current frame... | |
310 //---------------------------------------------- | |
311 { | |
312 // Reset "tbf_sti.present" flag to take into account the new | |
313 // configuration. | |
314 l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present = FALSE; | |
315 } | |
316 else | |
317 // Starting time hasn't already been reached... | |
318 //--------------------------------------------- | |
319 { | |
320 // time_to_next_l1s_task updated with time to sti | |
321 Select_min_time(time_diff, l1a_l1s_com.time_to_next_l1s_task); | |
322 } | |
323 } | |
324 | |
325 // Do we switch to a new transfer configuration? | |
326 // We have to switch if, new set STI is passed. | |
327 if(!l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present) | |
328 { | |
329 // Install new configuration immediately. | |
330 // Rem: the new channel will start at a block boundary because by construction | |
331 // PDTCH task is started every block boundary. | |
332 T_TRANSFER_SET *transfer_set; | |
333 | |
334 // STI has been passed, we must switch to the new config. | |
335 | |
336 #if (TRACE_TYPE!=0) | |
337 // Trace "starting time" on log file and screen. | |
338 trace_fct(CST_STI_PASSED, l1a_l1s_com.Scell_info.radio_freq); | |
339 #endif | |
340 | |
341 #if FF_TBF | |
342 // Forces a SYNCHRO task prior to new TBF configuration if | |
343 // -> Coming from 2 phases access TBF | |
344 // -> Coming from (Packet) Idle | |
345 if (((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) && | |
346 (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc)) | |
347 || (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_DISABLED) | |
348 ) | |
349 { | |
350 // Can not be merged with test above evaluated only when a | |
351 // starting time is present in the message. | |
352 tbf_update_synchro_forced = TRUE; | |
353 } | |
354 #endif | |
355 if (current_assignment_command == NO_TBF) | |
356 current_assignment_command = l1pa_l1ps_com.transfer.fset[i]->assignment_command; | |
357 else if ((current_assignment_command == UL_TBF) || | |
358 (current_assignment_command == DL_TBF)) | |
359 current_assignment_command = BOTH_TBF; | |
360 | |
361 // Check if anything to keep from previous configuration. | |
362 // Select the best timeslot for timebase synchro. | |
363 | |
364 if(l1pa_l1ps_com.transfer.aset->allocated_tbf != NO_TBF) | |
365 { | |
366 UWORD8 synchro_ts; | |
367 | |
368 // Check if required to take TA from previous packet assignment | |
369 // if TA not valid in new assignment command | |
370 if ( l1pa_l1ps_com.transfer.fset[i]->packet_ta.ta == 255) | |
371 { | |
372 // new TA value to be taken from previous packet TA | |
373 l1pa_l1ps_com.transfer.fset[i]->packet_ta.ta = l1pa_l1ps_com.transfer.aset->packet_ta.ta; | |
374 } | |
375 | |
376 switch(l1pa_l1ps_com.transfer.fset[i]->assignment_command) | |
377 { | |
378 case DL_TBF: | |
379 { | |
380 // If any, keep the UL allocation from previous set. | |
381 if((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) || | |
382 (l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF)) | |
383 { | |
384 T_UL_RESSOURCE_ALLOC *ul_ptr; | |
385 | |
386 // Swap the pointers on UL parameter structures | |
387 ul_ptr = l1pa_l1ps_com.transfer.fset[i]->ul_tbf_alloc; | |
388 l1pa_l1ps_com.transfer.fset[i]->ul_tbf_alloc = | |
389 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc; | |
390 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc = ul_ptr; | |
391 | |
392 l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = BOTH_TBF; | |
393 l1pa_l1ps_com.transfer.fset[i]->ul_tbf_synchro_timeslot = | |
394 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
395 | |
396 // Chose min synchro timeslot from UL and DL TBFs. | |
397 if(l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot < | |
398 l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot) | |
399 { | |
400 synchro_ts = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
401 } | |
402 else | |
403 { | |
404 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
405 } | |
406 } | |
407 | |
408 // No UL TBF running, select the new DL TBF synchro timeslot. | |
409 else | |
410 { | |
411 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
412 } | |
413 } | |
414 break; | |
415 | |
416 case UL_TBF: | |
417 { | |
418 // If any, keep the DL allocation from previous set. | |
419 | |
420 if((l1pa_l1ps_com.transfer.aset->allocated_tbf == DL_TBF) || | |
421 (l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF)) | |
422 { | |
423 l1pa_l1ps_com.transfer.fset[i]->dl_tbf_alloc = | |
424 l1pa_l1ps_com.transfer.aset->dl_tbf_alloc; | |
425 l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = BOTH_TBF; | |
426 l1pa_l1ps_com.transfer.fset[i]->dl_tbf_synchro_timeslot = | |
427 l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
428 | |
429 // Chose min synchro timeslot from UL and DL TBFs. | |
430 if(l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot < | |
431 l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot) | |
432 { | |
433 synchro_ts = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
434 } | |
435 else | |
436 { | |
437 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
438 } | |
439 } | |
440 | |
441 // No DL TBF running, select the new UL TBF synchro timeslot. | |
442 else | |
443 { | |
444 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
445 } | |
446 | |
447 // Reset Repeat allocation starting time checking | |
448 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
449 // Reset Allocation Exhaustion detection flag | |
450 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
451 } | |
452 break; | |
453 | |
454 case BOTH_TBF: | |
455 case NO_TBF: | |
456 default: | |
457 { | |
458 // Nothing to keep, everything (UL & DL) is replaced. | |
459 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
460 | |
461 // Reset Repeat allocation starting time checking | |
462 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
463 // Reset Allocation Exhaustion detection flag | |
464 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
465 } | |
466 break; | |
467 | |
468 } // end of switch(...assignment_command) | |
469 | |
470 if(synchro_ts < min_synchro_ts) | |
471 min_synchro_ts = synchro_ts; | |
472 | |
473 } // end of if(...allocated_tbf != NO_TBF) | |
474 | |
475 else | |
476 { | |
477 min_synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
478 } | |
479 | |
480 // New set becomes active and old becomes free. | |
481 | |
482 // Save a pointer on currently used PTCCH parameters | |
483 current_ta_config = &l1pa_l1ps_com.transfer.aset->packet_ta; | |
484 | |
485 transfer_set = l1pa_l1ps_com.transfer.aset; | |
486 l1pa_l1ps_com.transfer.aset = l1pa_l1ps_com.transfer.fset[i]; | |
487 l1pa_l1ps_com.transfer.fset[i] = transfer_set; | |
488 l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = NO_TBF; | |
489 | |
490 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = min_synchro_ts; | |
491 | |
492 // Set local flag. | |
493 new_tbf_installed = TRUE; | |
494 | |
495 if(l1pa_l1ps_com.transfer.aset->SignalCode == MPHP_ASSIGNMENT_REQ) | |
496 // Assignement confirmation message is sent | |
497 { | |
498 xSignalHeaderRec *msg; | |
499 | |
500 // Send confirmation msg to L3/MACA. | |
501 msg = os_alloc_sig(sizeof(T_L1P_TRANSFER_DONE)); | |
502 DEBUGMSG(status,NU_ALLOC_ERR) | |
503 | |
504 msg->SignalCode = L1P_TRANSFER_DONE; | |
505 | |
506 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->assignment_id = | |
507 l1pa_l1ps_com.transfer.aset->assignment_id; | |
508 | |
509 // Insert "t_difference" information in L1P_TRANSFER_DONE msg | |
510 // will be used in Ncell Dedic6 state machine to request a reset | |
511 // or not of the state machine | |
512 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->tn_difference = | |
513 min_synchro_ts - l1a_l1s_com.dl_tn; | |
514 | |
515 | |
516 // detect the Transition IDLE -> Transfer | |
517 if (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) | |
518 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->Transfer_update = TRUE; | |
519 else | |
520 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->Transfer_update = FALSE; | |
521 | |
522 | |
523 os_send_sig(msg, L1C1_QUEUE); | |
524 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
525 } | |
526 | |
527 // New config has been acknowledeged, clear SignalCode... | |
528 l1pa_l1ps_com.transfer.fset[i]->SignalCode = NULL; | |
529 l1pa_l1ps_com.transfer.aset->SignalCode = NULL; | |
530 | |
531 } // end if(...tbf_sti.present) | |
532 } // end of if(...SignalCode == MPHP_ASSIGNMENT_REQ) | |
533 } | |
534 | |
535 if(new_tbf_installed == TRUE) | |
536 { | |
537 // Start the new configuration | |
538 //---------------------------- | |
539 | |
540 // Enable PACKET tasks. | |
541 { | |
542 // Set assignment_command to the last enabled TBF type. | |
543 // This permits MAC-S to correctly manage TBF boundary conditions. | |
544 l1pa_l1ps_com.transfer.aset->assignment_command = current_assignment_command; | |
545 | |
546 // Flag the new configuration to MACS. | |
547 l1ps_macs_com.new_set = TRUE; | |
548 | |
549 // Flag the new configuration in order to update the Read set parameters | |
550 // in the first Read phase of the new TBF | |
551 // This permits to start using the new aset parameters for the first Control of | |
552 // the first block of the new TBF and to keep the parameters needed for the | |
553 // last read phase of the last block of the previous TBF. | |
554 l1ps.read_param.new_set = TRUE; | |
555 | |
556 // TBF_changes | |
557 #if !FF_TBF | |
558 // We need to detect that we just leaving CS/P Idle mode to enter | |
559 // in Packet Transfer mode. Then we have to enable SYNCHRO task on dectection | |
560 // of a mode change (Idle or Packet idle -> Packet transfer). | |
561 // Note: This check can't be gathered with the one done a little bit later | |
562 // on tn_difference and SINGLE task from the fact that the allocated_tbf | |
563 // is checked and PDTCH enabled. | |
564 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
565 { | |
566 if(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_DISABLED) | |
567 { | |
568 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
569 l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; | |
570 } | |
571 } | |
572 #endif | |
573 | |
574 // Disable interference measurements | |
575 l1a_l1s_com.l1s_en_task[ITMEAS] = TASK_DISABLED; | |
576 | |
577 // Check for Continuous Timing advance procedure. | |
578 // Enable PTCCH task if required. | |
579 if((l1pa_l1ps_com.transfer.aset->packet_ta.ta_index != 255) && | |
580 (l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn != 255)) | |
581 { | |
582 // No action when the configuration is the same as the current one. | |
583 if((l1pa_l1ps_com.transfer.aset->packet_ta.ta_index != current_ta_config->ta_index) || | |
584 (l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn != current_ta_config->ta_tn) || | |
585 (l1a_l1s_com.l1s_en_task[PTCCH] == TASK_DISABLED)) | |
586 // The configuration is different than the current one or no PTCCH is currently running | |
587 // (for example in packet idle) | |
588 { | |
589 // Reset PTCCH execution variables. | |
590 l1pa_l1ps_com.transfer.ptcch.activity = 0; | |
591 l1pa_l1ps_com.transfer.ptcch.request_dl = FALSE; | |
592 | |
593 // Enable PTCCH task. | |
594 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_ENABLED; | |
595 } | |
596 } | |
597 else | |
598 // PTCCH is not configured. | |
599 { | |
600 // Disable PTCCH task. | |
601 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
602 } | |
603 | |
604 // Transfer AGC initialization | |
605 l1pctl_transfer_agc_init(); | |
606 | |
607 switch(l1pa_l1ps_com.transfer.aset->allocated_tbf) | |
608 { | |
609 case SINGLE_BLOCK_UL: | |
610 { | |
611 // Set SINGLE execution variables. | |
612 l1pa_l1ps_com.transfer.single_block.activity = SINGLE_UL; // UL enabled | |
613 | |
614 // Enable SINGLE task. | |
615 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; | |
616 } | |
617 break; | |
618 | |
619 case SINGLE_BLOCK_DL: | |
620 { | |
621 // Set SINGLE execution variables. | |
622 l1pa_l1ps_com.transfer.single_block.activity = SINGLE_DL; // DL enabled | |
623 | |
624 // Enable SINGLE task. | |
625 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; | |
626 } | |
627 break; | |
628 | |
629 case TWO_PHASE_ACCESS: | |
630 { | |
631 // Set SINGLE execution variables. | |
632 l1pa_l1ps_com.transfer.single_block.activity |= SINGLE_DL; // DL enabled | |
633 l1pa_l1ps_com.transfer.single_block.activity |= SINGLE_UL; // UL enabled | |
634 | |
635 // Enable SINGLE task. | |
636 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; | |
637 } | |
638 break; | |
639 | |
640 default: | |
641 { | |
642 /* | |
643 * FreeCalypso: removal of the following line is | |
644 * TCS211 reconstruction | |
645 */ | |
646 //if(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) | |
647 //In case of transition idle to transfer the Packet transfer mode is set when synchro is executed | |
648 // Layer 1 internal mode is set to PACKET TRANSFER MODE. | |
649 l1a_l1s_com.mode = PACKET_TRANSFER_MODE; | |
650 | |
651 // Enable PDTCH task. | |
652 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_ENABLED; | |
653 | |
654 // Need to disable SINGLE task for two phase access case | |
655 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_DISABLED; | |
656 } | |
657 break; | |
658 } // End switch() | |
659 | |
660 // SYNCHRO task is not schedule if we are in the specific case: | |
661 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
662 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
663 // Note: tn_difference has to be accumulated in order to cope with the | |
664 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
665 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
666 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
667 { | |
668 // Save the "timeslot difference" between new and old configuration | |
669 // in "tn_difference". | |
670 // tn_difference -> loaded with the number of timeslot to shift. | |
671 // dl_tn -> loaded with the new timeslot. | |
672 l1a_l1s_com.tn_difference += min_synchro_ts - l1a_l1s_com.dl_tn; | |
673 l1a_l1s_com.dl_tn = min_synchro_ts; | |
674 | |
675 #if !FF_TBF | |
676 // Enable SYNCHRO task only if lowest allocated timeslot changed | |
677 // or if each time the SINGLE task is enabled | |
678 // In the specific case of the SINGLE task, the GPRS_SCHEDULER | |
679 // has to be selected. | |
680 if((l1a_l1s_com.tn_difference != 0) || | |
681 (l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED)) | |
682 { | |
683 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
684 l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; | |
685 } | |
686 #else | |
687 // Enable SYNCHRO task if at least one of these conditions fulfilled: | |
688 // -> Change in the timeslot synhronization | |
689 // -> Change of the ongoing TBF mode (synchro_forced) | |
690 // -> Exit of two phase access (synchro_forced) | |
691 // -> Coming from (Packet) Idle (synchro forced) | |
692 // -> SINGLE task enabled | |
693 if((l1a_l1s_com.tn_difference != 0) || | |
694 (tbf_update_synchro_forced) || | |
695 (l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED)) | |
696 { | |
697 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
698 | |
699 l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; | |
700 } | |
701 #endif | |
702 } | |
703 else | |
704 {}// L1A is touching dl_tn, tn_difference and dsp_scheduler_mode parameters... | |
705 } | |
706 } | |
707 | |
708 // LOOK FOR TIMING AVANCE UPDATE | |
709 //=============================== | |
710 | |
711 if(l1pa_l1ps_com.transfer.ptcch.ta_update_cmd == TRUE) | |
712 { | |
713 #define CURRENT_TA_CONFIG l1pa_l1ps_com.transfer.aset->packet_ta | |
714 #define NEW_TA_CONFIG l1pa_l1ps_com.transfer.ptcch.packet_ta | |
715 | |
716 // Only update if the assignment_id of the running TBF matches with the assignment_id | |
717 // given in the MPHP_TIMING_ADVANCE_REQ message | |
718 if (l1pa_l1ps_com.transfer.ptcch.assignment_id == l1pa_l1ps_com.transfer.aset->assignment_id) | |
719 { | |
720 xSignalHeaderRec *msg; | |
721 | |
722 // Immediate Update of PACKET TA structure. | |
723 //----------------------------------------- | |
724 | |
725 // Update TA value only if a new value is provided. | |
726 if(NEW_TA_CONFIG.ta != 255) | |
727 CURRENT_TA_CONFIG.ta = NEW_TA_CONFIG.ta; | |
728 | |
729 if((NEW_TA_CONFIG.ta_index != 255) && | |
730 (NEW_TA_CONFIG.ta_tn != 255)) | |
731 // There is a New PTCCH configuration. | |
732 { | |
733 // No action when the configuration is the same as the current one. | |
734 | |
735 if((NEW_TA_CONFIG.ta_index != CURRENT_TA_CONFIG.ta_index) || | |
736 (NEW_TA_CONFIG.ta_tn != CURRENT_TA_CONFIG.ta_tn)) | |
737 // The configuration is different than the current one. | |
738 { | |
739 // Download the new configuration. | |
740 CURRENT_TA_CONFIG.ta_index = NEW_TA_CONFIG.ta_index; | |
741 CURRENT_TA_CONFIG.ta_tn = NEW_TA_CONFIG.ta_tn; | |
742 | |
743 // Reset PTCCH execution variables. | |
744 l1pa_l1ps_com.transfer.ptcch.activity = 0; | |
745 l1pa_l1ps_com.transfer.ptcch.request_dl = FALSE; | |
746 | |
747 // Enable PTCCH task. | |
748 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_ENABLED; | |
749 } | |
750 } | |
751 else | |
752 // PTCCH is not configured. | |
753 { | |
754 // Diable PTCCH task. | |
755 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
756 } | |
757 | |
758 // Send confirmation message to L3. | |
759 msg = os_alloc_sig(sizeof(T_MPHP_TIMING_ADVANCE_CON)); | |
760 DEBUGMSG(status,NU_ALLOC_ERR) | |
761 | |
762 msg->SignalCode = L1P_TA_CONFIG_DONE; | |
763 ((T_MPHP_TIMING_ADVANCE_CON *) msg->SigP)->assignment_id = | |
764 l1pa_l1ps_com.transfer.aset->assignment_id; | |
765 | |
766 os_send_sig(msg, L1C1_QUEUE); | |
767 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
768 | |
769 } // End if "assignment_id of the running TBF matches" | |
770 | |
771 // Reset Control code. | |
772 l1pa_l1ps_com.transfer.ptcch.ta_update_cmd = FALSE; | |
773 | |
774 } // End if(...ta_update_cmd == TRUE) | |
775 | |
776 // LOOK FOR PSI PARAMETERS UPDATE | |
777 //=============================== | |
778 | |
779 if(l1pa_l1ps_com.transfer.psi_param.psi_param_update_cmd == TRUE) | |
780 { | |
781 // Update parameters | |
782 l1a_l1s_com.Scell_info.pb = l1pa_l1ps_com.transfer.psi_param.Scell_pb; | |
783 l1pa_l1ps_com.access_burst_type = l1pa_l1ps_com.transfer.psi_param.access_burst_type; | |
784 | |
785 // Reset Control code. | |
786 l1pa_l1ps_com.transfer.psi_param.psi_param_update_cmd = FALSE; | |
787 } | |
788 | |
789 /***********************************************************/ | |
790 /* TBF release, PDCH release, Repeat allocation, Fixed */ | |
791 /* allocation exhaustion */ | |
792 /***********************************************************/ | |
793 | |
794 // These events are only taken into account on block boundaries | |
795 // in order to keep the "aset" structure unchanged for all the control phases | |
796 // of the last block before modification | |
797 | |
798 if(block_boundary) | |
799 { | |
800 // LOOK FOR TBF TO BE RELEASED... | |
801 //=============================== | |
802 | |
803 if(l1pa_l1ps_com.transfer.tbf_release_param.tbf_release_cmd == TRUE) | |
804 { | |
805 xSignalHeaderRec *msg; | |
806 | |
807 //TBF_changes | |
808 #if !FF_TBF | |
809 switch(l1pa_l1ps_com.transfer.tbf_release_param.released_tbf) | |
810 #else | |
811 UWORD8 released_tbf; | |
812 | |
813 // Special case if we got a request to release a two phase access TBF: | |
814 // It is registered within ASET structure as an uplink TBF. If we are | |
815 // currently in pseudo TBF for two phase access, we process the request | |
816 // like an uplink release, otherwise we skip it and just send the | |
817 // L1P_TBF_RELEASED to L1A. | |
818 | |
819 released_tbf = l1pa_l1ps_com.transfer.tbf_release_param.released_tbf; | |
820 | |
821 if (released_tbf == TWO_PHASE_ACCESS) | |
822 { | |
823 if (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc) | |
824 released_tbf = UL_TBF; | |
825 else | |
826 released_tbf = NO_TBF; | |
827 } | |
828 | |
829 switch(released_tbf) | |
830 #endif | |
831 { | |
832 case UL_TBF: | |
833 { | |
834 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) | |
835 { | |
836 // Disable PDTCH task. | |
837 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; | |
838 // Disable PTCCH task. | |
839 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
840 | |
841 // Free the active set. | |
842 l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; | |
843 } | |
844 else | |
845 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) | |
846 { | |
847 // Still DL_TBF running. | |
848 // We must synchro to the 1st timeslot of DL_TBF. | |
849 | |
850 // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" | |
851 // since MACS will detect the alloc change. | |
852 | |
853 // Active set becomes DL TBF. | |
854 l1pa_l1ps_com.transfer.aset->allocated_tbf = DL_TBF; | |
855 | |
856 // SYNCHRO task is not schedule if we are in the specific case: | |
857 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
858 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
859 // Note: tn_difference has to be accumulated in order to cope with the | |
860 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
861 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
862 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
863 { | |
864 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot - l1a_l1s_com.dl_tn; | |
865 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
866 | |
867 // Enable SYNCHRO task only when camp timeslot is changed. | |
868 if(l1a_l1s_com.tn_difference != 0) | |
869 { | |
870 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
871 } | |
872 } | |
873 | |
874 // Diable PTCCH if timeslot doesn't match with the remaining DL TBF allocation | |
875 if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & | |
876 l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc)) | |
877 { | |
878 // Disable PTCCH task. | |
879 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
880 | |
881 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
882 l1_trace_ptcch_disable(); | |
883 #endif | |
884 } | |
885 | |
886 } | |
887 | |
888 // Reset Repeat allocation starting time checking | |
889 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
890 // Reset Allocation Exhaustion detection flag | |
891 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
892 #if L1_EDA | |
893 // Disable FB/SB task detection mechanism for MS class 12 | |
894 l1ps_macs_com.fb_sb_task_detect = FALSE; | |
895 #endif | |
896 } | |
897 break; | |
898 | |
899 case DL_TBF: | |
900 { | |
901 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == DL_TBF) | |
902 { | |
903 // Disable PDTCH task. | |
904 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; | |
905 // Disable PTCCH task. | |
906 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
907 | |
908 // Free the active set. | |
909 l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; | |
910 } | |
911 else | |
912 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) | |
913 { | |
914 // Still UL_TBF running. | |
915 // We must synchro to the 1st timeslot of UL_TBF. | |
916 | |
917 // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" | |
918 // since MACS will detect the alloc change. | |
919 | |
920 // Active set becomes UL TBF. | |
921 l1pa_l1ps_com.transfer.aset->allocated_tbf = UL_TBF; | |
922 | |
923 // SYNCHRO task is not schedule if we are in the specific case: | |
924 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
925 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
926 // Note: tn_difference has to be accumulated in order to cope with the | |
927 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
928 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
929 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
930 { | |
931 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot - l1a_l1s_com.dl_tn; | |
932 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
933 | |
934 // Enable SYNCHRO task only when camp timeslot is changed. | |
935 if(l1a_l1s_com.tn_difference != 0) | |
936 { | |
937 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
938 } | |
939 } | |
940 | |
941 // Diable PTCCH if timeslot doesn't match with the remaining UL TBF allocation | |
942 if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & | |
943 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc)) | |
944 { | |
945 // Disable PTCCH task. | |
946 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
947 | |
948 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
949 l1_trace_ptcch_disable(); | |
950 #endif | |
951 } | |
952 | |
953 } | |
954 } | |
955 break; | |
956 | |
957 case BOTH_TBF: | |
958 { | |
959 // No more TBF... | |
960 // Disable PDTCH task. | |
961 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; | |
962 // Disable PTCCH task. | |
963 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
964 | |
965 // Free the active set. | |
966 l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; | |
967 | |
968 // Reset Repeat allocation starting time checking | |
969 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
970 // Reset Allocation Exhaustion detection flag | |
971 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
972 #if L1_EDA | |
973 // Disable FB/SB task detection mechanism for MS class 12 | |
974 l1ps_macs_com.fb_sb_task_detect = FALSE; | |
975 #endif | |
976 } | |
977 break; | |
978 | |
979 } | |
980 | |
981 // Send confirmation msg to L3/MACA. | |
982 msg = os_alloc_sig(sizeof(T_L1P_TBF_RELEASED)); | |
983 DEBUGMSG(status,NU_ALLOC_ERR) | |
984 | |
985 msg->SignalCode = L1P_TBF_RELEASED; | |
986 | |
987 // initialize the TBF type for the confirmation msg | |
988 ((T_L1P_TBF_RELEASED *) msg->SigP)->tbf_type = l1pa_l1ps_com.transfer.tbf_release_param.released_tbf; | |
989 | |
990 if (l1pa_l1ps_com.transfer.aset->allocated_tbf == NO_TBF) | |
991 { | |
992 /* | |
993 * FreeCalypso: removal of the following line is | |
994 * TCS211 reconstruction | |
995 */ | |
996 //l1ps.read_param.assignment_id = 0x01; /* default non initialised value for next tbf */ | |
997 | |
998 ((T_L1P_TBF_RELEASED *) msg->SigP)->released_all = TRUE; | |
999 | |
1000 #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) | |
1001 // Correction of BUG1041: reset of multislot bit in d_bbctrl_gprs | |
1002 // when leaving patcket transfer. | |
1003 l1ps_dsp_com.pdsp_ndb_ptr->d_bbctrl_gprs = l1_config.params.bbctrl; | |
1004 #endif | |
1005 } | |
1006 else | |
1007 { | |
1008 ((T_L1P_TBF_RELEASED *) msg->SigP)->released_all = FALSE; | |
1009 } | |
1010 | |
1011 // Insert "tn_difference" information in L1P_TBF_RELEASED msg | |
1012 // will be used in Ncell Dedic6 state machine to request a reset | |
1013 // or not of the state machine. | |
1014 ((T_L1P_TBF_RELEASED *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
1015 | |
1016 os_send_sig(msg, L1C1_QUEUE); | |
1017 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
1018 | |
1019 // Flag the new configuration in order to update the Read set parameters | |
1020 // with the "aset" structure modifications in the first PDTCH Read phase | |
1021 // after configuration change | |
1022 l1ps.read_param.new_set = TRUE; | |
1023 | |
1024 // Reset Control code. | |
1025 l1pa_l1ps_com.transfer.tbf_release_param.tbf_release_cmd = FALSE; | |
1026 } | |
1027 | |
1028 // LOOK FOR PDCH TO BE RELEASED... | |
1029 //================================ | |
1030 | |
1031 if(l1pa_l1ps_com.transfer.pdch_release_param.pdch_release_cmd == TRUE) | |
1032 { | |
1033 xSignalHeaderRec *msg; | |
1034 UWORD8 timeslot,timeslot_alloc; | |
1035 | |
1036 // PDCH Release only apply if the assignement_id of the running TBF matches | |
1037 // with the assignment_id included in the MPHP_PDCH_RELEASE_REQ message | |
1038 if (l1pa_l1ps_com.transfer.pdch_release_param.assignment_id == l1pa_l1ps_com.transfer.aset->assignment_id) | |
1039 { | |
1040 | |
1041 // Update timeslot allocation bitmaps | |
1042 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc &= l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available; | |
1043 l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc &= l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available; | |
1044 | |
1045 // Process the downlink TBF first allocated timeslot | |
1046 timeslot_alloc = l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc; | |
1047 timeslot = 0; | |
1048 | |
1049 while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) | |
1050 { | |
1051 timeslot++; | |
1052 } | |
1053 | |
1054 l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot = timeslot; | |
1055 | |
1056 // Process the uplink TBF first allocated timeslot | |
1057 timeslot_alloc = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc; | |
1058 timeslot = 0; | |
1059 #if L1_EDA | |
1060 // Dynamic allocation mode or Extended Dynamic allocation mode | |
1061 if((l1pa_l1ps_com.transfer.aset->mac_mode == DYN_ALLOC) || (l1pa_l1ps_com.transfer.aset->mac_mode == EXT_DYN_ALLOC)) | |
1062 #else | |
1063 // Dynamic allocation mode | |
1064 if(l1pa_l1ps_com.transfer.aset->mac_mode == DYN_ALLOC) | |
1065 #endif | |
1066 { | |
1067 while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) | |
1068 { | |
1069 timeslot++; | |
1070 } | |
1071 } | |
1072 else | |
1073 // Fixed allocation mode | |
1074 if(l1pa_l1ps_com.transfer.aset->mac_mode == FIX_ALLOC_NO_HALF) | |
1075 { | |
1076 // If the control timeslot hasn't been released | |
1077 if (l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & | |
1078 (0x80 >> l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot)) | |
1079 { | |
1080 // The first allocated timeslot is the control timeslot | |
1081 timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot; | |
1082 } | |
1083 else | |
1084 { | |
1085 // The first allocated timeslot is found in the allocation bitmap | |
1086 while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) | |
1087 { | |
1088 timeslot++; | |
1089 } | |
1090 } | |
1091 } | |
1092 | |
1093 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = timeslot; | |
1094 | |
1095 // Fill "synchro_timeslot" which will be the frame synchro slot. | |
1096 switch(l1pa_l1ps_com.transfer.aset->allocated_tbf) | |
1097 { | |
1098 case(DL_TBF): | |
1099 { | |
1100 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
1101 } | |
1102 break; | |
1103 | |
1104 case(UL_TBF): | |
1105 { | |
1106 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
1107 } | |
1108 break; | |
1109 | |
1110 case(BOTH_TBF): | |
1111 { | |
1112 if (l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot > l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot) | |
1113 { | |
1114 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
1115 } | |
1116 else | |
1117 { | |
1118 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
1119 } | |
1120 } | |
1121 break; | |
1122 } | |
1123 | |
1124 // SYNCHRO task is not schedule if we are in the specific case: | |
1125 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
1126 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
1127 // Note: tn_difference has to be accumulated in order to cope with the | |
1128 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
1129 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
1130 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
1131 { | |
1132 // New synchronization | |
1133 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; | |
1134 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; | |
1135 | |
1136 // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" | |
1137 // since MACS will detect the alloc change. | |
1138 | |
1139 // Enable SYNCHRO task only when camp timeslot is changed. | |
1140 if(l1a_l1s_com.tn_difference != 0) | |
1141 { | |
1142 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
1143 } | |
1144 } | |
1145 | |
1146 // Disable PTCCH if timeslot doesn't match with the remaining PDCH allocation | |
1147 if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & | |
1148 l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available)) | |
1149 { | |
1150 // Disable PTCCH task. | |
1151 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
1152 | |
1153 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
1154 l1_trace_ptcch_disable(); | |
1155 #endif | |
1156 } | |
1157 | |
1158 // Send confirmation msg to L3/MACA. | |
1159 msg = os_alloc_sig(sizeof(T_L1P_PDCH_RELEASE_CON)); | |
1160 DEBUGMSG(status,NU_ALLOC_ERR) | |
1161 | |
1162 msg->SignalCode = L1P_PDCH_RELEASED; | |
1163 | |
1164 ((T_L1P_PDCH_RELEASE_CON *) msg->SigP)->assignment_id = l1pa_l1ps_com.transfer.pdch_release_param.assignment_id; | |
1165 | |
1166 // Insert "tn_difference" information in T_L1P_PDCH_RELEASE_CON msg | |
1167 // will be used in Ncell Dedic6 state machine to request a reset | |
1168 // or not of the state machine | |
1169 ((T_L1P_PDCH_RELEASE_CON *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
1170 | |
1171 os_send_sig(msg, L1C1_QUEUE); | |
1172 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
1173 | |
1174 // Flag the new configuration in order to update the Read set parameters | |
1175 // with the "aset" structure modifications in the first PDTCH Read phase | |
1176 // after configuration change | |
1177 l1ps.read_param.new_set = TRUE; | |
1178 | |
1179 } // End if "assignment_id matches with the running TBF" | |
1180 | |
1181 // Reset Control code. | |
1182 l1pa_l1ps_com.transfer.pdch_release_param.pdch_release_cmd = FALSE; | |
1183 } | |
1184 | |
1185 // LOOK FOR REPEAT ALLOCATION ... | |
1186 //================================ | |
1187 | |
1188 if(l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation) | |
1189 { | |
1190 UWORD8 timeslot,timeslot_alloc; | |
1191 | |
1192 // Starting time checking... | |
1193 //-------------------------- | |
1194 | |
1195 if(l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present) | |
1196 // Starting time present. | |
1197 // Rem: starting time detected 1 frame in advance, this frame is used by | |
1198 // SYNCHRO task. | |
1199 { | |
1200 WORD32 time_diff; | |
1201 | |
1202 // If synchro change occurs, it's always from a timeslot N to N + 1 | |
1203 time_diff = ( (l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.absolute_fn - 1) | |
1204 - (l1s.next_time.fn % 42432) + 2*42432) % 42432; | |
1205 | |
1206 // Starting time has been passed... | |
1207 if(((time_diff >= (32024)) && (time_diff <= (42431))) || (time_diff == 0)) | |
1208 { | |
1209 l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present = FALSE; | |
1210 } | |
1211 } // End if "starting time present" | |
1212 | |
1213 // Starting time passed... | |
1214 //------------------------ | |
1215 | |
1216 // If the repeat allocation starts on this frame... | |
1217 if (!l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present) | |
1218 { | |
1219 #if (TRACE_TYPE!=0) | |
1220 // Trace "starting time" on log file and screen. | |
1221 trace_fct(CST_STI_PASSED, l1a_l1s_com.Scell_info.radio_freq); | |
1222 #endif | |
1223 | |
1224 // Update ts_override and starting time | |
1225 l1pa_l1ps_com.transfer.aset->ts_override = l1pa_l1ps_com.transfer.repeat_alloc.ts_override; | |
1226 l1pa_l1ps_com.transfer.aset->tbf_sti.absolute_fn = l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.absolute_fn; | |
1227 | |
1228 // Lowest allocated timeslot for the UL TBF | |
1229 | |
1230 // If the downlink control timeslot hasn't been released: it's the downlink control timeslot | |
1231 // Else no change | |
1232 if ( l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc | |
1233 & (0x80 >> l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot)) | |
1234 { | |
1235 // Synchronization on the downlink control timeslot | |
1236 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot; | |
1237 } | |
1238 | |
1239 // Synchronization | |
1240 | |
1241 // If a downlink TBF is enabled | |
1242 if ( l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) | |
1243 { | |
1244 // Synchronization on the downlink TBF lowest allocated timeslot ? | |
1245 if (l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot > l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot) | |
1246 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
1247 else | |
1248 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
1249 } | |
1250 // Else: synchronization on the uplink TBF lowest allocated timeslot | |
1251 else | |
1252 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
1253 | |
1254 // SYNCHRO task is not schedule if we are in the specific case: | |
1255 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
1256 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
1257 // Note: tn_difference has to be accumulated in order to cope with the | |
1258 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
1259 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
1260 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
1261 { | |
1262 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; | |
1263 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; | |
1264 | |
1265 // Enable SYNCHRO task only when camp timeslot is changed. | |
1266 if(l1a_l1s_com.tn_difference != 0) | |
1267 { | |
1268 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
1269 } | |
1270 } | |
1271 | |
1272 // Set assignment_command to the last enabled TBF type. | |
1273 // This permits MAC-S to correctly manage TBF boundary conditions. | |
1274 if ((current_assignment_command == NO_TBF) || (current_assignment_command == UL_TBF)) | |
1275 l1pa_l1ps_com.transfer.aset->assignment_command = UL_TBF; | |
1276 else | |
1277 l1pa_l1ps_com.transfer.aset->assignment_command = BOTH_TBF; | |
1278 | |
1279 // Flag the new configuration to MACS. | |
1280 l1ps_macs_com.new_set = TRUE; | |
1281 | |
1282 // Flag the new configuration in order to update the Read set parameters | |
1283 // with the "aset" structure modifications in the first PDTCH Read phase | |
1284 // after configuration change | |
1285 l1ps.read_param.new_set = TRUE; | |
1286 | |
1287 // Reset Repeat allocation starting time checking | |
1288 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
1289 // Reset Allocation Exhaustion detection flag | |
1290 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
1291 | |
1292 // Send confirmation | |
1293 { | |
1294 xSignalHeaderRec *msg; | |
1295 | |
1296 // Send confirmation msg to L3/MACA. | |
1297 msg = os_alloc_sig(sizeof(T_L1P_REPEAT_ALLOC_DONE)); | |
1298 DEBUGMSG(status,NU_ALLOC_ERR) | |
1299 | |
1300 msg->SignalCode = L1P_REPEAT_ALLOC_DONE; | |
1301 | |
1302 // Insert "tn_difference" information in T_L1P_REPEAT_ALLOC_DONE msg | |
1303 // will be used in Ncell Dedic6 state machine to request a reset | |
1304 // or not of the state machine | |
1305 ((T_L1P_REPEAT_ALLOC_DONE *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
1306 | |
1307 os_send_sig(msg, L1C1_QUEUE); | |
1308 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
1309 } | |
1310 | |
1311 } // End if "Repeat allocation starts this frame..." | |
1312 } // End of "Repeat allocation starting time checking" | |
1313 | |
1314 // LOOK FOR FIXED MODE ALLOCATION BITMAP EXHAUSTION ... | |
1315 //================================================== | |
1316 | |
1317 if(l1ps_macs_com.fix_alloc_exhaust_flag) | |
1318 { | |
1319 #if (TRACE_TYPE!=0) | |
1320 // Trace "starting time" on log file and screen. | |
1321 trace_fct(CST_ALLOC_EXHAUSTION, l1a_l1s_com.Scell_info.radio_freq); | |
1322 #endif | |
1323 | |
1324 // Update uplink TBF synchronization timeslot | |
1325 { | |
1326 UWORD8 timeslot = 0; | |
1327 UWORD8 bitmap = 0x80; | |
1328 | |
1329 while (!(l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & bitmap)) | |
1330 { | |
1331 timeslot ++; | |
1332 bitmap >>= 1; | |
1333 } | |
1334 | |
1335 // Synchronization on the lowest allocated timeslot for uplink tranfer | |
1336 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = timeslot; | |
1337 } | |
1338 | |
1339 // New synchronization only done on a timeslot inferior to current synchronization | |
1340 // - if a DL TBF is present: the DL TBF synchronization is taken into account | |
1341 // - an UL TBF is present: synchronization can only be done on a timeslot number inferior or | |
1342 // equal to the current synchronization | |
1343 if (l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot < | |
1344 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot) | |
1345 { | |
1346 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
1347 } | |
1348 | |
1349 // SYNCHRO task is not schedule if we are in the specific case: | |
1350 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
1351 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
1352 // Note: tn_difference has to be accumulated in order to cope with the | |
1353 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
1354 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
1355 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
1356 { | |
1357 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; | |
1358 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; | |
1359 | |
1360 // Enable SYNCHRO task only when camp timeslot is changed. | |
1361 if(l1a_l1s_com.tn_difference != 0) | |
1362 { | |
1363 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
1364 } | |
1365 } | |
1366 | |
1367 // Send signal to L1A | |
1368 { | |
1369 xSignalHeaderRec *msg; | |
1370 | |
1371 // Send confirmation msg to L3/MACA. | |
1372 msg = os_alloc_sig(sizeof(T_L1P_ALLOC_EXHAUST_DONE)); | |
1373 DEBUGMSG(status,NU_ALLOC_ERR) | |
1374 | |
1375 msg->SignalCode = L1P_ALLOC_EXHAUST_DONE; | |
1376 | |
1377 // Insert "tn_difference" information in T_L1P_ALLOC_EXHAUST_DONE msg | |
1378 // will be used in Ncell Dedic6 state machine to request a reset | |
1379 // or not of the state machine | |
1380 ((T_L1P_ALLOC_EXHAUST_DONE *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
1381 | |
1382 os_send_sig(msg, L1C1_QUEUE); | |
1383 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
1384 } | |
1385 | |
1386 // Flag the new configuration in order to update the Read set parameters | |
1387 // with the "aset" structure modifications in the first PDTCH Read phase | |
1388 // after configuration change | |
1389 l1ps.read_param.new_set = TRUE; | |
1390 | |
1391 // Reset flag | |
1392 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
1393 | |
1394 } // End if "fixed mode allocation bitmap has exhausted" | |
1395 } // End of "block_boundary" | |
1396 } // end of if(!l1pa_l1ps_com.transfer.semaphore) | |
1397 } | |
1398 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END | |
1399 #endif // MOVE_IN_INTERNAL_RAM | |
1400 | |
1401 #if !((MOVE_IN_INTERNAL_RAM == 1) && (GSM_IDLE_RAM !=0)) // MOVE TO INTERNAL MEM IN CASE GSM_IDLE_RAM enabled | |
1402 //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_START // KEEP IN EXTERNAL MEM otherwise | |
1403 | |
1404 /*-------------------------------------------------------*/ | |
1405 /* l1ps_meas_manager() */ | |
1406 /*-------------------------------------------------------*/ | |
1407 /* */ | |
1408 /* Description: */ | |
1409 /* ------------ */ | |
1410 /* This function is the tasks manager for Packet Cell */ | |
1411 /* Reselection. */ | |
1412 /* The followings tasks are handled: */ | |
1413 /* */ | |
1414 /* FSMS_MEAS: */ | |
1415 /* */ | |
1416 /* P_CRMS_MEAS: Packet Cell Reselection measurement */ | |
1417 /* in Idle mode. The task includes: */ | |
1418 /* o BA(GPRS) measurement */ | |
1419 /* o Network controlled meas. */ | |
1420 /* o Extended measurement */ | |
1421 /* Occurrences are performed in order to satisfy the */ | |
1422 /* following ETSI constraints: */ | |
1423 /* 1. At least one measure of each BA BCCH carrier shall */ | |
1424 /* be taken for each paging block, */ | |
1425 /* 2. A minimum of one measure for each BA BCCH carrier */ | |
1426 /* for every 4 second must be performed, */ | |
1427 /* 3. MS is not required to take more than one sample */ | |
1428 /* per second for each BCCH carrier, */ | |
1429 /* 4. At least 5 measures per BA BCCH carrier are */ | |
1430 /* required for a valid received level average value */ | |
1431 /* (RLA_P), */ | |
1432 /* 5. RLA_P shall be based on samples collected over a */ | |
1433 /* period of 5s to Max{5s, five consecutive PPCH */ | |
1434 /* blocks dedicated to the MS}, */ | |
1435 /* 6. Samples allocated to each carrier shall as far */ | |
1436 /* as possible be uniformly distributed over the */ | |
1437 /* evaluation period. */ | |
1438 /* */ | |
1439 /* A TI condition is include: */ | |
1440 /* 7. In order to save power consumption, it will be */ | |
1441 /* necessary to use as far as possible the PPCH */ | |
1442 /* blocks to perform a maximum of measurements during */ | |
1443 /* these frames. */ | |
1444 /* */ | |
1445 /* From the previous constraints, it appears that */ | |
1446 /* Paging block period needs to be considered to fit */ | |
1447 /* ETSI consideration. */ | |
1448 /* Tow case are considered: */ | |
1449 /* o PPCH period >= 1s */ | |
1450 /* o PPCH period < 1s */ | |
1451 /* */ | |
1452 /* Once all carriers of the frequency list have been */ | |
1453 /* measured, a reporting message L1P_CR_MEAS_DONE is */ | |
1454 /* built and sent to L1A. */ | |
1455 /*-------------------------------------------------------*/ | |
1456 void l1ps_meas_manager() | |
1457 { | |
1458 enum states | |
1459 { | |
1460 NULL_MEAS = 0, | |
1461 PCHTOTAL = 1, | |
1462 TOTAL = 2, | |
1463 MEAS = 3, | |
1464 MEASTOTAL = 4 | |
1465 }; | |
1466 | |
1467 UWORD8 IL_for_rxlev; | |
1468 BOOL init_meas = FALSE; | |
1469 #if (RF_FAM == 61) | |
1470 UWORD16 dco_algo_ctl_pw = 0; | |
1471 UWORD16 dco_algo_ctl_pw_temp = 0; | |
1472 UWORD8 if_ctl = 0; | |
1473 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
1474 #endif | |
1475 #define cr_list_size l1pa_l1ps_com.cres_freq_list.alist->nb_carrier | |
1476 | |
1477 static WORD8 remain_carrier; | |
1478 static UWORD8 nbr_meas; | |
1479 static BOOL schedule_trigger; | |
1480 static xSignalHeaderRec *cr_msg = NULL; | |
1481 static WORD16 time_to_wake_up; | |
1482 static WORD16 time_to_4s; | |
1483 static WORD16 time_to_1s; | |
1484 static UWORD32 fn_update; | |
1485 static UWORD16 session_done; // Did a session of measures performed in the 4s period | |
1486 static UWORD16 session_done_1s; // Did a session of measures performed in the 1s period | |
1487 static UWORD8 state; | |
1488 static UWORD32 reporting_period; // Parameter used in "reporting_period" computation | |
1489 | |
1490 #if (FF_L1_FAST_DECODING == 1) | |
1491 if (l1a_apihisr_com.fast_decoding.deferred_control_req == TRUE) | |
1492 { | |
1493 /* Do not execute l1s_meas_manager if a fast decoding IT is scheduled */ | |
1494 return; | |
1495 } | |
1496 #endif /*#if (FF_L1_FAST_DECODING == 1)*/ | |
1497 | |
1498 #if FF_L1_IT_DSP_USF | |
1499 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
1500 { | |
1501 #endif | |
1502 | |
1503 | |
1504 //==================================================== | |
1505 // RESET MEASUREMENT MACHINES WHEN ABORT EXECUTED. | |
1506 //==================================================== | |
1507 if(l1s.dsp_ctrl_reg & CTRL_ABORT) | |
1508 // ABORT task has been controlled, which reset the MCU/DSP communication. | |
1509 // We must rewind any measurement activity. | |
1510 { | |
1511 // Aborted measurements have to be rescheduled | |
1512 nbr_meas += l1pa_l1ps_com.cr_freq_list.ms_ctrl_d + l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd; | |
1513 | |
1514 // Rewind "next_to_ctrl" counter to come back to the next carrier to | |
1515 // measure. | |
1516 l1pa_l1ps_com.cr_freq_list.next_to_ctrl = l1pa_l1ps_com.cr_freq_list.next_to_read; | |
1517 | |
1518 // Reset flags. | |
1519 l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; | |
1520 l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = 0; | |
1521 l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = 0; | |
1522 } | |
1523 | |
1524 #if (GSM_IDLE_RAM != 1) | |
1525 // Test if task is disabled and cr_msg != NULL, then de-allocate memory | |
1526 if (!(l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_CRMS_MEAS)) | |
1527 { | |
1528 if(cr_msg != NULL) | |
1529 { | |
1530 // Cell reselection measurement process has been stopped by L3 | |
1531 // Deallocate memory for the received message if msg not forwarded to L3. | |
1532 // ---------------------------------------------------------------------- | |
1533 os_free_sig(cr_msg); | |
1534 DEBUGMSG(status,NU_DEALLOC_ERR) | |
1535 | |
1536 cr_msg = NULL; | |
1537 } | |
1538 } | |
1539 #endif | |
1540 | |
1541 if((l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && (l1pa_l1ps_com.meas_param & P_CRMS_MEAS)) | |
1542 // Some changes occured on the Frequency list or the PAGING PARAMETERS have | |
1543 // changed. | |
1544 { | |
1545 // Reset Packet Cell Reselection semaphore. | |
1546 l1pa_l1ps_com.meas_param &= P_CRMS_MEAS_MASK; | |
1547 | |
1548 // Paging process has been interrupted by a L3 message | |
1549 // Deallocate memory for the received message if msg not forwarded to L3. | |
1550 // ---------------------------------------------------------------------- | |
1551 | |
1552 //Update Frequency list pointer | |
1553 l1pa_l1ps_com.cres_freq_list.alist = l1pa_l1ps_com.cres_freq_list.flist; | |
1554 | |
1555 // Rewind frequency list counters to come back to the first carrier of this | |
1556 // aborted session. | |
1557 l1pa_l1ps_com.cr_freq_list.next_to_read = 0; | |
1558 l1pa_l1ps_com.cr_freq_list.next_to_ctrl = 0; | |
1559 | |
1560 // Reset flags. | |
1561 l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; | |
1562 l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = 0; | |
1563 l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = 0; | |
1564 | |
1565 // Initialize timer | |
1566 time_to_wake_up = 0; | |
1567 time_to_4s = 866; | |
1568 time_to_1s = 216; | |
1569 fn_update = l1s.actual_time.fn; | |
1570 | |
1571 // Initialize Reporting Period | |
1572 reporting_period = l1s.actual_time.fn; | |
1573 | |
1574 // Initialize Cell reselection state machine and parameters | |
1575 state = NULL_MEAS; | |
1576 session_done = 0; | |
1577 session_done_1s = 0; | |
1578 schedule_trigger = TRUE; | |
1579 nbr_meas = 0; | |
1580 init_meas = TRUE; | |
1581 } | |
1582 #if FF_L1_IT_DSP_USF | |
1583 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
1584 #endif | |
1585 | |
1586 // Packet Idle Cell Relselection Power Measurements fonction if P_CRMS_MEAS task still enabled. | |
1587 // In case L1S has switched in GPRS packet transfer mode and L1S_TRANSFER_DONE message hasn't been processed yet | |
1588 // by L1A, no control or read task shall be done. | |
1589 | |
1590 if ((l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_CRMS_MEAS) | |
1591 && (l1a_l1s_com.l1s_en_task[PDTCH] != TASK_ENABLED)) | |
1592 { | |
1593 #if FF_L1_IT_DSP_USF | |
1594 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
1595 { | |
1596 #endif | |
1597 // Update P_CRMS_MEAS timers | |
1598 { | |
1599 UWORD16 fn_diff; | |
1600 #define current_fn l1s.actual_time.fn | |
1601 | |
1602 // Compute Frame Number increment since last L1S activity | |
1603 if(current_fn >= fn_update) | |
1604 fn_diff = current_fn - fn_update; | |
1605 else | |
1606 fn_diff = (current_fn + MAX_FN) - fn_update; | |
1607 | |
1608 // Update timer | |
1609 time_to_4s -= fn_diff; | |
1610 | |
1611 if(time_to_4s <= 0) | |
1612 { | |
1613 time_to_4s += 866; | |
1614 session_done = 0; | |
1615 } | |
1616 | |
1617 time_to_1s -= fn_diff; | |
1618 | |
1619 if(time_to_1s <= 0) | |
1620 { | |
1621 time_to_1s += 216; | |
1622 session_done_1s = 0; | |
1623 } | |
1624 | |
1625 // Note: time to next meas position is negative during the meas. | |
1626 // session period | |
1627 time_to_wake_up -= fn_diff; | |
1628 | |
1629 fn_update = current_fn; | |
1630 } | |
1631 | |
1632 if(time_to_wake_up == 0) | |
1633 { | |
1634 // Schedule CR meas position for "PNP period >= 1s" case | |
1635 if(l1pa_l1ps_com.pccch.pnp_period >= 216) | |
1636 { | |
1637 switch (state) | |
1638 { | |
1639 case PCHTOTAL: | |
1640 case TOTAL: | |
1641 { | |
1642 nbr_meas = cr_list_size; | |
1643 | |
1644 // Measures is going to start, set "session_done" flag. | |
1645 // "session_done" flag must be set at the begining of a meas. session | |
1646 // in order to be able to detect crossing of the 4s boundary | |
1647 session_done = 1; | |
1648 } | |
1649 break; | |
1650 | |
1651 case NULL_MEAS: | |
1652 { | |
1653 nbr_meas = 0; | |
1654 } | |
1655 break; | |
1656 } | |
1657 } | |
1658 // Schedule CR meas position for "PNP period < 1s" case | |
1659 else | |
1660 { | |
1661 switch (state) | |
1662 { | |
1663 case NULL_MEAS: | |
1664 { | |
1665 nbr_meas = 0; | |
1666 } | |
1667 break; | |
1668 | |
1669 case MEAS: | |
1670 { | |
1671 UWORD8 max_nbmeas; | |
1672 WORD16 tpu_win_rest; | |
1673 UWORD16 power_meas_split; | |
1674 | |
1675 // Compute how many BP_SPLIT remains for cr list meas | |
1676 // Rem: we take into account the SYNTH load for 1st RX in next frame. | |
1677 // WARNING: only one RX activity is considered in next paging block !!! | |
1678 tpu_win_rest = FRAME_SPLIT - (RX_LOAD + l1_config.params.rx_synth_load_split); | |
1679 | |
1680 power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
1681 max_nbmeas = 0; | |
1682 | |
1683 while(tpu_win_rest >= power_meas_split) | |
1684 { | |
1685 max_nbmeas ++; | |
1686 tpu_win_rest -= power_meas_split; | |
1687 } | |
1688 | |
1689 if (max_nbmeas > NB_MEAS_MAX_GPRS) max_nbmeas = NB_MEAS_MAX_GPRS; | |
1690 | |
1691 // There is no more PPCH block before end of 1s period. | |
1692 // End remaining carriers. | |
1693 nbr_meas = Min(remain_carrier, 4*max_nbmeas); | |
1694 | |
1695 // Measures is going to start, set "session_done" flag. | |
1696 // "session_done_1s" flag must be set at the begining of a meas. session | |
1697 // in order to be able to detect crossing of the 1s boundary | |
1698 session_done_1s = 1; | |
1699 | |
1700 } | |
1701 break; | |
1702 | |
1703 case MEASTOTAL: | |
1704 { | |
1705 nbr_meas = remain_carrier; | |
1706 | |
1707 // Measures is going to start, set "session_done" flag. | |
1708 // "session_done_1s" flag must be set at the begining of a meas. session | |
1709 // in order to be able to detect crossing of the 1s boundary | |
1710 session_done_1s = 1; | |
1711 | |
1712 } | |
1713 break; | |
1714 } | |
1715 } // End of else ("PNP period < 1s" case) | |
1716 } | |
1717 | |
1718 /* --------------------------------------------------------------------*/ | |
1719 /* CTRL and READ phase carrying out. "nbr_meas" measures are performed */ | |
1720 /* --------------------------------------------------------------------*/ | |
1721 | |
1722 // ******************** | |
1723 // READ task if needed | |
1724 // ******************** | |
1725 if(l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd) | |
1726 // Background measurements.... | |
1727 // A measure CTRL was performed 2 tdma earlier, read result now. | |
1728 { | |
1729 UWORD16 radio_freq_read; | |
1730 UWORD8 pm_read[NB_MEAS_MAX_GPRS]; | |
1731 UWORD8 i; | |
1732 | |
1733 #define next_to_read l1pa_l1ps_com.cr_freq_list.next_to_read | |
1734 | |
1735 // When a READ is performed we set dsp_r_page_used flag to | |
1736 // switch the read page. | |
1737 l1s_dsp_com.dsp_r_page_used = TRUE; | |
1738 | |
1739 l1_check_com_mismatch(CR_MEAS_ID); | |
1740 | |
1741 // Read power measurement result from DSP/MCU GPRS interface | |
1742 l1pddsp_meas_read(l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd, pm_read); | |
1743 | |
1744 for(i=0; i<l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd; i++) | |
1745 { | |
1746 radio_freq_read = l1pa_l1ps_com.cres_freq_list.alist->freq_list[next_to_read]; | |
1747 | |
1748 // Traces and debug. | |
1749 // ****************** | |
1750 | |
1751 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
1752 trace_fct(CST_READ_CR_MEAS, radio_freq_read); | |
1753 #endif | |
1754 | |
1755 l1_check_pm_error(pm_read[i], CR_MEAS_ID); | |
1756 | |
1757 // Get Input level corresponding to the used IL and pm result. | |
1758 IL_for_rxlev = l1pctl_pgc(((UWORD8)(pm_read[i])), | |
1759 l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i].il, | |
1760 l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i].lna, | |
1761 radio_freq_read); | |
1762 | |
1763 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
1764 RTTL1_FILL_MON_MEAS(pm_read[i], IL_for_rxlev, CR_MEAS_ID, radio_freq_read) | |
1765 #endif | |
1766 | |
1767 // Check that cr_msg hasn't been erased. | |
1768 if (cr_msg == NULL) | |
1769 { | |
1770 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
1771 DEBUGMSG(status,NU_ALLOC_ERR) | |
1772 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
1773 } | |
1774 | |
1775 #if (GSM_IDLE_RAM != 1) | |
1776 // Fill reporting message. | |
1777 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))-> | |
1778 ncell_meas[next_to_read].rxlev = l1s_encode_rxlev(IL_for_rxlev); | |
1779 #else | |
1780 // Fill reporting message. | |
1781 l1ps.ncell_meas_rxlev[next_to_read] = (WORD8) l1s_encode_rxlev(IL_for_rxlev); | |
1782 #endif | |
1783 // Increment "next_to_read" field for next measurement... | |
1784 if(++next_to_read >= cr_list_size) | |
1785 next_to_read = 0; | |
1786 }//end for | |
1787 | |
1788 // ********** | |
1789 // Reporting | |
1790 // ********** | |
1791 if(next_to_read == 0) | |
1792 { | |
1793 #if (GSM_IDLE_RAM == 1) | |
1794 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
1795 if (cr_msg == NULL) | |
1796 { | |
1797 if (!READ_TRAFFIC_CONT_STATE) | |
1798 CSMI_TrafficControllerOn(); | |
1799 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
1800 DEBUGMSG(status,NU_ALLOC_ERR) | |
1801 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
1802 } | |
1803 | |
1804 for(i=0; i<cr_list_size; i++) | |
1805 { | |
1806 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->ncell_meas[i].rxlev = l1ps.ncell_meas_rxlev[i]; | |
1807 // Fill reporting message. | |
1808 } | |
1809 #endif | |
1810 | |
1811 // Fill BA identifier field. | |
1812 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->list_id = l1pa_l1ps_com.cres_freq_list.alist->list_id; | |
1813 | |
1814 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->nmeas = cr_list_size; | |
1815 | |
1816 // Compute and Fill reporting period value | |
1817 if(l1s.actual_time.fn > reporting_period) | |
1818 reporting_period = l1s.actual_time.fn - reporting_period; | |
1819 else | |
1820 reporting_period = l1s.actual_time.fn - reporting_period + MAX_FN; | |
1821 | |
1822 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->reporting_period = (UWORD16)reporting_period; | |
1823 | |
1824 reporting_period = l1s.actual_time.fn; | |
1825 | |
1826 // send L1P_CR_MEAS_DONE message... | |
1827 os_send_sig(cr_msg, L1C1_QUEUE); | |
1828 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
1829 | |
1830 // Reset pointer for debugg. | |
1831 cr_msg = NULL; | |
1832 } | |
1833 | |
1834 // Trigger measurement scheduler when meas. session is completed. | |
1835 // Note: A meas. session includes all carriers of the list "PNP period >= 1s case" | |
1836 // or only a sub-set of the CR freq list "PNP period < 1s case" | |
1837 if(!(l1pa_l1ps_com.cr_freq_list.ms_ctrl) && !(l1pa_l1ps_com.cr_freq_list.ms_ctrl_d)) | |
1838 schedule_trigger = TRUE; | |
1839 }// end of READ | |
1840 | |
1841 #if FF_L1_IT_DSP_USF | |
1842 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
1843 #endif | |
1844 | |
1845 // ********** | |
1846 // CTRL task | |
1847 // ********** | |
1848 | |
1849 #if FF_L1_IT_DSP_USF | |
1850 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
1851 { | |
1852 #endif | |
1853 | |
1854 if (nbr_meas > 0) | |
1855 { | |
1856 if(l1s.forbid_meas < 2) | |
1857 { | |
1858 UWORD8 max_nbmeas; | |
1859 UWORD8 nb_meas_to_perform; | |
1860 UWORD16 radio_freq_ctrl; | |
1861 UWORD8 i; | |
1862 UWORD8 pw_position = 0; // indicates first time slot in frame available for PM | |
1863 WORD16 tpu_win_rest; | |
1864 UWORD16 power_meas_split; | |
1865 | |
1866 #define next_to_ctrl l1pa_l1ps_com.cr_freq_list.next_to_ctrl | |
1867 | |
1868 // Compute how many BP_SPLIT remains for cr list meas | |
1869 // Rem: we take into account the SYNTH load for 1st RX in next frame. | |
1870 tpu_win_rest = FRAME_SPLIT - l1s.tpu_win; | |
1871 power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
1872 max_nbmeas = 0; | |
1873 | |
1874 while(tpu_win_rest >= power_meas_split) | |
1875 { | |
1876 max_nbmeas ++; | |
1877 tpu_win_rest -= power_meas_split; | |
1878 } | |
1879 | |
1880 // Compute number of PM allowed in the Frame | |
1881 // Test if we are on a Paging frame | |
1882 if(l1pa_l1ps_com.cr_freq_list.pnp_ctrl > 0) pw_position = 1; | |
1883 | |
1884 // Test if PRACH controlled in the same frame | |
1885 if(l1s.tpu_win >= ((3 * BP_SPLIT) + l1_config.params.tx_ra_load_split | |
1886 + l1_config.params.rx_synth_load_split)) | |
1887 { | |
1888 pw_position = 4; | |
1889 } | |
1890 | |
1891 // Compute Number of measures to perform | |
1892 nb_meas_to_perform = cr_list_size - next_to_ctrl; | |
1893 | |
1894 if(nb_meas_to_perform > max_nbmeas) | |
1895 nb_meas_to_perform = max_nbmeas; | |
1896 | |
1897 if(nb_meas_to_perform > NB_MEAS_MAX_GPRS) | |
1898 nb_meas_to_perform = NB_MEAS_MAX_GPRS; | |
1899 | |
1900 if (nb_meas_to_perform > nbr_meas) | |
1901 nb_meas_to_perform = nbr_meas; | |
1902 | |
1903 for(i=0; i<nb_meas_to_perform; i++) | |
1904 { | |
1905 UWORD8 lna_off; | |
1906 WORD8 agc; | |
1907 UWORD8 input_level; | |
1908 #if (L1_FF_MULTIBAND == 1) | |
1909 UWORD16 operative_radio_freq; | |
1910 #endif | |
1911 | |
1912 radio_freq_ctrl = l1pa_l1ps_com.cres_freq_list.alist->freq_list[next_to_ctrl]; | |
1913 | |
1914 #if (L1_FF_MULTIBAND == 0) | |
1915 | |
1916 // Get AGC according to the last known IL. | |
1917 input_level = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].input_level; | |
1918 agc = Cust_get_agc_from_IL(radio_freq_ctrl,input_level >> 1, PWR_ID); | |
1919 lna_off = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].lna_off; | |
1920 | |
1921 | |
1922 // Memorize the IL and LNA used for AGC setting. | |
1923 //l1pa_l1ps_com.cr_freq_list.used_il_lna[i] = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset]; | |
1924 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].il = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].input_level; | |
1925 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].lna = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].lna_off; | |
1926 | |
1927 #else // L1_FF_MULTIBAND = 1 below | |
1928 | |
1929 operative_radio_freq = | |
1930 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq_ctrl); | |
1931 | |
1932 input_level = | |
1933 l1a_l1s_com.last_input_level[operative_radio_freq].input_level; | |
1934 lna_off = | |
1935 l1a_l1s_com.last_input_level[operative_radio_freq].lna_off; | |
1936 agc = | |
1937 Cust_get_agc_from_IL(radio_freq_ctrl,input_level >> 1, PWR_ID); | |
1938 | |
1939 // Memorize the IL and LNA used for AGC setting. | |
1940 //l1pa_l1ps_com.cr_freq_list.used_il_lna[i] = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset]; | |
1941 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].il = | |
1942 l1a_l1s_com.last_input_level[operative_radio_freq].input_level; | |
1943 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].lna = | |
1944 l1a_l1s_com.last_input_level[operative_radio_freq].lna_off; | |
1945 | |
1946 #endif // #if (L1_FF_MULTIBAND == 0) else | |
1947 | |
1948 | |
1949 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
1950 trace_fct(CST_CTRL_CR_MEAS, -1); | |
1951 #endif | |
1952 | |
1953 #if(RF_FAM == 61) // Locosto DCO | |
1954 #if (PWMEAS_IF_MODE_FORCE == 0) | |
1955 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
1956 input_level, | |
1957 radio_freq_ctrl, if_threshold); | |
1958 #else | |
1959 if_ctl = IF_120KHZ_DSP; | |
1960 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
1961 #endif | |
1962 | |
1963 dco_algo_ctl_pw |= ( (dco_algo_ctl_pw_temp & 0x03)<< (i*2)); | |
1964 #endif | |
1965 | |
1966 | |
1967 // tpu pgm: 1 measurement only. | |
1968 l1dtpu_meas(radio_freq_ctrl, | |
1969 agc, | |
1970 lna_off, | |
1971 l1s.tpu_win, | |
1972 l1s.tpu_offset,INACTIVE | |
1973 #if(RF_FAM == 61) | |
1974 ,L1_AFC_SCRIPT_MODE | |
1975 ,if_ctl | |
1976 #endif | |
1977 ); | |
1978 | |
1979 // increment carrier counter for next measurement... | |
1980 if(++next_to_ctrl >= cr_list_size) | |
1981 next_to_ctrl = 0; | |
1982 | |
1983 #if L2_L3_SIMUL | |
1984 #if (DEBUG_TRACE == BUFFER_TRACE_OFFSET_NEIGH) | |
1985 buffer_trace(4, l1s.actual_time.fn, radio_freq_ctrl, | |
1986 l1s.tpu_win, 0); | |
1987 #endif | |
1988 #endif | |
1989 | |
1990 // Increment tpu window identifier. | |
1991 l1s.tpu_win += (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
1992 | |
1993 } // End for(...nb_meas_to_perform) | |
1994 | |
1995 #if(RF_FAM == 61) | |
1996 l1ddsp_load_dco_ctl_algo_pw(dco_algo_ctl_pw); | |
1997 #endif | |
1998 | |
1999 | |
2000 // Program DSP, in order to performed nb_meas_to_perform measures | |
2001 // Second argument specifies if a Rx burst will be received in this frame | |
2002 l1pddsp_meas_ctrl(nb_meas_to_perform, pw_position); | |
2003 | |
2004 // Update d_debug timer | |
2005 l1s_dsp_com.dsp_db_w_ptr->d_debug = (l1s.debug_time + 2) ; | |
2006 | |
2007 | |
2008 // Flag measurement control. | |
2009 // ************************** | |
2010 | |
2011 // Set flag "ms_ctrl" to nb_meas_to_perform. | |
2012 // It will be used as 2 tdma delayed to trigger Read phase. | |
2013 l1pa_l1ps_com.cr_freq_list.ms_ctrl = nb_meas_to_perform; | |
2014 | |
2015 // Flag DSP and TPU programmation. | |
2016 // ******************************** | |
2017 | |
2018 // Set "CTRL_MS" flag in the controle flag register. | |
2019 l1s.tpu_ctrl_reg |= CTRL_MS; | |
2020 l1s.dsp_ctrl_reg |= CTRL_MS; | |
2021 | |
2022 // Update nbr_meas | |
2023 nbr_meas -= nb_meas_to_perform; | |
2024 | |
2025 // Update remainig measurements to performed according meas done | |
2026 //remain_carrier -= nb_meas_to_perform; | |
2027 | |
2028 } // End of test on is PBCCHS, FB/SB or BCCHN task active | |
2029 } //end ctrl | |
2030 | |
2031 #if FF_L1_IT_DSP_USF | |
2032 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2033 | |
2034 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2035 { | |
2036 #endif | |
2037 | |
2038 // If it's time, update time to next measures position and state | |
2039 // Two cases are considered: "pnp_period >= 1s" and "pnp_period < 1s" | |
2040 | |
2041 if(schedule_trigger) | |
2042 { | |
2043 BOOL condition = FALSE; | |
2044 | |
2045 schedule_trigger = FALSE; | |
2046 | |
2047 // Compute time to next session of measures for "PNP period >= 1s" case | |
2048 if(l1pa_l1ps_com.pccch.pnp_period >= 216) | |
2049 { | |
2050 while(!condition) | |
2051 { | |
2052 switch(state) | |
2053 { | |
2054 case NULL_MEAS: | |
2055 { | |
2056 #if (GSM_IDLE_RAM != 1) | |
2057 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
2058 if (cr_msg == NULL) | |
2059 { | |
2060 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
2061 DEBUGMSG(status,NU_ALLOC_ERR) | |
2062 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
2063 } | |
2064 #endif | |
2065 | |
2066 if((l1pa_l1ps_com.pccch.time_to_pnp > ((866 * session_done) + time_to_4s)) && | |
2067 (l1pa_l1ps_com.pccch.pnp_period >= 866)) | |
2068 { | |
2069 state = TOTAL; | |
2070 time_to_wake_up = (433 + time_to_4s * session_done); | |
2071 condition = TRUE; | |
2072 } | |
2073 else | |
2074 { | |
2075 state = PCHTOTAL; | |
2076 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
2077 condition = TRUE; | |
2078 } | |
2079 } | |
2080 break; | |
2081 | |
2082 case TOTAL: | |
2083 case PCHTOTAL: | |
2084 state = NULL_MEAS; | |
2085 break; | |
2086 } | |
2087 } | |
2088 } // End of "PNP period >= 1s" case | |
2089 else | |
2090 // Compute time to next session of measures for "PNP period < 1s" case | |
2091 { | |
2092 while(!condition) | |
2093 { | |
2094 switch(state) | |
2095 { | |
2096 case NULL_MEAS: | |
2097 { | |
2098 // Let's assume a small frequency list size | |
2099 // and a PNP period such that PM are performed | |
2100 // on first PPCH block and then stopped. PM activity | |
2101 // must be re-scheduled at the end of PPCH block. | |
2102 if((l1pa_l1ps_com.pccch.time_to_pnp < time_to_1s) && !(init_meas)) | |
2103 { | |
2104 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
2105 schedule_trigger = TRUE; | |
2106 condition = TRUE; | |
2107 } | |
2108 else | |
2109 { | |
2110 #if (GSM_IDLE_RAM == 0) | |
2111 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
2112 if (cr_msg == NULL) | |
2113 { | |
2114 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
2115 DEBUGMSG(status,NU_ALLOC_ERR) | |
2116 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
2117 } | |
2118 #endif | |
2119 | |
2120 state = MEAS; | |
2121 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
2122 remain_carrier = (WORD8)cr_list_size; | |
2123 condition = TRUE; | |
2124 } | |
2125 } | |
2126 break; | |
2127 | |
2128 case MEAS: | |
2129 { | |
2130 UWORD8 max_nbmeas; | |
2131 WORD16 tpu_win_rest; | |
2132 UWORD16 power_meas_split; | |
2133 | |
2134 // Compute how many BP_SPLIT remains for cr list meas | |
2135 // Rem: we take into account the SYNTH load for 1st RX in next frame. | |
2136 // WARNING: only one RX activity is considered in next paging block !!! | |
2137 tpu_win_rest = FRAME_SPLIT - (RX_LOAD + l1_config.params.rx_synth_load_split); | |
2138 | |
2139 power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
2140 max_nbmeas = 0; | |
2141 | |
2142 while(tpu_win_rest >= power_meas_split) | |
2143 { | |
2144 max_nbmeas ++; | |
2145 tpu_win_rest -= power_meas_split; | |
2146 } | |
2147 | |
2148 if (max_nbmeas > NB_MEAS_MAX_GPRS) max_nbmeas = NB_MEAS_MAX_GPRS; | |
2149 | |
2150 // Update number of remaining carrier to measure. | |
2151 // Note: std.nbmeas provides max nbr of PM / TDMA | |
2152 remain_carrier -= 4 * max_nbmeas; | |
2153 | |
2154 if(remain_carrier <= 0) | |
2155 state = NULL_MEAS; | |
2156 else | |
2157 { | |
2158 if((l1pa_l1ps_com.pccch.time_to_pnp >= time_to_1s) || !(session_done_1s)) | |
2159 { | |
2160 state = MEASTOTAL; | |
2161 time_to_wake_up = 1; | |
2162 condition = TRUE; | |
2163 } | |
2164 else | |
2165 { | |
2166 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
2167 condition = TRUE; | |
2168 } | |
2169 } | |
2170 } | |
2171 break; | |
2172 | |
2173 case MEASTOTAL: | |
2174 { | |
2175 #if (GSM_IDLE_RAM != 1) | |
2176 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
2177 if (cr_msg == NULL) | |
2178 { | |
2179 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
2180 DEBUGMSG(status,NU_ALLOC_ERR) | |
2181 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
2182 } | |
2183 #endif | |
2184 | |
2185 state = MEAS; | |
2186 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
2187 remain_carrier = (WORD8)cr_list_size; | |
2188 condition = TRUE; | |
2189 } | |
2190 break; | |
2191 } | |
2192 } // End of while | |
2193 } // End of else ("PNP period < 1s" case) | |
2194 } // End of if(schedule_trigger) | |
2195 | |
2196 #if FF_L1_IT_DSP_USF | |
2197 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2198 | |
2199 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2200 { | |
2201 #endif | |
2202 | |
2203 // Update time to next L1S task | |
2204 if((l1pa_l1ps_com.cr_freq_list.ms_ctrl) || | |
2205 (l1pa_l1ps_com.cr_freq_list.ms_ctrl_d)) | |
2206 { | |
2207 // Still some measurement results to get from DSP | |
2208 l1a_l1s_com.time_to_next_l1s_task = 0; | |
2209 } | |
2210 else | |
2211 { | |
2212 // No more measurements to read, next session of meas must | |
2213 // be at time_to_wake_up | |
2214 Select_min_time(time_to_wake_up, l1a_l1s_com.time_to_next_l1s_task); | |
2215 } | |
2216 | |
2217 // Clear controlled flag pnp_ctrl. | |
2218 //------------------------------- | |
2219 l1pa_l1ps_com.cr_freq_list.pnp_ctrl = 0; | |
2220 | |
2221 // C W R pipeline management. | |
2222 //--------------------------- | |
2223 l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = l1pa_l1ps_com.cr_freq_list.ms_ctrl_d; | |
2224 l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = l1pa_l1ps_com.cr_freq_list.ms_ctrl; | |
2225 l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; | |
2226 | |
2227 // C W R pipeline management. | |
2228 //--------------------------- | |
2229 { | |
2230 UWORD8 i; | |
2231 | |
2232 for(i=0; i<NB_MEAS_MAX_GPRS; i++) | |
2233 { | |
2234 l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i] = l1pa_l1ps_com.cr_freq_list.used_il_lna_d[i]; | |
2235 l1pa_l1ps_com.cr_freq_list.used_il_lna_d [i] = l1pa_l1ps_com.cr_freq_list.used_il_lna [i]; | |
2236 } | |
2237 } | |
2238 | |
2239 #if FF_L1_IT_DSP_USF | |
2240 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2241 #endif | |
2242 } // End of if: P_CRMS_MEAS enable and associated semaphore = 0. | |
2243 | |
2244 } | |
2245 | |
2246 //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_END | |
2247 #endif | |
2248 | |
2249 | |
2250 #if (MOVE_IN_INTERNAL_RAM == 0) // Must be followed by the pragma used to duplicate the funtion in internal RAM | |
2251 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
2252 | |
2253 /*-------------------------------------------------------*/ | |
2254 /* l1ps_transfer_meas_manager() */ | |
2255 /*-------------------------------------------------------*/ | |
2256 /* */ | |
2257 /* Description: */ | |
2258 /* ------------ */ | |
2259 /* Whilst in Packet Transfer mode, MS shall continuously */ | |
2260 /* monitor all the BCCH carriers as indicated by a */ | |
2261 /* frequency list (BA(GPRS), Network Control frequency */ | |
2262 /* list and Extended list) and the BCCH carrier of the */ | |
2263 /* serving cell. Received signal level is used to monitor*/ | |
2264 /* the specified neighbour BCCH carriers. */ | |
2265 /* */ | |
2266 /* Receive signal level measurement samples shall be */ | |
2267 /* performed according to the following conditions: */ | |
2268 /* */ | |
2269 /* 1) At least 1 measure shall be done every TDMA, */ | |
2270 /* 2) Up to 2 TDMA frames per PDCH multiframe may be */ | |
2271 /* omitted if required for BSIC decoding, */ | |
2272 /* 3) Running average value (RLA_P) is based on a 5s */ | |
2273 /* period and includes at least 5 measure samples, */ | |
2274 /* 4) The same number of measures shall be taken for all */ | |
2275 /* BCCH carriers except: */ | |
2276 /* i) For the Serving Cell, where at least 6 measures */ | |
2277 /* shall be taken per MF52, */ | |
2278 /* ii) if PC_MEAS_CHAN indicates that power control */ | |
2279 /* measures shall be made on BCCH. */ | |
2280 /* 5) Measures used to compute RLA_P shall as far as */ | |
2281 /* possible be uniformly distributed, */ | |
2282 /*-------------------------------------------------------*/ | |
2283 void l1ps_transfer_meas_manager() | |
2284 { | |
2285 UWORD8 IL_for_rxlev; | |
2286 | |
2287 static xSignalHeaderRec *tcr_msg = NULL; | |
2288 | |
2289 static BOOL tcr_meas_removed = FALSE; | |
2290 | |
2291 #define tcr_next_to_read l1pa_l1ps_com.tcr_freq_list.tcr_next_to_read | |
2292 #define tcr_next_to_ctrl l1pa_l1ps_com.tcr_freq_list.tcr_next_to_ctrl | |
2293 #define last_stored_tcr_to_read l1pa_l1ps_com.tcr_freq_list.last_stored_tcr_to_read | |
2294 | |
2295 | |
2296 #if FF_L1_IT_DSP_USF | |
2297 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2298 { | |
2299 #endif | |
2300 | |
2301 // Test if task is disabled and cr_msg != NULL, then de-allocate memory | |
2302 if(tcr_msg != NULL) | |
2303 { | |
2304 if(!(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) && | |
2305 !(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS)) | |
2306 { | |
2307 // Neighbour measurement process has been stopped by L3 | |
2308 // Deallocate memory for the received message if msg not forwarded to L3. | |
2309 // ---------------------------------------------------------------------- | |
2310 os_free_sig(tcr_msg); | |
2311 DEBUGMSG(status,NU_DEALLOC_ERR) | |
2312 | |
2313 tcr_msg = NULL; | |
2314 } | |
2315 } | |
2316 | |
2317 #if FF_L1_IT_DSP_USF | |
2318 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2319 #endif | |
2320 | |
2321 if(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) | |
2322 { | |
2323 | |
2324 #if FF_L1_IT_DSP_USF | |
2325 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2326 { | |
2327 #endif | |
2328 | |
2329 // Increment l1pa_l1ps_com.tcr_freq_list.cres_meas_report | |
2330 if(++l1pa_l1ps_com.tcr_freq_list.cres_meas_report > 103) | |
2331 l1pa_l1ps_com.tcr_freq_list.cres_meas_report = 0; | |
2332 | |
2333 // Check if it's first time, Neighbour Measurement process is launched. | |
2334 // Then initialize fn_report counter and reset semaphore. | |
2335 if(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS) | |
2336 { | |
2337 // Initialize counter used to report measurements | |
2338 l1pa_l1ps_com.tcr_freq_list.cres_meas_report = 0; | |
2339 | |
2340 // Reset Neighbour Measurements semaphore | |
2341 l1pa_l1ps_com.meas_param &= P_TCRMS_MEAS_MASK; | |
2342 } | |
2343 | |
2344 //==================================================== | |
2345 // RESET MEASUREMENT MACHINES WHEN SYNCHRO EXECUTED. | |
2346 //==================================================== | |
2347 if(l1s.tpu_ctrl_reg & CTRL_SYNC) | |
2348 // SYNCHRO task has been executed. | |
2349 // -> Reset measures made on serving cell, | |
2350 // -> Rewind pointer used in Neighbour Cell measurement, | |
2351 // -> return. | |
2352 { | |
2353 | |
2354 // Reset Neighbour Cell measurement machine. | |
2355 // Rewind "next_to_ctrl" counter to come back to the next carrier to | |
2356 // measure. | |
2357 tcr_next_to_ctrl = tcr_next_to_read; | |
2358 | |
2359 // Reset flags. | |
2360 l1pa_l1ps_com.tcr_freq_list.ms_ctrl = 0; | |
2361 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = 0; | |
2362 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd = 0; | |
2363 | |
2364 // Reset measures made on beacon frequency. | |
2365 l1pa_l1ps_com.tcr_freq_list.beacon_meas = 0; | |
2366 } | |
2367 | |
2368 // ******************* | |
2369 // Message Allocation | |
2370 // ******************* | |
2371 // The reporting message must be allocated before READ phase. | |
2372 | |
2373 if(l1pa_l1ps_com.tcr_freq_list.cres_meas_report == 2) | |
2374 { | |
2375 // Memory allocation | |
2376 if (tcr_msg == NULL) | |
2377 { | |
2378 // alloc L1P_TCR_MEAS_DONE message... | |
2379 tcr_msg = os_alloc_sig(sizeof(T_MPHP_TCR_MEAS_IND)); | |
2380 DEBUGMSG(status,NU_ALLOC_ERR) | |
2381 tcr_msg->SignalCode = L1P_TCR_MEAS_DONE; | |
2382 } | |
2383 | |
2384 l1pa_l1ps_com.tcr_freq_list.first_pass_flag = TRUE; | |
2385 } | |
2386 | |
2387 //------------------------------------------------------ | |
2388 // READ and CTRL phase of the Neighbour Measurement task | |
2389 //------------------------------------------------------ | |
2390 | |
2391 //----------- | |
2392 // READ phase | |
2393 //----------- | |
2394 | |
2395 // Test if Measurment has been removed (ms_ctrl_d forced to 0) during | |
2396 // previous frame, then switch DSP read page. | |
2397 if (tcr_meas_removed) | |
2398 { | |
2399 l1s_dsp_com.dsp_r_page_used = TRUE; | |
2400 tcr_meas_removed = FALSE; | |
2401 } | |
2402 | |
2403 // Background measurements.... | |
2404 // A measurement controle was performed 2 tdma earlier, read result now!! | |
2405 if(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd != 0) | |
2406 { | |
2407 UWORD16 radio_freq_read; | |
2408 UWORD8 pm_read; | |
2409 | |
2410 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
2411 trace_fct(CST_READ_TCR_MEAS, (UWORD32)(-1)); | |
2412 #endif | |
2413 | |
2414 l1_check_com_mismatch(TCR_MEAS_ID); | |
2415 | |
2416 // When a read is performed, we set dsp_r_page_used flag to | |
2417 // switch the read page | |
2418 l1s_dsp_com.dsp_r_page_used = TRUE; | |
2419 | |
2420 // Read power measurement result from DSP/MCU GPRS interface | |
2421 l1pddsp_meas_read(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd, &pm_read); | |
2422 | |
2423 l1_check_pm_error(pm_read, TCR_MEAS_ID); | |
2424 | |
2425 radio_freq_read = l1pa_l1ps_com.cres_freq_list.alist->freq_list[tcr_next_to_read]; | |
2426 | |
2427 // Get Input level corresponding to the used IL and pm result. | |
2428 IL_for_rxlev = l1pctl_pgc(((UWORD8) (pm_read)), | |
2429 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.il, | |
2430 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.lna, | |
2431 radio_freq_read); | |
2432 | |
2433 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
2434 RTTL1_FILL_MON_MEAS(pm_read, IL_for_rxlev, TCR_MEAS_ID, radio_freq_read) | |
2435 #endif | |
2436 | |
2437 | |
2438 if(l1pa_l1ps_com.tcr_freq_list.first_pass_flag) | |
2439 { | |
2440 // Fill reporting message: Store RXLEV | |
2441 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_level[tcr_next_to_read] = | |
2442 l1s_encode_rxlev(IL_for_rxlev); | |
2443 | |
2444 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_nbmeas[tcr_next_to_read] = 1; | |
2445 } | |
2446 else | |
2447 { | |
2448 // Fill reporting message: Accumulate RXLEV | |
2449 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_level[tcr_next_to_read] += | |
2450 l1s_encode_rxlev(IL_for_rxlev); | |
2451 | |
2452 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_nbmeas[tcr_next_to_read] += 1; | |
2453 | |
2454 } | |
2455 | |
2456 // Increment "next_to_read" field for next measurement... | |
2457 if(++tcr_next_to_read >= l1pa_l1ps_com.cres_freq_list.alist->nb_carrier) | |
2458 { | |
2459 tcr_next_to_read = 0; | |
2460 } | |
2461 | |
2462 // First pass has been completed on all BA list, reset "first_pass_flag" | |
2463 if(tcr_next_to_read == last_stored_tcr_to_read) | |
2464 l1pa_l1ps_com.tcr_freq_list.first_pass_flag = FALSE; | |
2465 | |
2466 } // End of READ phase | |
2467 | |
2468 | |
2469 // ************************ | |
2470 // Reporting & List Update | |
2471 // ************************ | |
2472 if(l1pa_l1ps_com.tcr_freq_list.cres_meas_report == 1) | |
2473 { | |
2474 if(tcr_msg != NULL) | |
2475 { | |
2476 // Fill TCR list identifier field. | |
2477 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->list_id = l1pa_l1ps_com.cres_freq_list.alist->list_id; | |
2478 | |
2479 // send L1P_TCR_MEAS_DONE message... | |
2480 os_send_sig(tcr_msg, L1C1_QUEUE); | |
2481 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
2482 | |
2483 // Reset pointer for debugg. | |
2484 tcr_msg = NULL; | |
2485 } | |
2486 | |
2487 // Update Frequency list pointer and reset new list flag | |
2488 if(l1pa_l1ps_com.tcr_freq_list.new_list_present) | |
2489 { | |
2490 //Update Frequency list pointer | |
2491 l1pa_l1ps_com.cres_freq_list.alist = l1pa_l1ps_com.cres_freq_list.flist; | |
2492 | |
2493 // Test if a Meas has been controlled in previous frame | |
2494 // Then set tcr_meas_removed flag in order to switch DSP read page in next frame | |
2495 if(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d != 0) | |
2496 { | |
2497 tcr_meas_removed = TRUE; | |
2498 } | |
2499 | |
2500 // Reset pointer | |
2501 tcr_next_to_ctrl = 0; | |
2502 tcr_next_to_read = 0; | |
2503 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = 0; | |
2504 | |
2505 // Reset New list flag | |
2506 l1pa_l1ps_com.tcr_freq_list.new_list_present = FALSE; | |
2507 } | |
2508 | |
2509 // While reporting, save Last "tcr_next_to_read" value to know when reset "first_pass_flag" | |
2510 last_stored_tcr_to_read = tcr_next_to_read; | |
2511 } | |
2512 | |
2513 //----------- | |
2514 // CTRL phase | |
2515 //----------- | |
2516 | |
2517 // CTRL phase is divided in two parts according measures allocated by MACS. | |
2518 // CTRL phase must then be exported in CTRL PDTCH function except for the Idle | |
2519 // frame where no PDTCH are programmed. | |
2520 // A measure can be performed during the idle frame, only if FB/SB/PTCCH | |
2521 // and Interference Measurement task is not active. | |
2522 if(!(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS)) | |
2523 { | |
2524 if((l1s.actual_time.t2 == 24) || (l1s.actual_time.t2 == 11)) | |
2525 { | |
2526 if(l1s.forbid_meas == 0) | |
2527 { | |
2528 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
2529 trace_fct(CST_CTRL_TCR_MEAS_2,(UWORD32)(-1)); | |
2530 #endif | |
2531 | |
2532 l1ps_tcr_ctrl(0); | |
2533 } | |
2534 } | |
2535 } | |
2536 | |
2537 #if FF_L1_IT_DSP_USF | |
2538 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2539 #endif | |
2540 | |
2541 #if FF_L1_IT_DSP_USF | |
2542 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2543 { | |
2544 #endif | |
2545 | |
2546 // Pipe Manager | |
2547 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd = l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d; | |
2548 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = l1pa_l1ps_com.tcr_freq_list.ms_ctrl; | |
2549 l1pa_l1ps_com.tcr_freq_list.ms_ctrl = 0; | |
2550 | |
2551 #if FF_L1_IT_DSP_USF | |
2552 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2553 #endif | |
2554 | |
2555 } // End of if(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) | |
2556 | |
2557 /*****************************/ | |
2558 /* PC_MEAS_CHAN measurements */ | |
2559 /*****************************/ | |
2560 | |
2561 // If PC_MEAS_CHAN = 1, then BCCH serving cell carrier must be | |
2562 // measured at least 6 times per MF52. | |
2563 // CTRL of Serving Cell Carrier is performed two TDMA earlier. | |
2564 if(l1pa_l1ps_com.transfer.aset->pc_meas_chan == FALSE) | |
2565 { | |
2566 | |
2567 #if FF_L1_IT_DSP_USF | |
2568 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2569 { | |
2570 #endif | |
2571 | |
2572 if(l1s.tpu_ctrl_reg & CTRL_SYNC) | |
2573 // SYNCHRO task has been executed. | |
2574 { | |
2575 l1ps.pc_meas_chan_ctrl = FALSE; | |
2576 } | |
2577 | |
2578 //----------- | |
2579 // READ phase | |
2580 //----------- | |
2581 | |
2582 if ((l1ps.pc_meas_chan_ctrl == TRUE) && | |
2583 ((l1s.actual_time.t2 == 3) || (l1s.actual_time.t2 == 11) | |
2584 || (l1s.actual_time.t2 == 20))) | |
2585 { | |
2586 UWORD8 pm_read; | |
2587 | |
2588 l1_check_com_mismatch(PC_MEAS_CHAN_ID); | |
2589 | |
2590 // When a read is performed, we set dsp_r_page_used flag to | |
2591 // switch the read page | |
2592 l1s_dsp_com.dsp_r_page_used = TRUE; | |
2593 | |
2594 // Read power measurement result from DSP/MCU GPRS interface | |
2595 l1pddsp_meas_read(1, &pm_read); | |
2596 | |
2597 | |
2598 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
2599 trace_fct(CST_READ_PC_MEAS_CHAN,(UWORD32)(-1)); | |
2600 #endif | |
2601 | |
2602 l1_check_pm_error(pm_read, PC_MEAS_CHAN_ID); | |
2603 | |
2604 l1ps.pc_meas_chan_ctrl = FALSE; | |
2605 | |
2606 // Get Input level corresponding to the used IL and pm result. | |
2607 IL_for_rxlev = l1pctl_pgc(((UWORD8 )(pm_read)), | |
2608 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.il, | |
2609 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.lna, | |
2610 l1a_l1s_com.Scell_info.radio_freq); | |
2611 | |
2612 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
2613 RTTL1_FILL_MON_MEAS(pm_read, IL_for_rxlev, PC_MEAS_CHAN_ID, l1a_l1s_com.Scell_info.radio_freq) | |
2614 #endif | |
2615 | |
2616 if (l1a_l1s_com.mode == PACKET_TRANSFER_MODE) | |
2617 // Store RXLEV, before to pass it to maca_power_control() function.. | |
2618 l1pa_l1ps_com.tcr_freq_list.beacon_meas = l1s_encode_rxlev(IL_for_rxlev); | |
2619 } | |
2620 | |
2621 //----------- | |
2622 // CTRL phase | |
2623 //----------- | |
2624 | |
2625 // In two phase access, PC_MEAS_CHAN measurements can be done... | |
2626 if((l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED) && | |
2627 (l1pa_l1ps_com.transfer.aset->allocated_tbf == TWO_PHASE_ACCESS)) | |
2628 if (l1s.task_status[NP].current_status != ACTIVE) // avoid conflict with Normal Paging | |
2629 if (l1s.task_status[EP].current_status != ACTIVE) // avoid conflict with Extended Paging | |
2630 { | |
2631 // Measurement on the beacon | |
2632 if((l1s.actual_time.t2 == 1) || (l1s.actual_time.t2 == 9) || | |
2633 (l1s.actual_time.t2 == 18)) | |
2634 { | |
2635 // Measurement programming | |
2636 // ts 4 is specified for DSP interface ONLY because the power activity | |
2637 // must be programmed after RX and/or TX activity (no multislot) | |
2638 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
2639 trace_fct(CST_CTRL_PC_MEAS_CHAN, (UWORD32)(-1)); | |
2640 #endif | |
2641 | |
2642 l1ps_bcch_meas_ctrl(4); | |
2643 } | |
2644 } | |
2645 | |
2646 #if FF_L1_IT_DSP_USF | |
2647 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
2648 #endif | |
2649 | |
2650 } // End of Meas made on BCCH serving cell | |
2651 | |
2652 #if FF_L1_IT_DSP_USF | |
2653 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2654 { | |
2655 #endif | |
2656 | |
2657 if((l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) || (l1ps.pc_meas_chan_ctrl == TRUE)) | |
2658 { | |
2659 // C W R pipeline management. | |
2660 //--------------------------- | |
2661 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd = l1pa_l1ps_com.tcr_freq_list.used_il_lna_d; | |
2662 l1pa_l1ps_com.tcr_freq_list.used_il_lna_d = l1pa_l1ps_com.tcr_freq_list.used_il_lna; | |
2663 } | |
2664 | |
2665 #if FF_L1_IT_DSP_USF | |
2666 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
2667 #endif | |
2668 | |
2669 } | |
2670 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END | |
2671 #endif // MOVE_IN_INTERNAL_RAM | |
2672 | |
2673 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
2674 #endif | |
2675 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END |