FreeCalypso > hg > fc-magnetite
comparison src/cs/layer1/cfile/l1_ctl.c @ 69:50a15a54801e
src/cs/layer1: import from tcs211-l1-reconst project
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sat, 01 Oct 2016 23:45:38 +0000 |
parents | |
children | af1bacf61dc6 |
comparison
equal
deleted
inserted
replaced
68:838717193e09 | 69:50a15a54801e |
---|---|
1 /************* Revision Controle System Header ************* | |
2 * GSM Layer 1 software | |
3 * L1_CTL.C | |
4 * | |
5 * Filename l1_ctl.c | |
6 * Copyright 2003 (C) Texas Instruments | |
7 * | |
8 ************* Revision Controle System Header *************/ | |
9 | |
10 #define L1_CTL_C | |
11 | |
12 #include "l1_macro.h" | |
13 #include "l1_confg.h" | |
14 | |
15 #if (CODE_VERSION == SIMULATION) | |
16 #include <string.h> | |
17 #include "l1_types.h" | |
18 #include "sys_types.h" | |
19 #include "l1_const.h" | |
20 #include "l1_time.h" | |
21 #include "l1_signa.h" | |
22 | |
23 #if TESTMODE | |
24 #include "l1tm_defty.h" | |
25 #endif | |
26 #if (AUDIO_TASK == 1) | |
27 #include "l1audio_const.h" | |
28 #include "l1audio_cust.h" | |
29 #include "l1audio_signa.h" | |
30 #include "l1audio_defty.h" | |
31 #include "l1audio_msgty.h" | |
32 #endif | |
33 #if (L1_GTT == 1) | |
34 #include "l1gtt_const.h" | |
35 #include "l1gtt_defty.h" | |
36 #endif | |
37 #if (L1_MP3 == 1) | |
38 #include "l1mp3_defty.h" | |
39 #endif | |
40 #if (L1_MIDI == 1) | |
41 #include "l1midi_defty.h" | |
42 #endif | |
43 //ADDED FOR AAC | |
44 #if (L1_AAC == 1) | |
45 #include "l1aac_defty.h" | |
46 #endif | |
47 #include "l1_defty.h" | |
48 #include "cust_os.h" | |
49 #include "l1_msgty.h" | |
50 #include "l1_varex.h" | |
51 #include "l1_proto.h" | |
52 #include "l1_mftab.h" | |
53 #include "l1_tabs.h" | |
54 #include "l1_ver.h" | |
55 #if L2_L3_SIMUL | |
56 #include "hw_debug.h" | |
57 #endif | |
58 | |
59 #if TESTMODE | |
60 #include "l1tm_msgty.h" | |
61 #include "l1tm_varex.h" | |
62 #endif | |
63 | |
64 #include "l1_ctl.h" | |
65 | |
66 #ifdef _INLINE | |
67 #define INLINE static inline // Inline functions when -v option is set | |
68 #else // when the compiler is ivoked. | |
69 #define INLINE | |
70 #endif | |
71 #else | |
72 #include <string.h> | |
73 #include "l1_types.h" | |
74 #include "sys_types.h" | |
75 #include "l1_const.h" | |
76 #include "l1_time.h" | |
77 #include "l1_signa.h" | |
78 | |
79 #if (RF_FAM == 61) | |
80 #include "tpudrv61.h" | |
81 #endif | |
82 | |
83 #if TESTMODE | |
84 #include "l1tm_defty.h" | |
85 #endif | |
86 #if (AUDIO_TASK == 1) | |
87 #include "l1audio_const.h" | |
88 #include "l1audio_cust.h" | |
89 #include "l1audio_defty.h" | |
90 #endif | |
91 #if (L1_GTT == 1) | |
92 #include "l1gtt_const.h" | |
93 #include "l1gtt_defty.h" | |
94 #endif | |
95 #if (L1_MP3 == 1) | |
96 #include "l1mp3_defty.h" | |
97 #endif | |
98 #if (L1_MIDI == 1) | |
99 #include "l1midi_defty.h" | |
100 #endif | |
101 //ADDED FOR AAC | |
102 #if (L1_AAC == 1) | |
103 #include "l1aac_defty.h" | |
104 #endif | |
105 #include "l1_defty.h" | |
106 #include "cust_os.h" | |
107 #include "l1_msgty.h" | |
108 #include "l1_varex.h" | |
109 #include "l1_proto.h" | |
110 #include "l1_tabs.h" | |
111 #include "l1_ctl.h" | |
112 #if L2_L3_SIMUL | |
113 #include "hw_debug.h" | |
114 #endif | |
115 | |
116 #if TESTMODE | |
117 #include "l1tm_msgty.h" | |
118 #include "l1tm_varex.h" | |
119 #endif | |
120 #ifdef _INLINE | |
121 #define INLINE static inline // Inline functions when -v option is set | |
122 #else // when the compiler is ivoked. | |
123 #define INLINE | |
124 #endif | |
125 #endif | |
126 | |
127 #if(RF_FAM == 61) | |
128 #include "l1_rf61.h" | |
129 #endif | |
130 | |
131 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
132 #include "l1_trace.h" | |
133 #endif | |
134 | |
135 extern SYS_UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq); | |
136 #if(RF_FAM == 61) | |
137 extern WORD16 drp_gain_correction(UWORD16 arfcn, UWORD8 lna_off, UWORD16 agc); | |
138 #endif | |
139 | |
140 #define LNA_OFF 1 | |
141 #define LNA_ON 0 | |
142 | |
143 | |
144 | |
145 | |
146 /************************************/ | |
147 /* Automatic frequency compensation */ | |
148 /************************************/ | |
149 | |
150 /* | |
151 * FreeCalypso TCS211 reconstruction: the following 3 functions | |
152 * have been added in the LoCosto version of this module. | |
153 * We have conditioned them out in order to match the original | |
154 * TCS211 object; their uses have been conditioned out as well. | |
155 * | |
156 * These functions will need to re-enabled when their uses are | |
157 * re-enabled. | |
158 */ | |
159 | |
160 #if 0 | |
161 | |
162 #define L1_WORD16_POS_MAX (32767) | |
163 #define L1_WORD16_NEG_MAX (-32768) | |
164 #define L1_WORD32_POS_MAX ((unsigned long)(1<<31)-1) | |
165 #define L1_WORD32_NEG_MAX (-(unsigned long)(1<<31)) | |
166 | |
167 INLINE WORD16 Add_Sat_sign_16b(WORD16 val1, WORD16 val2) | |
168 { | |
169 WORD32 temp; | |
170 WORD16 result; | |
171 | |
172 temp = (WORD32)((WORD32)val1 + (WORD32)val2); | |
173 if(temp > L1_WORD16_POS_MAX) | |
174 { | |
175 temp = L1_WORD16_POS_MAX; | |
176 } | |
177 if(temp < L1_WORD16_NEG_MAX) | |
178 { | |
179 temp = L1_WORD16_NEG_MAX; | |
180 } | |
181 result = (WORD16)((temp)&(0x0000FFFF)); | |
182 return(result); | |
183 } | |
184 | |
185 INLINE WORD32 Add_Sat_sign_32b(WORD32 val1, WORD32 val2) | |
186 { | |
187 WORD32 temp_high_high; | |
188 UWORD32 temp_low_low; | |
189 UWORD16 carry; | |
190 WORD32 result; | |
191 WORD16 high_val1, high_val2; | |
192 UWORD16 low_val1, low_val2; | |
193 | |
194 high_val1 = (WORD16)(val1>>16); | |
195 high_val2 = (WORD16)(val2>>16); | |
196 low_val1 = (UWORD16)(val1&0x0000FFFF); | |
197 low_val2 = (UWORD16)(val2&0x0000FFFF); | |
198 | |
199 temp_high_high = (WORD32)high_val1 + (WORD32)high_val2; | |
200 temp_low_low = (UWORD32)low_val1 + (UWORD32)low_val2; | |
201 carry = (UWORD16)(temp_low_low >> 16); | |
202 temp_high_high = temp_high_high + (UWORD32)(carry); | |
203 | |
204 | |
205 result = val1 + val2; | |
206 if(temp_high_high > L1_WORD16_POS_MAX) | |
207 { | |
208 result = L1_WORD32_POS_MAX; | |
209 } | |
210 if(temp_high_high < L1_WORD16_NEG_MAX) | |
211 { | |
212 result = L1_WORD32_NEG_MAX; | |
213 } | |
214 | |
215 return(result); | |
216 } | |
217 | |
218 INLINE WORD32 Sat_Mult_20sign_16unsign(WORD32 val1, UWORD32 val2) | |
219 { | |
220 WORD32 result; | |
221 | |
222 result = val1 * val2; | |
223 if(val1>0) /* val2 is > 0*/ | |
224 { | |
225 if(result < 0) /* overflow */ | |
226 { | |
227 result = L1_WORD32_POS_MAX; | |
228 } | |
229 } | |
230 if(val1<0) /* val2 is > 0*/ | |
231 { | |
232 if(result > 0) /* overflow */ | |
233 { | |
234 result = L1_WORD32_NEG_MAX; | |
235 } | |
236 } | |
237 return(result); | |
238 } | |
239 #endif | |
240 | |
241 INLINE WORD32 Add_40b( WORD32 guard1guard2, WORD32 lvar1, WORD32 lvar2, WORD16 *guardout ) | |
242 { | |
243 WORD32 result, temp, carry, Lvar1, Lvar2; | |
244 WORD16 guard1,guard2; | |
245 | |
246 guard1=(WORD16) ((WORD32) guard1guard2>>16); | |
247 guard2=(WORD16) guard1guard2; | |
248 | |
249 /* lvar1 and lvar2 are both 48 bits variables */ | |
250 /* We 1st add the low parts of lvar1 and lvar2 and we give */ | |
251 /* a 32 bits result and a carry if needed */ | |
252 Lvar1 = (UWORD16)lvar1; | |
253 Lvar2 = (UWORD16)lvar2; | |
254 | |
255 temp = Lvar1 + Lvar2; | |
256 | |
257 carry = temp >> 16; | |
258 | |
259 result = temp & 0x0000ffffL; | |
260 | |
261 /* We now add the two high parts of var1 and var2 (scaled */ | |
262 /* to a 16 bits format) and carry (if any) and we give a */ | |
263 /* 48 bits results. */ | |
264 Lvar1 = (UWORD32)lvar1 >> 16; | |
265 Lvar2 = (UWORD32)lvar2 >> 16; | |
266 | |
267 temp = Lvar1 + Lvar2 + carry; | |
268 | |
269 carry = (UWORD32)temp >> 16; | |
270 | |
271 temp = (UWORD32)temp << 16; | |
272 | |
273 result = result | temp; | |
274 | |
275 temp = guard1 + guard2 + carry; | |
276 | |
277 *guardout = (WORD16)temp; | |
278 | |
279 return( result ); | |
280 } | |
281 | |
282 | |
283 INLINE WORD32 Mult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) | |
284 { | |
285 WORD32 mult,guard1guard2; | |
286 WORD32 aux1; | |
287 UWORD32 aux2; | |
288 WORD16 neg_flag=0; | |
289 WORD32 var1_low_nosign,var2_nosign; | |
290 | |
291 if (var2<0) | |
292 { | |
293 var2=-var2; | |
294 neg_flag=1; | |
295 } | |
296 | |
297 /*aux1 = AccHigh(var1)*var2 */ | |
298 aux1 = (WORD32)(var1>>16) * (WORD32)var2; | |
299 /* 16 bits * 16 bits -> 32 bits result */ | |
300 | |
301 /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ | |
302 /* Performs the sign suppression of the words */ | |
303 var1_low_nosign = (UWORD16)var1; | |
304 var2_nosign = (UWORD16) var2; | |
305 | |
306 aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; | |
307 | |
308 /*Shift aux1=F48 of 16 bit left */ | |
309 guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ | |
310 /*guard2=0x0000 */ | |
311 aux1=aux1<<16; | |
312 | |
313 | |
314 /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ | |
315 /* aux1 and aux2 are both 48 bits variables */ | |
316 /* We first add the low pats of aux1 and aux2 and we give*/ | |
317 /* a 32 bits result and a carry if needed */ | |
318 mult=Add_40b(guard1guard2,aux1,aux2,guardout ); | |
319 | |
320 if (neg_flag) | |
321 { | |
322 mult=-mult; | |
323 if (*guardout!=0) | |
324 *guardout=-(*guardout)-1; | |
325 else | |
326 *guardout=-1; | |
327 } | |
328 | |
329 return(mult); | |
330 } | |
331 | |
332 | |
333 /***********************************************************************/ | |
334 /* This function allows to multiply a WORD32 and a WORD16, both POSITIVE, */ | |
335 /* variables. Result is WORD32. */ | |
336 /***********************************************************************/ | |
337 INLINE WORD32 UMult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) | |
338 { | |
339 WORD32 mult,guard1guard2; | |
340 UWORD32 aux1,aux2; | |
341 WORD32 var1_high_nosign,var1_low_nosign,var2_nosign; | |
342 | |
343 | |
344 /*aux1 = AccHigh(var1)*var2 (unsigned multiplication) */ | |
345 /* Performs the sign suppression of the words */ | |
346 var1_high_nosign = (UWORD32)var1>>16; | |
347 var2_nosign = (UWORD16) var2; | |
348 | |
349 aux1 = (UWORD32)var1_high_nosign * (UWORD32)var2_nosign; | |
350 | |
351 /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ | |
352 /* Performs the sign suppression of the words */ | |
353 var1_low_nosign = (WORD32)((UWORD16)var1); | |
354 | |
355 aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; | |
356 | |
357 /*Shift aux1=F48 of 16 bit left */ | |
358 guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ | |
359 /*guard2=0x0000 */ | |
360 aux1=aux1<<16; | |
361 | |
362 | |
363 /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ | |
364 mult=Add_40b(guard1guard2,aux1,aux2,guardout); | |
365 | |
366 return(mult); | |
367 } | |
368 | |
369 | |
370 /*-------------------------------------------------------*/ | |
371 /* l1ctl_afc() */ | |
372 /*-------------------------------------------------------*/ | |
373 /* Parameters : */ | |
374 /* Return : */ | |
375 /* Functionality : */ | |
376 /*-------------------------------------------------------*/ | |
377 #if (VCXO_ALGO == 0) | |
378 WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq) | |
379 #else | |
380 WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq, UWORD32 l1_mode) | |
381 #endif | |
382 { | |
383 /*************************/ | |
384 /* Variables declaration */ | |
385 /*************************/ | |
386 WORD16 i=0; | |
387 UWORD32 denom; /* F12.20 */ | |
388 WORD32 var_32,num,Phi_32=0,var1,var2,guard1guard2; | |
389 static UWORD32 P=C_cov_start; /* F12.20 */ | |
390 static WORD32 Psi=0; /* F13.19 */ | |
391 static WORD16 Psi_quant[C_N_del+1]; /* F13.3 */ | |
392 WORD16 var_16; | |
393 WORD16 Phi=0; /* F1.15 */ | |
394 WORD16 quotient,guard1,guard2,guardout; | |
395 UWORD32 LGuard; | |
396 WORD16 denomH,denomH_3msb; | |
397 UWORD32 K=0; /* algo 1 */ | |
398 | |
399 static WORD16 old_Psi_quant[C_N_del+1]; | |
400 static WORD32 old_Psi=0; | |
401 | |
402 #if (VCXO_ALGO == 1) | |
403 static WORD32 psi_past[C_N_del+1]; /* F13.19 */ | |
404 static WORD16 psi_quant; /* F13.3 */ | |
405 static WORD16 quant_avg; | |
406 static UWORD32 M_Count; | |
407 static WORD32 psi_avg[C_PSI_AVG_SIZE_D+1]; // Data history array | |
408 static WORD16 B_Count; // Counter for consecutive SNR below C_thr_snr | |
409 #if 0 /* LoCosto added var */ | |
410 UWORD16 L = 10433; // Gain algo2 | |
411 #endif | |
412 static UWORD16 first_avg; | |
413 static UWORD16 good_snr; | |
414 | |
415 /* to be able to keep in memory the old AFC variables in case of spurious | |
416 FB detection */ | |
417 static WORD32 old_psi_past[C_N_del+1]; /* F13.19 */ | |
418 static WORD16 old_psi_quant; /* F13.3 */ | |
419 | |
420 #endif | |
421 #if (L1_FF_MULTIBAND == 1) | |
422 UWORD8 physical_band_id; | |
423 #endif | |
424 | |
425 #if 0 /* LoCosto added var init */ | |
426 //Set AFC close loop gain for ALGO_AFC_LQG_PREDICTOR. | |
427 if(l1_mode==I_MODE)//MS is in Idle mode | |
428 L = 41732; //F0.20 L=41732/2^20 = 0.04 | |
429 else //All other modes than Idle | |
430 L = 10433; //F0.20 L=10433/2^20 = 0.01 | |
431 #endif | |
432 | |
433 #if (L1_FF_MULTIBAND == 0) | |
434 | |
435 if (((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) && | |
436 #if (VCXO_ALGO == 1) | |
437 ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) | |
438 #else | |
439 (phase != AFC_INIT)) | |
440 #endif | |
441 { | |
442 if (radio_freq >= l1_config.std.first_radio_freq_band2) | |
443 { | |
444 angle = (angle + 1) >> 1; | |
445 } | |
446 } | |
447 | |
448 else if (((l1_config.std.id == DCS1800) || (l1_config.std.id == PCS1900)) && | |
449 #if (VCXO_ALGO == 1) | |
450 ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) | |
451 #else | |
452 (phase != AFC_INIT)) | |
453 #endif | |
454 { | |
455 angle = (angle + 1) >> 1; | |
456 } | |
457 | |
458 #else // L1_FF_MULTIBAND = 1 below | |
459 | |
460 #if (VCXO_ALGO == 1) | |
461 if((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)) | |
462 #else | |
463 if(phase != AFC_INIT) | |
464 #endif | |
465 { | |
466 physical_band_id = l1_multiband_radio_freq_convert_into_physical_band_id(radio_freq); | |
467 | |
468 if( (multiband_rf[physical_band_id].gsm_band_identifier == DCS1800) || (multiband_rf[physical_band_id].gsm_band_identifier == PCS1900)) | |
469 { | |
470 angle = (angle + 1) >> 1; | |
471 } | |
472 } | |
473 | |
474 #endif // #if (L1_FF_MULTIBAND == 1) else | |
475 | |
476 | |
477 | |
478 /*********************************/ | |
479 /* frequency offset compensation */ | |
480 /*********************************/ | |
481 /* Initialization */ | |
482 | |
483 #if (VCXO_ALGO == 1) | |
484 switch (l1_config.params.afc_algo) | |
485 { | |
486 | |
487 /* algo1 only: */ | |
488 case ALGO_AFC_KALMAN: | |
489 { | |
490 #endif | |
491 #if (VCXO_ALGO == 0) | |
492 if (phase==AFC_INIT) | |
493 { | |
494 // WARNING | |
495 // In this case, "angle" variable contains EEPROM_AFC initialization value | |
496 // directly loaded from EEPROM, and "snr" variable is not meaningful. | |
497 /* Static variables initialisation */ | |
498 P=C_cov_start; | |
499 Psi=0; | |
500 if (angle>C_max_step) | |
501 Psi_quant[C_N_del]=C_max_step; | |
502 else | |
503 if(angle<C_min_step) | |
504 Psi_quant[C_N_del]=C_min_step; | |
505 else Psi_quant[C_N_del]=angle; | |
506 | |
507 Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ | |
508 } /* end AFC_INIT*/ | |
509 else | |
510 { | |
511 if (phase==AFC_OPEN_LOOP) | |
512 { | |
513 /* delay line for Psi_quant values */ | |
514 for (i=1;i<=C_N_del;i++) | |
515 Psi_quant[i-1]=Psi_quant[i]; | |
516 | |
517 var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; | |
518 /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ | |
519 | |
520 #if(RF_FAM == 61) | |
521 /* In order to implement the NINT function for a F16.0, we check */ | |
522 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
523 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
524 var_16=quotient*4; | |
525 #else | |
526 /* In order to implement the NINT function for a F16.0, we check */ | |
527 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
528 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
529 var_16=quotient*8; | |
530 #endif | |
531 if (var_16>C_max_step) | |
532 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); | |
533 else | |
534 if(var_16<C_min_step) | |
535 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); | |
536 else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ | |
537 | |
538 Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ | |
539 }/*end if AFC_OPEN_LOOP*/ | |
540 | |
541 else | |
542 { | |
543 /* delay line for Psi_quant values */ | |
544 for (i=1;i<=C_N_del;i++) | |
545 Psi_quant[i-1]=Psi_quant[i]; | |
546 | |
547 /********************/ | |
548 /* Filter algorithm */ | |
549 /********************/ | |
550 | |
551 /* Covariance error is increased of C_Q */ | |
552 P=P+(*frame_count)*C_Q; | |
553 | |
554 /* Clipping of P */ | |
555 if (P>C_thr_P) P=C_thr_P; | |
556 | |
557 if (snr>=C_thr_snr) | |
558 { | |
559 /* Clipping of error angle */ | |
560 if (angle>C_thr_phi) | |
561 angle=C_thr_phi; | |
562 if (angle<-C_thr_phi) | |
563 angle=-C_thr_phi; | |
564 | |
565 /* Kalman gain */ | |
566 /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ | |
567 /*C_a0_kalman=0.01 */ | |
568 /*C_g_kalman =0.05 */ | |
569 num=(C_g_kalman/snr)+P+C_a0_kalman; | |
570 /* (F2.30 / F6.10) = F 12.20 */ | |
571 | |
572 /* denom = P << 19 = F 1.39 */ | |
573 /* extension of denom=P to a 40 bits variable */ | |
574 /* denom (F12.20) << 16 = F 4.36 */ | |
575 guard1=(WORD16)((WORD32)P>>16); | |
576 /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ | |
577 denomH=(UWORD16)P; | |
578 /* Low part of denom is equal to 0, because P has been 16 */ | |
579 /* bits left shifted previously. */ | |
580 denomH_3msb=(denomH>>13)&0x0007; | |
581 guard1=(guard1<<3)|denomH_3msb; | |
582 denomH<<=3; | |
583 denom=(UWORD32)denomH<<16; | |
584 /* num + guard1 are a 40 bits representation of P */ | |
585 /* In order to compute P(F1.39)/num, we sample P in guard1 */ | |
586 /* (scaled to a 32 bits number) and num (32 bits number) */ | |
587 /* K = ((guard1<<24)/num)<<8 + (denom/num) */ | |
588 var1=(WORD32)guard1<<24; | |
589 var1=var1/num; | |
590 var1=(WORD32)var1<<8; | |
591 /* var2 is an unsigned variable, var1 contains signed guard*/ | |
592 /* bits. */ | |
593 var2=denom/num; | |
594 K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ | |
595 /* F13.19 << 1 = F12.20 */ | |
596 | |
597 /* Clipping of the Kalman gain */ | |
598 if (K>=C_thr_K) | |
599 K=C_thr_K; | |
600 | |
601 /*******************************************************/ | |
602 /* P=(1-K)*P = 0.8 * 0.5 at maximum */ | |
603 /*******************************************************/ | |
604 /* Perform a positive variable F12.20 multiplication by*/ | |
605 /* positive variable F12.20 */ | |
606 var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ | |
607 guard1=0; /* positive variable */ | |
608 var1=UMult_40b(P,var_16,&guard1); | |
609 var_16=(WORD16)((1048576L-K)>>16); | |
610 /* acchigh(1-K) = F12.20 */ | |
611 var2=P*var_16; /* var2 = 0x80000 * 0xc */ | |
612 /* at maximum, so result */ | |
613 /* is 32 bits WORD32 and */ | |
614 /* equal 0x600000 */ | |
615 /* extension of var2 to a 40 bits variable : var2<<16 */ | |
616 guard2=(WORD16)((WORD32)var2>>16); | |
617 guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); | |
618 var2=var2<<16; | |
619 var_32=Add_40b(guard1guard2,var1,var2,&guardout); | |
620 /* var_32 (F8.40) >> 16 = F8.24 */ | |
621 LGuard=(WORD32)guardout<<16; | |
622 var1=(UWORD32)var_32>>16; | |
623 /* var_32 >> 4 = F12.20 */ | |
624 P=(var1+LGuard)>>4; | |
625 | |
626 Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); | |
627 /* F0.32 * F13.3 = F5.35 */ | |
628 LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ | |
629 /* F13.19 */ | |
630 var1=(UWORD32)Phi_32>>16; | |
631 Phi_32=Psi-(LGuard+var1); /* F13.19 */ | |
632 | |
633 /*Phi=angle-Phi_32*/ | |
634 Phi_32=((WORD32)angle<<4)-Phi_32; | |
635 /* F1.15 * 4 = F13.19 */ | |
636 Phi=(WORD16)(Phi_32>>4); /* F17.15 */ | |
637 /*var1=K*Phi F12.20 * F1.15 = 13.35 */ | |
638 guard1=0; | |
639 var1=Mult_40b(K,Phi,&guard1); | |
640 /* var1 (F13.35) >> 16 */ | |
641 /* F13.19 */ | |
642 LGuard=(WORD32)guard1<<16; | |
643 var1=(UWORD32)var1>>16; | |
644 Psi+=var1+LGuard; | |
645 }/*if snr */ | |
646 | |
647 var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); | |
648 /* F13.19 * C = F13.19 */ | |
649 | |
650 #if(RF_FAM == 61) | |
651 /* In order to implement the NINT function for a F13.3, we check */ | |
652 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
653 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
654 var_16=quotient*4; | |
655 #else | |
656 /* In order to implement the NINT function for a F13.3, we check */ | |
657 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
658 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
659 var_16=quotient*8; | |
660 #endif | |
661 if (var_16>C_max_step) | |
662 Psi_quant[C_N_del]=C_max_step; | |
663 else | |
664 if(var_16<C_min_step) | |
665 Psi_quant[C_N_del]=C_min_step; | |
666 else Psi_quant[C_N_del]=var_16; /* F13.3 */ | |
667 | |
668 }/*end AFC_CLOSE_LOOP*/ | |
669 } /* end else AFC_INIT*/ | |
670 | |
671 *frame_count=0; | |
672 return(Psi_quant[C_N_del]>>3); /* F16.0 */ | |
673 | |
674 #else | |
675 | |
676 } /* end case algo 1 */ | |
677 | |
678 | |
679 /* algo2 + init + estimator/predictor */ | |
680 case ALGO_AFC_LQG_PREDICTOR: | |
681 { | |
682 /******************************************************************/ | |
683 /* (New) VCXO Algorithm */ | |
684 /******************************************************************/ | |
685 | |
686 switch (phase) { | |
687 case AFC_INIT_CENTER : | |
688 case AFC_INIT_MAX : | |
689 case AFC_INIT_MIN : | |
690 quant_avg = 0; | |
691 M_Count = 0; | |
692 #if 0 /* present in LoCosto but not in TCS211 */ | |
693 for (i = 0; i <= C_PSI_AVG_SIZE_D ; i++) //omaps00090550 | |
694 psi_avg[i] = 0; | |
695 #endif | |
696 first_avg = 1; | |
697 good_snr = 0; | |
698 | |
699 // DAC search algorithm is as follows - up to 12 attempts are made | |
700 // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> | |
701 // The first four attempts are made on DAC_center | |
702 // The next four attempts are made on DAC_max | |
703 // The last four attempts are made on DAC_min | |
704 // There are statistical reasons for trying four times | |
705 | |
706 switch (phase) | |
707 { | |
708 case AFC_INIT_CENTER: | |
709 psi_quant = l1_config.params.afc_dac_center; | |
710 break; | |
711 case AFC_INIT_MAX: | |
712 psi_quant = l1_config.params.afc_dac_max; | |
713 break; | |
714 case AFC_INIT_MIN: | |
715 psi_quant = l1_config.params.afc_dac_min; | |
716 break; | |
717 default : | |
718 break; | |
719 } | |
720 | |
721 /* F0.32 * F13.3 = F5.35 */ | |
722 psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); | |
723 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
724 psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); | |
725 | |
726 break; | |
727 | |
728 case AFC_OPEN_LOOP : | |
729 { | |
730 /* VCXO changes for spurious FB detection */ | |
731 if (l1s.spurious_fb_detected == TRUE) | |
732 { | |
733 psi_quant = old_psi_quant; | |
734 | |
735 for(i=0;i<C_N_del+1;i++) | |
736 psi_past[i] = old_psi_past[i]; | |
737 | |
738 /* reset the spurious_fb_detected_flag */ | |
739 l1s.spurious_fb_detected = FALSE; | |
740 } /* end of spuriousFB detected */ | |
741 | |
742 /* save in memory the old AFC related values */ | |
743 old_psi_quant = psi_quant; | |
744 | |
745 for(i=0;i<C_N_del+1;i++) | |
746 old_psi_past[i] = psi_past[i]; | |
747 | |
748 /* delay line for psi_quant values */ | |
749 for (i = 1; i <= C_N_del; i++) | |
750 psi_past[i-1] = psi_past[i]; | |
751 | |
752 /* (F16.0 * F1.15 = F17.15) << 4 = F13.19 */ | |
753 var_32 = (WORD32) ((WORD32)angle * l1_config.params.psi_sta_inv) << 4; | |
754 | |
755 #if(RF_FAM == 61) | |
756 /* In order to implement the NINT function for a F16.0,*/ | |
757 /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
758 var_16 = (WORD16) | |
759 ((WORD32) (((WORD32)(var_32 + (1<<17))) / (1<<18))); | |
760 var_16 = var_16 * 4; | |
761 #else | |
762 /* In order to implement the NINT function for a F16.0,*/ | |
763 /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
764 var_16 = (WORD16) | |
765 ((WORD32) (((WORD32)(var_32 + (1<<18))) / (1<<19))); | |
766 var_16 = var_16 * 8; | |
767 #endif | |
768 | |
769 #if 0 /* LoCosto code with saturation */ | |
770 if (var_16 > C_max_step) | |
771 psi_quant = Add_Sat_sign_16b(psi_quant,C_max_step); | |
772 else if (var_16 < C_min_step) | |
773 psi_quant = Add_Sat_sign_16b(psi_quant,C_min_step); | |
774 else psi_quant = Add_Sat_sign_16b(psi_quant,var_16); /* F13.3 */ | |
775 #else /* matching TCS211 */ | |
776 if (var_16 > C_max_step) | |
777 psi_quant += C_max_step; | |
778 else if (var_16 < C_min_step) | |
779 psi_quant += C_min_step; | |
780 else psi_quant += var_16; /* F13.3 */ | |
781 #endif | |
782 | |
783 /* F0.32 * F13.3 = F5.35 */ | |
784 psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); | |
785 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
786 psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); | |
787 | |
788 } | |
789 break; | |
790 | |
791 case AFC_CLOSED_LOOP : | |
792 | |
793 /* delay line for psi_quant values */ | |
794 for (i = 1; i <= C_N_del; i++) | |
795 psi_past[i-1] = psi_past[i]; | |
796 | |
797 /************************************/ | |
798 /* Estimation */ | |
799 /************************************/ | |
800 if ( (l1_config.params.rgap_algo != 0) && | |
801 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
802 #if L1_GPRS | |
803 || l1_mode==PACKET_TRANSFER_MODE | |
804 #endif | |
805 )) | |
806 { | |
807 | |
808 M_Count += *frame_count; | |
809 if (snr >= l1_config.params.afc_snr_thr) { | |
810 // Accumulate average over N TDMA frames | |
811 psi_avg[0] += psi_past[C_N_del]; | |
812 // Count number of good snr's within window_avg_size chunks | |
813 good_snr++; | |
814 } | |
815 // M_Count >= M ? | |
816 if (M_Count >= l1_config.params.afc_win_avg_size_M) { | |
817 // M_Count counts how far we have reached in the window_avg_size blocks | |
818 | |
819 // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements | |
820 if (good_snr > 0) | |
821 psi_avg[0] /= good_snr; | |
822 | |
823 // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] | |
824 if (first_avg == 1) { | |
825 first_avg = 0; | |
826 // Use first estimation as best guess for the other avg values | |
827 // This is used both at initialisation and when returning from reception gap | |
828 for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) | |
829 psi_avg[i] = psi_avg[0]; | |
830 } | |
831 | |
832 // Estimation 1st order | |
833 // Use biggest window to reduce noise effects signal in psi values | |
834 // NOTE: Due to performance issues division by MSIZE is in predictor | |
835 if (l1_config.params.rgap_algo >= 1) { | |
836 quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); | |
837 } | |
838 | |
839 for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) | |
840 psi_avg[i+1] = psi_avg[i]; | |
841 psi_avg[0] = 0; | |
842 M_Count = 0; | |
843 good_snr = 0; | |
844 } | |
845 | |
846 } else { | |
847 // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! | |
848 first_avg = 1; | |
849 M_Count = 0; | |
850 good_snr = 0; | |
851 psi_avg[0] = 0; | |
852 } | |
853 | |
854 if (snr >= l1_config.params.afc_snr_thr) { | |
855 /********************/ | |
856 /* Filter algorithm */ | |
857 /********************/ | |
858 | |
859 /* No prediction during normal operation */ | |
860 B_Count= 0; | |
861 | |
862 /* Clip error angle */ | |
863 if (angle > C_thr_phi) | |
864 angle = C_thr_phi; | |
865 if (angle < -C_thr_phi) | |
866 angle = -C_thr_phi; | |
867 | |
868 Phi_32 = psi_past[C_N_del] - psi_past[0]; /* F13.19 */ | |
869 /* Phi = angle - Phi_32*/ | |
870 Phi_32 = ((WORD32) angle << 4) - Phi_32; | |
871 /* F1.15 * 4 = F13.19 */ | |
872 #if 0 /* LoCosto code */ | |
873 Phi = (WORD16)((WORD32)((WORD32)(Phi_32 + (1<<3)))/ (1<<4)); /* F17.15 */ | |
874 #else /* TCS211 reconstruction */ | |
875 Phi = Phi_32 >> 4; | |
876 #endif | |
877 /* (F0.20 * F1.15) >> 16 = F13.19 */ | |
878 #if 0 /* LoCosto code with saturation and L */ | |
879 var_32 = (L * Phi + (1<<15)) >> 16; | |
880 psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],var_32); | |
881 #else /* matching TCS211 */ | |
882 psi_past[C_N_del] += (10433 * Phi) >> 16; | |
883 #endif | |
884 | |
885 } | |
886 else | |
887 { | |
888 /************************************/ | |
889 /* Prediction */ | |
890 /************************************/ | |
891 | |
892 // Only predict in dedicated mode | |
893 // NO prediction in idle mode | |
894 // l1a_l1s_com.dedic_set.SignalCode = NULL | |
895 if ( (l1_config.params.rgap_algo != 0) && | |
896 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
897 #if L1_GPRS | |
898 || l1_mode==PACKET_TRANSFER_MODE | |
899 #endif | |
900 )) | |
901 { | |
902 /* Prediction of psi during reception gaps */ | |
903 B_Count | |
904 += *frame_count; | |
905 | |
906 /* Predict psi ONLY when we have sufficient measurements available */ | |
907 /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ | |
908 | |
909 // Was the consecutive bad SNRs threshold value exceeded? | |
910 if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { | |
911 | |
912 // Predict with 0th order estimation is the default | |
913 | |
914 // Predict with 1st order estimation | |
915 if (l1_config.params.rgap_algo >= 1) | |
916 { | |
917 #if 0 /* LoCosto code with saturation */ | |
918 psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del], | |
919 ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)) | |
920 ); | |
921 #else /* matching TCS211 */ | |
922 psi_past[C_N_del] += | |
923 ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); | |
924 #endif | |
925 } | |
926 | |
927 B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; | |
928 | |
929 // Indicate by raising first_avg flag that a reception gap has occurred | |
930 // I.e. the psi_avg table must be reinitialised after leaving reception gap | |
931 first_avg = 1; | |
932 | |
933 // Counters in estimation part must also be reset | |
934 M_Count = 0; | |
935 good_snr = 0; | |
936 psi_avg[0] = 0; | |
937 } | |
938 } | |
939 } | |
940 | |
941 /* Quantize psi value */ | |
942 | |
943 /* F0.19 * 16.0 = F16.19 */ | |
944 #if 0 /* LoCosto code */ | |
945 var_32 = Sat_Mult_20sign_16unsign(psi_past[C_N_del],l1_config.params.psi_st_inv); | |
946 #else /* TCS211 reconstruction */ | |
947 var_32 = psi_past[C_N_del] * l1_config.params.psi_st_inv; | |
948 #endif | |
949 | |
950 #if(RF_FAM == 61) | |
951 /* In order to implement the NINT function for a F13.3,*/ | |
952 /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
953 var_16 = (WORD16) | |
954 ((WORD32)((WORD32)(var_32 + (1<<17))) / (1<<18)); | |
955 var_16 = var_16 * 4; | |
956 #else | |
957 /* In order to implement the NINT function for a F13.3,*/ | |
958 /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
959 var_16 = (WORD16) | |
960 ((WORD32)((WORD32)(var_32 + (1<<18))) / (1<<19)); | |
961 var_16 = var_16 * 8; | |
962 #endif | |
963 if (var_16 > C_max_step) | |
964 psi_quant = C_max_step; | |
965 else if (var_16 < C_min_step) | |
966 psi_quant = C_min_step; | |
967 else | |
968 psi_quant = var_16; /* F13.3 */ | |
969 break; | |
970 } // switch phase | |
971 | |
972 *frame_count = 0; | |
973 | |
974 return (psi_quant >> 3); /* F16.0 */ | |
975 } /* end case algo 2 */ | |
976 | |
977 /* algo1 + init + estimator/predictor */ | |
978 case ALGO_AFC_KALMAN_PREDICTOR: | |
979 { | |
980 if ((phase==AFC_INIT_CENTER) || (phase==AFC_INIT_MAX) || (phase==AFC_INIT_MIN)) | |
981 { | |
982 // WARNING | |
983 // In this case, "angle" variable contains EEPROM_AFC initialization value | |
984 // directly loaded from EEPROM, and "snr" variable is not meaningful. | |
985 /* Static variables initialisation */ | |
986 | |
987 quant_avg = 0; | |
988 M_Count = 0; | |
989 #if 0 /* present in LoCosto but not in TCS211 */ | |
990 for (i = 0; i <=C_PSI_AVG_SIZE_D ; i++) //omaps00090550 | |
991 psi_avg[i] = 0; | |
992 #endif | |
993 first_avg = 1; | |
994 good_snr = 0; | |
995 | |
996 // DAC search algorithm is as follows - up to 12 attempts are made | |
997 // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> | |
998 // The first four attempts are made on DAC_center | |
999 // The next four attempts are made on DAC_max | |
1000 // The last four attempts are made on DAC_min | |
1001 // There are statistical reasons for trying four times | |
1002 | |
1003 switch (phase) { | |
1004 case AFC_INIT_CENTER: | |
1005 Psi_quant[C_N_del] = l1_config.params.afc_dac_center; | |
1006 break; | |
1007 case AFC_INIT_MAX: | |
1008 Psi_quant[C_N_del] = l1_config.params.afc_dac_max; | |
1009 break; | |
1010 case AFC_INIT_MIN: | |
1011 Psi_quant[C_N_del] = l1_config.params.afc_dac_min; | |
1012 break; | |
1013 default : | |
1014 break; | |
1015 } | |
1016 | |
1017 P=C_cov_start; | |
1018 Psi=0; | |
1019 if (angle>C_max_step) | |
1020 Psi_quant[C_N_del]=C_max_step; | |
1021 else | |
1022 if(angle<C_min_step) | |
1023 Psi_quant[C_N_del]=C_min_step; | |
1024 else Psi_quant[C_N_del]=angle; | |
1025 | |
1026 /* F0.32 * F13.3 = F5.35 */ | |
1027 Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); | |
1028 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
1029 Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); | |
1030 | |
1031 } /* end AFC_INIT*/ | |
1032 else | |
1033 { | |
1034 if (phase==AFC_OPEN_LOOP) | |
1035 { | |
1036 /* relaod last good values in the ALGO */ | |
1037 if (l1s.spurious_fb_detected == TRUE) | |
1038 { | |
1039 for(i=0;i<C_N_del+1;i++) | |
1040 Psi_quant[i] = old_Psi_quant[i]; | |
1041 | |
1042 Psi = old_Psi; | |
1043 l1s.spurious_fb_detected = FALSE; | |
1044 } | |
1045 | |
1046 /* Save the old values in memory */ | |
1047 for(i=0;i<C_N_del+1;i++) | |
1048 old_Psi_quant[i] = Psi_quant[i]; | |
1049 old_Psi = Psi; | |
1050 | |
1051 /* delay line for Psi_quant values */ | |
1052 for (i=1;i<=C_N_del;i++) | |
1053 Psi_quant[i-1]=Psi_quant[i]; | |
1054 | |
1055 var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; | |
1056 /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ | |
1057 | |
1058 #if(RF_FAM == 61) | |
1059 /* In order to implement the NINT function for a F16.0, we check */ | |
1060 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
1061 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
1062 var_16=quotient*4; | |
1063 #else | |
1064 /* In order to implement the NINT function for a F16.0, we check */ | |
1065 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
1066 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
1067 var_16=quotient*8; | |
1068 #endif | |
1069 | |
1070 #if 0 /* LoCosto code with saturation */ | |
1071 if (var_16>C_max_step) | |
1072 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); | |
1073 else if (var_16<C_min_step) | |
1074 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); | |
1075 else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ | |
1076 #else /* matching TCS211 */ | |
1077 if (var_16>C_max_step) | |
1078 Psi_quant[C_N_del] += C_max_step; | |
1079 else if (var_16<C_min_step) | |
1080 Psi_quant[C_N_del] += C_min_step; | |
1081 else Psi_quant[C_N_del] += var_16; /* F13.3 */ | |
1082 #endif | |
1083 | |
1084 /* F0.32 * F13.3 = F5.35 */ | |
1085 Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); | |
1086 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ | |
1087 Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); | |
1088 | |
1089 }/*end if AFC_OPEN_LOOP*/ | |
1090 else | |
1091 { | |
1092 | |
1093 /* delay line for Psi_quant values */ | |
1094 for (i=1;i<=C_N_del;i++) | |
1095 Psi_quant[i-1]=Psi_quant[i]; | |
1096 | |
1097 /************************************/ | |
1098 /* Estimation */ | |
1099 /************************************/ | |
1100 if ( (l1_config.params.rgap_algo != 0) && | |
1101 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1102 #if L1_GPRS | |
1103 || l1_mode==PACKET_TRANSFER_MODE | |
1104 #endif | |
1105 )) | |
1106 { | |
1107 | |
1108 M_Count += *frame_count; | |
1109 if (snr >= l1_config.params.afc_snr_thr) { | |
1110 // Accumulate average over N TDMA frames | |
1111 psi_avg[0] += psi_past[C_N_del]; | |
1112 // Count number of good snr's within window_avg_size chunks | |
1113 good_snr++; | |
1114 } | |
1115 | |
1116 // M_Count >= M ? | |
1117 if (M_Count >= l1_config.params.afc_win_avg_size_M) { | |
1118 // M_Count counts how far we have reached in the window_avg_size blocks | |
1119 | |
1120 // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements | |
1121 if (good_snr > 0) | |
1122 psi_avg[0] /= good_snr; | |
1123 | |
1124 // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] | |
1125 if (first_avg == 1) { | |
1126 first_avg = 0; | |
1127 // Use first estimation as best guess for the other avg values | |
1128 // This is used both at initialisation and when returning from reception gap | |
1129 for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) | |
1130 psi_avg[i] = psi_avg[0]; | |
1131 } | |
1132 | |
1133 // Estimation 1st order | |
1134 // Use biggest window to reduce noise effects signal in psi values | |
1135 // NOTE: Due to performance issues division by MSIZE is in predictor | |
1136 if (l1_config.params.rgap_algo >= 1) { | |
1137 quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); | |
1138 } | |
1139 | |
1140 for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) | |
1141 psi_avg[i+1] = psi_avg[i]; | |
1142 psi_avg[0] = 0; | |
1143 M_Count = 0; | |
1144 good_snr = 0; | |
1145 } | |
1146 | |
1147 } else { | |
1148 // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! | |
1149 first_avg = 1; | |
1150 M_Count = 0; | |
1151 good_snr = 0; | |
1152 psi_avg[0] = 0; | |
1153 } | |
1154 | |
1155 /********************/ | |
1156 /* Filter algorithm */ | |
1157 /********************/ | |
1158 | |
1159 /* Covariance error is increased of C_Q */ | |
1160 P=P+(*frame_count)*C_Q; | |
1161 | |
1162 /* Clipping of P */ | |
1163 if (P>C_thr_P) P=C_thr_P; | |
1164 | |
1165 if (snr>=C_thr_snr) | |
1166 { | |
1167 /* Clipping of error angle */ | |
1168 if (angle>C_thr_phi) | |
1169 angle=C_thr_phi; | |
1170 if (angle<-C_thr_phi) | |
1171 angle=-C_thr_phi; | |
1172 | |
1173 /* Kalman gain */ | |
1174 /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ | |
1175 /*C_a0_kalman=0.01 */ | |
1176 /*C_g_kalman =0.05 */ | |
1177 num=(C_g_kalman/snr)+P+C_a0_kalman; | |
1178 /* (F2.30 / F6.10) = F 12.20 */ | |
1179 | |
1180 /* denom = P << 19 = F 1.39 */ | |
1181 /* extension of denom=P to a 40 bits variable */ | |
1182 /* denom (F12.20) << 16 = F 4.36 */ | |
1183 guard1=(WORD16)((WORD32)P>>16); | |
1184 /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ | |
1185 denomH=(UWORD16)P; | |
1186 /* Low part of denom is equal to 0, because P has been 16 */ | |
1187 /* bits left shifted previously. */ | |
1188 denomH_3msb=(denomH>>13)&0x0007; | |
1189 guard1=(guard1<<3)|denomH_3msb; | |
1190 denomH<<=3; | |
1191 denom=denomH<<16; //(UWORD32) removed typecast omaps00090550 | |
1192 /* num + guard1 are a 40 bits representation of P */ | |
1193 /* In order to compute P(F1.39)/num, we sample P in guard1 */ | |
1194 /* (scaled to a 32 bits number) and num (32 bits number) */ | |
1195 /* K = ((guard1<<24)/num)<<8 + (denom/num) */ | |
1196 var1=(WORD32)guard1<<24; | |
1197 var1=var1/num; | |
1198 var1=(WORD32)var1<<8; | |
1199 /* var2 is an unsigned variable, var1 contains signed guard*/ | |
1200 /* bits. */ | |
1201 #if 0 /* fixed LoCosto code */ | |
1202 var2= ((WORD32)(denom)/(num)); //omaps00090550 | |
1203 #else /* matching TCS211 */ | |
1204 var2= denom / num; | |
1205 #endif | |
1206 K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ | |
1207 /* F13.19 << 1 = F12.20 */ | |
1208 | |
1209 /* Clipping of the Kalman gain */ | |
1210 if (K>=C_thr_K) | |
1211 K=C_thr_K; | |
1212 | |
1213 /*******************************************************/ | |
1214 /* P=(1-K)*P = 0.8 * 0.5 at maximum */ | |
1215 /*******************************************************/ | |
1216 /* Perform a positive variable F12.20 multiplication by*/ | |
1217 /* positive variable F12.20 */ | |
1218 var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ | |
1219 guard1=0; /* positive variable */ | |
1220 var1=UMult_40b(P,var_16,&guard1); | |
1221 var_16=(WORD16)((1048576L-K)>>16); | |
1222 /* acchigh(1-K) = F12.20 */ | |
1223 var2=P*var_16; /* var2 = 0x80000 * 0xc */ | |
1224 /* at maximum, so result */ | |
1225 /* is 32 bits WORD32 and */ | |
1226 /* equal 0x600000 */ | |
1227 /* extension of var2 to a 40 bits variable : var2<<16 */ | |
1228 guard2=(WORD16)((WORD32)var2>>16); | |
1229 guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); | |
1230 var2=var2<<16; | |
1231 var_32=Add_40b(guard1guard2,var1,var2,&guardout); | |
1232 /* var_32 (F8.40) >> 16 = F8.24 */ | |
1233 LGuard=(WORD32)guardout<<16; | |
1234 var1=(UWORD32)var_32>>16; | |
1235 /* var_32 >> 4 = F12.20 */ | |
1236 P=(var1+LGuard)>>4; | |
1237 | |
1238 Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); | |
1239 /* F0.32 * F13.3 = F5.35 */ | |
1240 LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ | |
1241 /* F13.19 */ | |
1242 var1=(UWORD32)Phi_32>>16; | |
1243 Phi_32=Psi-(LGuard+var1); /* F13.19 */ | |
1244 | |
1245 /*Phi=angle-Phi_32*/ | |
1246 Phi_32=((WORD32)angle<<4)-Phi_32; | |
1247 /* F1.15 * 4 = F13.19 */ | |
1248 Phi=(WORD16)(Phi_32>>4); /* F17.15 */ | |
1249 /*var1=K*Phi F12.20 * F1.15 = 13.35 */ | |
1250 guard1=0; | |
1251 var1=Mult_40b(K,Phi,&guard1); | |
1252 /* var1 (F13.35) >> 16 */ | |
1253 /* F13.19 */ | |
1254 LGuard=(WORD32)guard1<<16; | |
1255 var1=(UWORD32)var1>>16; | |
1256 Psi+=var1+LGuard; | |
1257 } else { | |
1258 /************************************/ | |
1259 /* Prediction */ | |
1260 /************************************/ | |
1261 | |
1262 // Only predict in dedicated mode | |
1263 // NO prediction in idle mode | |
1264 // l1a_l1s_com.dedic_set.SignalCode = NULL | |
1265 if ( (l1_config.params.rgap_algo != 0) && | |
1266 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1267 #if L1_GPRS | |
1268 || l1_mode==PACKET_TRANSFER_MODE | |
1269 #endif | |
1270 )) | |
1271 { | |
1272 | |
1273 /* Prediction of psi during reception gaps */ | |
1274 B_Count+= *frame_count; | |
1275 | |
1276 /* Predict psi ONLY when we have sufficient measurements available */ | |
1277 /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ | |
1278 | |
1279 // Was the consecutive bad SNRs threshold value exceeded? | |
1280 if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { | |
1281 | |
1282 // Predict with 0th order estimation is the default | |
1283 | |
1284 // Predict with 1st order estimation | |
1285 if (l1_config.params.rgap_algo >= 1) | |
1286 Psi += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); | |
1287 | |
1288 B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; | |
1289 | |
1290 // Indicate by raising first_avg flag that a reception gap has occurred | |
1291 // I.e. the psi_avg table must be reinitialised after leaving reception gap | |
1292 first_avg = 1; | |
1293 | |
1294 // Counters in estimation part must also be reset | |
1295 M_Count = 0; | |
1296 good_snr = 0; | |
1297 psi_avg[0] = 0; | |
1298 } | |
1299 } | |
1300 } | |
1301 | |
1302 /* Quantize psi value */ | |
1303 | |
1304 var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); | |
1305 /* F13.19 * C = F13.19 */ | |
1306 | |
1307 #if(RF_FAM == 61) | |
1308 /* In order to implement the NINT function for a F13.3, we check */ | |
1309 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ | |
1310 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); | |
1311 var_16=quotient*4; | |
1312 #else | |
1313 /* In order to implement the NINT function for a F13.3, we check */ | |
1314 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ | |
1315 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); | |
1316 var_16=quotient*8; | |
1317 #endif | |
1318 if (var_16>C_max_step) | |
1319 Psi_quant[C_N_del]=C_max_step; | |
1320 else | |
1321 if(var_16<C_min_step) | |
1322 Psi_quant[C_N_del]=C_min_step; | |
1323 else Psi_quant[C_N_del]=var_16; /* F13.3 */ | |
1324 | |
1325 | |
1326 }/*end AFC_CLOSE_LOOP*/ | |
1327 } /* end else AFC_INIT*/ | |
1328 | |
1329 *frame_count = 0; | |
1330 return(Psi_quant[C_N_del]>>3); /* F16.0 */ | |
1331 } /* end case algo 3 */ | |
1332 #endif | |
1333 | |
1334 #if (VCXO_ALGO == 1) | |
1335 default: | |
1336 return 0; | |
1337 //omaps00090550 break; | |
1338 } // end of Switch | |
1339 #endif | |
1340 | |
1341 } /* end l1ctl_afc */ | |
1342 | |
1343 | |
1344 /************************************/ | |
1345 /* Automatic timing control (TOA) */ | |
1346 /************************************/ | |
1347 | |
1348 #if (TOA_ALGO == 2) | |
1349 | |
1350 #define TOA_DEBUG_ENABLE 0 | |
1351 | |
1352 | |
1353 #if (TOA_DEBUG_ENABLE == 1) | |
1354 | |
1355 #define TOA_MAKE_ZERO 0 | |
1356 | |
1357 #define TOA_LOG_BUFFER_LENGTH 4096 | |
1358 | |
1359 typedef struct | |
1360 { | |
1361 UWORD16 SNR_val; | |
1362 UWORD16 TOA_val; | |
1363 UWORD16 l1_mode; | |
1364 UWORD16 toa_frames_counter; | |
1365 UWORD16 fn_mod42432; | |
1366 }T_TOA_log_debug; | |
1367 | |
1368 | |
1369 T_TOA_log_debug toa_log_debug[TOA_LOG_BUFFER_LENGTH]; | |
1370 UWORD32 toa_log_index; | |
1371 | |
1372 UWORD32 toa_make_zero_f; | |
1373 | |
1374 #endif | |
1375 | |
1376 /*-------------------------------------------------------*/ | |
1377 /* l1ctl_toa() */ | |
1378 /*-------------------------------------------------------*/ | |
1379 /* Parameters : */ | |
1380 /* Return : */ | |
1381 /* Functionality : */ | |
1382 /*-------------------------------------------------------*/ | |
1383 | |
1384 WORD16 l1ctl_toa (UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val) | |
1385 { | |
1386 WORD16 TOA_period_len = TOA_PERIOD_LEN [l1_mode]; | |
1387 WORD16 TOA_SHIFT=ISH_INVALID; | |
1388 UWORD16 cumul_abs; | |
1389 WORD16 cumul_sign; | |
1390 WORD32 prod_tmp, div_tmp,prod_sign; | |
1391 WORD32 toa_update_flag=0; | |
1392 WORD16 cumul; | |
1393 UWORD16 cumul_counter; | |
1394 #if (NEW_TOA_ALGO == 1) | |
1395 UWORD16 Trans_active; | |
1396 static WORD16 cumul_noTrans =0; | |
1397 static UWORD16 period_counter_noTrans =0; | |
1398 | |
1399 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1400 #if L1_GPRS | |
1401 || l1_mode==PACKET_TRANSFER_MODE | |
1402 #endif | |
1403 ) | |
1404 Trans_active=TRUE; | |
1405 else Trans_active=FALSE; | |
1406 #endif | |
1407 if (phase==TOA_INIT) | |
1408 { | |
1409 #if (NEW_TOA_ALGO == 1) | |
1410 cumul_noTrans =0; | |
1411 period_counter_noTrans =0; | |
1412 #endif | |
1413 | |
1414 l1s.toa_var.toa_frames_counter=0; | |
1415 l1s.toa_var.toa_accumul_counter=0; | |
1416 l1s.toa_var.toa_accumul_value=0; | |
1417 #if (TOA_DEBUG_ENABLE == 1) | |
1418 toa_log_index = 0; | |
1419 #if (TOA_MAKE_ZERO == 1) | |
1420 toa_make_zero_f = 1; | |
1421 #else | |
1422 toa_make_zero_f = 0; | |
1423 #endif | |
1424 #endif | |
1425 | |
1426 return (TOA_SHIFT); | |
1427 } | |
1428 | |
1429 cumul = l1s.toa_var.toa_accumul_value; | |
1430 cumul_counter = l1s.toa_var.toa_accumul_counter; | |
1431 | |
1432 #if (TOA_DEBUG_ENABLE == 1) | |
1433 toa_log_debug[toa_log_index].SNR_val = SNR_val; | |
1434 toa_log_debug[toa_log_index].TOA_val = TOA_val; | |
1435 toa_log_debug[toa_log_index].l1_mode = l1_mode; | |
1436 toa_log_debug[toa_log_index].toa_frames_counter = l1s.toa_var.toa_frames_counter; | |
1437 toa_log_debug[toa_log_index].fn_mod42432 = l1s.actual_time.fn_mod42432; | |
1438 | |
1439 toa_log_index++; | |
1440 if(toa_log_index == TOA_LOG_BUFFER_LENGTH) | |
1441 { | |
1442 toa_log_index = 0; | |
1443 } | |
1444 #endif /* #if (TOA_DEBUG_ENABLE == 1) */ | |
1445 | |
1446 #if (TRACE_TYPE == 5) | |
1447 trace_toa_sim_ctrl(SNR_val, TOA_val, l1_mode, l1s.toa_var.toa_frames_counter, | |
1448 l1s.toa_var.toa_accumul_counter, l1s.toa_var.toa_accumul_value); | |
1449 #endif | |
1450 | |
1451 l1s.toa_var.toa_frames_counter++; | |
1452 | |
1453 { | |
1454 /* Fix for TOA */ | |
1455 #define DSP_CALC_NO_TABS_HO 0x3CA4 | |
1456 | |
1457 UWORD16 *toa_ho_fix; | |
1458 toa_ho_fix=(UWORD16 *)API_address_dsp2mcu(DSP_CALC_NO_TABS_HO); | |
1459 | |
1460 if ((TOA_val >= 22) || (TOA_val <= 6)) { | |
1461 *toa_ho_fix = 1; | |
1462 } | |
1463 | |
1464 if (*toa_ho_fix == 1) { | |
1465 if((TOA_val <= 18) && (TOA_val >= 10)) { | |
1466 *toa_ho_fix = 0; | |
1467 } | |
1468 } else { | |
1469 *toa_ho_fix = 0; | |
1470 } | |
1471 } | |
1472 | |
1473 | |
1474 #if (NEW_TOA_ALGO == 1) | |
1475 if (Trans_active) | |
1476 { | |
1477 #endif | |
1478 if (SNR_val>= L1_TOA_SNR_THRESHOLD) | |
1479 { | |
1480 cumul_counter++; | |
1481 | |
1482 prod_tmp = L1_TOA_LAMBDA * cumul; | |
1483 prod_tmp = prod_tmp + ((0x00004000)); // basically for rounding | |
1484 div_tmp = ((prod_tmp >> 15) & (0x0000FFFF)); | |
1485 cumul = div_tmp; | |
1486 | |
1487 // implemented below is | |
1488 // cumul = cumul + (L1_TOA_ONE_MINUS_LAMBDA * signum(TOA_Val - L1_TOA_EXPECTED_TOA)) | |
1489 if(TOA_val > L1_TOA_EXPECTED_TOA) { | |
1490 cumul = cumul + L1_TOA_ONE_MINUS_LAMBDA; | |
1491 } | |
1492 else if (TOA_val < L1_TOA_EXPECTED_TOA) { | |
1493 cumul = cumul - L1_TOA_ONE_MINUS_LAMBDA; | |
1494 } | |
1495 } // End if SNR_val | |
1496 | |
1497 if(l1s.toa_var.toa_update_flag == TRUE) | |
1498 { | |
1499 toa_update_flag = 1; | |
1500 } | |
1501 | |
1502 if (toa_update_flag) | |
1503 { | |
1504 cumul_sign = (cumul>0)? 1: -1; | |
1505 cumul_abs = cumul_sign*cumul; | |
1506 if(cumul_counter <= 5) | |
1507 { | |
1508 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_15)? 0: cumul_sign; | |
1509 } | |
1510 else if(cumul_counter == 6) | |
1511 { | |
1512 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_20)? 0: cumul_sign; | |
1513 } | |
1514 else if(cumul_counter == 7) | |
1515 { | |
1516 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_25)? 0: cumul_sign; | |
1517 } | |
1518 else if(cumul_counter >= 8) | |
1519 { | |
1520 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_30)? 0: cumul_sign; | |
1521 } | |
1522 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1523 trace_info.toa_trace_var.toa_accumul_value = cumul; | |
1524 trace_info.toa_trace_var.toa_accumul_counter = cumul_counter; | |
1525 trace_info.toa_trace_var.toa_frames_counter = l1s.toa_var.toa_frames_counter; | |
1526 #endif | |
1527 | |
1528 cumul = 0; | |
1529 cumul_counter = 0; | |
1530 l1s.toa_var.toa_frames_counter = 0; | |
1531 l1s.toa_var.toa_update_flag = FALSE; | |
1532 | |
1533 #if (TOA_DEBUG_ENABLE == 1) | |
1534 #if (TOA_MAKE_ZERO == 1) | |
1535 if (toa_make_zero_f == 1) | |
1536 { | |
1537 TOA_SHIFT=0; | |
1538 } | |
1539 #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ | |
1540 #endif /*#if (TOA_MAKE_ZERO == 1)*/ | |
1541 | |
1542 } // end of if toa_update_flag | |
1543 #if (NEW_TOA_ALGO == 1) | |
1544 | |
1545 } | |
1546 | |
1547 else | |
1548 { | |
1549 period_counter_noTrans++; | |
1550 | |
1551 if (SNR_val>= L1_TOA_SNR_THRESHOLD) | |
1552 { | |
1553 cumul_noTrans = cumul_noTrans + TOA_val - L1_TOA_EXPECTED_TOA; | |
1554 | |
1555 } // End if SNR_val | |
1556 | |
1557 if (l1s.toa_var.toa_update_flag == TRUE) | |
1558 { | |
1559 switch (period_counter_noTrans) | |
1560 { | |
1561 case 2: | |
1562 if (cumul_noTrans>=0) | |
1563 TOA_SHIFT = (cumul_noTrans+1) >>1 ; | |
1564 else | |
1565 TOA_SHIFT = (cumul_noTrans) >>1 ; | |
1566 break; | |
1567 case 3: /* Not fully accurate rounding*/ | |
1568 if (cumul_noTrans>=0) | |
1569 TOA_SHIFT = (cumul_noTrans+2)/3 ; | |
1570 else | |
1571 TOA_SHIFT = (cumul_noTrans-2)/3 ; | |
1572 break; | |
1573 case 4: | |
1574 if (cumul_noTrans>=0) | |
1575 TOA_SHIFT = (cumul_noTrans+2) >>2 ; | |
1576 else | |
1577 TOA_SHIFT = (cumul_noTrans+1) >>2 ; | |
1578 break; | |
1579 default: | |
1580 TOA_SHIFT = cumul_noTrans; | |
1581 break; | |
1582 } /* end switch*/ | |
1583 | |
1584 if (TOA_SHIFT>8) | |
1585 TOA_SHIFT =8; | |
1586 if (TOA_SHIFT<-8) | |
1587 TOA_SHIFT =-8; | |
1588 | |
1589 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1590 trace_info.toa_trace_var.toa_accumul_value = cumul_noTrans; | |
1591 trace_info.toa_trace_var.toa_accumul_counter = period_counter_noTrans; | |
1592 trace_info.toa_trace_var.toa_frames_counter = period_counter_noTrans; | |
1593 #endif | |
1594 | |
1595 cumul_noTrans = 0; | |
1596 period_counter_noTrans = 0; | |
1597 l1s.toa_var.toa_update_flag = FALSE; | |
1598 #if (TOA_DEBUG_ENABLE == 1) | |
1599 #if (TOA_MAKE_ZERO == 1) | |
1600 if (toa_make_zero_f == 1) | |
1601 { | |
1602 TOA_SHIFT=0; | |
1603 } | |
1604 #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ | |
1605 #endif /*#if (TOA_MAKE_ZERO == 1)*/ | |
1606 | |
1607 } // end if update_flag | |
1608 } | |
1609 #endif | |
1610 // error a TOA is waiting to be updated in the TPU and will be erased | |
1611 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1612 if (l1s.toa_var.toa_shift != ISH_INVALID) | |
1613 { | |
1614 l1_trace_toa_not_updated (); // should not occur!! | |
1615 } | |
1616 #endif | |
1617 | |
1618 if (TOA_SHIFT != ISH_INVALID) // new TOA => set the mask frames | |
1619 { | |
1620 // Set mask counter to 2 (2 frames masked). | |
1621 l1s.toa_var.toa_snr_mask = 2; | |
1622 } | |
1623 | |
1624 l1s.toa_var.toa_accumul_value = cumul; | |
1625 l1s.toa_var.toa_accumul_counter = cumul_counter; | |
1626 | |
1627 return(TOA_SHIFT); | |
1628 | |
1629 } // l1ctl_toa | |
1630 | |
1631 | |
1632 #else | |
1633 /*-------------------------------------------------------*/ | |
1634 /* l1ctl_toa_update() */ | |
1635 /*-------------------------------------------------------*/ | |
1636 /* Parameters : */ | |
1637 /* Return : */ | |
1638 /* Functionality : */ | |
1639 /*-------------------------------------------------------*/ | |
1640 WORD16 l1ctl_toa_update(UWORD32 *TOASP, UWORD32 l1_mode) | |
1641 { | |
1642 static UWORD16 Old_TOA_estimated=12; //unit is Qbit | |
1643 UWORD32 TOAMAX; | |
1644 WORD16 IZW,ISH,i; | |
1645 UWORD32 TOA_estimated=0; //unit is Qbit | |
1646 UWORD16 Trans_active; | |
1647 | |
1648 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) | |
1649 #if L1_GPRS | |
1650 || l1_mode==PACKET_TRANSFER_MODE | |
1651 #endif | |
1652 ) | |
1653 Trans_active=TRUE; | |
1654 else Trans_active=FALSE; | |
1655 | |
1656 /* TOA offset computation and clock adjustement */ | |
1657 TOAMAX=0; | |
1658 for (i=1;i<TOA_HISTO_LEN;i++) | |
1659 { | |
1660 if (TOASP[i]>TOAMAX) | |
1661 TOAMAX=TOASP[i]; | |
1662 } | |
1663 TOAMAX >>= C_RED; | |
1664 i=1;IZW=0; | |
1665 while (i<TOA_HISTO_LEN && IZW==0) | |
1666 { | |
1667 if (TOASP[i]>=TOAMAX) | |
1668 IZW=i; | |
1669 i++; | |
1670 } | |
1671 | |
1672 /* Estimated TOA calculation */ | |
1673 if (TOASP[IZW-1]<(2*TOAMAX/3)) | |
1674 { | |
1675 TOA_estimated=IZW; | |
1676 TOA_estimated *= 4; // unit in QBit | |
1677 } | |
1678 else | |
1679 { | |
1680 #if 0 /* fix added in LoCosto, not present in TCS211 */ | |
1681 UWORD32 TOA_divisor; | |
1682 #endif | |
1683 TOA_estimated=(TOASP[IZW]*IZW)+(TOASP[IZW-1]*(IZW-1)>>C_GEW); | |
1684 TOA_estimated *= 8; //F13.3 in order to have qBit precision | |
1685 #if 0 | |
1686 TOA_divisor = TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); | |
1687 if (TOA_divisor!=0) | |
1688 #endif | |
1689 { | |
1690 TOA_estimated /= TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); | |
1691 TOA_estimated /= 2; // unit in QBit ("/8" then "*4" = "/2") | |
1692 } | |
1693 #if 0 | |
1694 else | |
1695 { | |
1696 TOA_estimated = 0; | |
1697 } | |
1698 #endif | |
1699 } | |
1700 | |
1701 if (Trans_active) | |
1702 TOA_estimated=(TOA_estimated+(Old_TOA_estimated+4)) / 2; | |
1703 | |
1704 /* Offset calculation*/ | |
1705 if (TOA_estimated>=17 || TOA_estimated<=15) | |
1706 ISH=TOA_estimated - 16; | |
1707 else | |
1708 ISH=0; | |
1709 | |
1710 if (Trans_active) | |
1711 { | |
1712 if (ISH>1) ISH=1; | |
1713 if (ISH<-1) ISH=-1; | |
1714 } | |
1715 else | |
1716 { | |
1717 if (ISH>8) ISH=8; | |
1718 if (ISH<-8) ISH=-8; | |
1719 } | |
1720 | |
1721 Old_TOA_estimated = TOA_estimated - ISH - 4; | |
1722 | |
1723 | |
1724 return (ISH); | |
1725 } | |
1726 | |
1727 /*-------------------------------------------------------*/ | |
1728 /* l1ctl_toa() */ | |
1729 /*-------------------------------------------------------*/ | |
1730 /* Parameters : */ | |
1731 /* Return : */ | |
1732 /* Functionality : generate an histogram of TOA weighted */ | |
1733 /* with SNR */ | |
1734 /*-------------------------------------------------------*/ | |
1735 WORD16 l1ctl_toa(UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val, BOOL *toa_update, UWORD16 *toa_period_count | |
1736 #if (FF_L1_FAST_DECODING == 1) | |
1737 , UWORD8 skipped_values | |
1738 #endif | |
1739 ) | |
1740 { | |
1741 // xSignalHeaderRec *msg; | |
1742 UWORD16 i; | |
1743 WORD16 TOA_period_len = TOA_PERIOD_LEN[l1_mode]; | |
1744 static UWORD32 histo[TOA_HISTO_LEN]; | |
1745 static WORD16 period_counter=0; | |
1746 UWORD32 SNR_ZW; | |
1747 WORD16 ISH=ISH_INVALID; | |
1748 | |
1749 UWORD8 histo_center; | |
1750 | |
1751 #if 0 | |
1752 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)) | |
1753 histo_center=4; | |
1754 else | |
1755 histo_center=5; | |
1756 #else | |
1757 histo_center=4; | |
1758 #endif | |
1759 | |
1760 | |
1761 if (phase==TOA_INIT) | |
1762 { | |
1763 period_counter=0; | |
1764 | |
1765 for (i=0;i<TOA_HISTO_LEN;i++) | |
1766 histo[i]=0; | |
1767 histo[histo_center]=128; //F6.10 | |
1768 | |
1769 return(ISH); | |
1770 } | |
1771 #if (FF_L1_FAST_DECODING == 1) | |
1772 /* Manage any missing bursts due to fast decoding */ | |
1773 period_counter += skipped_values; | |
1774 #endif | |
1775 | |
1776 period_counter++; | |
1777 /* Filter update */ | |
1778 if (SNR_val>=C_SNRGR) | |
1779 { | |
1780 if (SNR_val>C_SNR_THR) | |
1781 SNR_ZW=C_SNR_THR; | |
1782 else | |
1783 SNR_ZW=SNR_val; | |
1784 histo[TOA_val+1]+=SNR_ZW; /* if TOA=0 histo[1]++ */ | |
1785 /* if TOA=1 histo[2]++ */ | |
1786 /* ... */ | |
1787 /* if TOA=9 histo[10]++ */ | |
1788 /* histo[0] is reserved for computation */ | |
1789 } | |
1790 | |
1791 #if L1_GPRS | |
1792 if (l1_mode==PACKET_TRANSFER_MODE) | |
1793 { | |
1794 if (*toa_update) | |
1795 { | |
1796 // Get ISH. | |
1797 ISH = l1ctl_toa_update(histo, l1_mode); | |
1798 | |
1799 //reset TOA period length counter | |
1800 period_counter=0; | |
1801 | |
1802 //reset histogram | |
1803 for (i=0;i<TOA_HISTO_LEN;i++) | |
1804 histo[i]=0; | |
1805 histo[histo_center]=128; //F6.10 | |
1806 | |
1807 *toa_update = FALSE; // reset TOA update flag | |
1808 *toa_period_count = 0; // reset TOA period counter | |
1809 } | |
1810 } | |
1811 else | |
1812 #endif | |
1813 if (period_counter>=TOA_period_len) | |
1814 // It is time to compute a new ISH and to reset the histogram. | |
1815 // Rem: ">=" is very important since a "l1 mode" change can give | |
1816 // a "TOA_period_len" smaller than the previous one an | |
1817 // therefore a "period_counter" may be already higher than | |
1818 // the new "TOA_period_len". | |
1819 { | |
1820 // Get ISH. | |
1821 ISH = l1ctl_toa_update(histo, l1_mode); | |
1822 | |
1823 //reset TOA period length counter | |
1824 period_counter=0; | |
1825 | |
1826 //reset histogram | |
1827 for (i=0;i<TOA_HISTO_LEN;i++) | |
1828 histo[i]=0; | |
1829 histo[histo_center]=128; //F6.10 | |
1830 } | |
1831 | |
1832 // error a TOA is waiting to be updated in the TPU and will be erased | |
1833 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
1834 if (l1s.toa_shift != ISH_INVALID) | |
1835 { | |
1836 l1_trace_toa_not_updated(); // should not occur !! | |
1837 } | |
1838 #endif | |
1839 | |
1840 if (ISH != ISH_INVALID) // new TOA => set the mask frames | |
1841 { | |
1842 // Set mask counter to 2 (2 frames masked). | |
1843 l1s.toa_snr_mask = 2; | |
1844 } | |
1845 | |
1846 return(ISH); | |
1847 } | |
1848 #endif | |
1849 | |
1850 /*-------------------------------------------------------*/ | |
1851 /* l1ctl_txpwr() */ | |
1852 /*-------------------------------------------------------*/ | |
1853 /* Parameters : */ | |
1854 /* Return : */ | |
1855 /* Functionality : */ | |
1856 /*-------------------------------------------------------*/ | |
1857 UWORD8 l1ctl_txpwr(UWORD8 target_txpwr, UWORD8 current_txpwr) | |
1858 { | |
1859 if(target_txpwr > current_txpwr) | |
1860 { | |
1861 current_txpwr ++; // Increase TX power by 2 dB. | |
1862 } | |
1863 else | |
1864 if(target_txpwr < current_txpwr) | |
1865 { | |
1866 current_txpwr --; // Decrease TX power by 2 dB. | |
1867 } | |
1868 | |
1869 return(current_txpwr); | |
1870 } | |
1871 | |
1872 | |
1873 /************************************/ | |
1874 /* Automatic Gain Control */ | |
1875 /************************************/ | |
1876 /*-------------------------------------------------------*/ | |
1877 /* l1ctl_encode_delta1() */ | |
1878 /*-------------------------------------------------------*/ | |
1879 /* Parameters : */ | |
1880 /* Return : */ | |
1881 /* Functionality : */ | |
1882 /*-------------------------------------------------------*/ | |
1883 #if(L1_FF_MULTIBAND == 0) | |
1884 WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) | |
1885 { | |
1886 WORD8 freq_band; | |
1887 | |
1888 switch(l1_config.std.id) | |
1889 { | |
1890 case GSM: | |
1891 case GSM_E: | |
1892 case DCS1800: | |
1893 case PCS1900: | |
1894 case GSM850: | |
1895 freq_band = l1_config.std.cal_freq1_band1; | |
1896 break; | |
1897 case DUAL: | |
1898 case DUALEXT: | |
1899 case DUAL_US: | |
1900 if(radio_freq >= l1_config.std.first_radio_freq_band2) | |
1901 freq_band = l1_config.std.cal_freq1_band2; | |
1902 else | |
1903 freq_band = l1_config.std.cal_freq1_band1; | |
1904 break; | |
1905 } | |
1906 return(freq_band); | |
1907 } | |
1908 #endif | |
1909 /*-------------------------------------------------------*/ | |
1910 /* l1ctl_encode_lna() */ | |
1911 /*-------------------------------------------------------*/ | |
1912 /* Parameters : */ | |
1913 /* Return : */ | |
1914 /* Functionality : */ | |
1915 /*-------------------------------------------------------*/ | |
1916 #if (L1_FF_MULTIBAND == 0) | |
1917 void l1ctl_encode_lna( UWORD8 input_level, | |
1918 UWORD8 *lna_state, | |
1919 UWORD16 radio_freq) | |
1920 { | |
1921 | |
1922 /*** LNA Hysteresis is implemented as following : | |
1923 | |
1924 | | |
1925 On|---<>----+-------+ | |
1926 | | | | |
1927 LNA | | | | |
1928 | ^ v | |
1929 | | | | |
1930 | | | | |
1931 Off| +-------+----<>----- | |
1932 +-------------------------------- | |
1933 50 40 30 20 input_level /-dBm | |
1934 THR_HIGH THR_LOW ***/ | |
1935 | |
1936 | |
1937 | |
1938 | |
1939 | |
1940 if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) ||(l1_config.std.id == DUAL_US)) && | |
1941 (radio_freq >= l1_config.std.first_radio_freq_band2)) | |
1942 { | |
1943 if ( input_level > l1_config.std.lna_switch_thr_high_band2 ) // < -40dBm ? | |
1944 { | |
1945 *lna_state = LNA_ON; // lna_off = FALSE | |
1946 } | |
1947 else if ( input_level < l1_config.std.lna_switch_thr_low_band2 ) // > -30dBm ? | |
1948 { | |
1949 *lna_state = LNA_OFF; // lna off = TRUE | |
1950 } | |
1951 } | |
1952 else | |
1953 { | |
1954 if ( input_level > l1_config.std.lna_switch_thr_high_band1 ) // < -40dBm ? | |
1955 { | |
1956 *lna_state = LNA_ON; // lna_off = FALSE | |
1957 } | |
1958 else if ( input_level < l1_config.std.lna_switch_thr_low_band1 ) // > -30dBm ? | |
1959 { | |
1960 *lna_state = LNA_OFF; // lna off = TRUE | |
1961 } | |
1962 } | |
1963 | |
1964 } | |
1965 | |
1966 #endif | |
1967 | |
1968 /*-------------------------------------------------------*/ | |
1969 /* l1ctl_csgc() */ | |
1970 /*-------------------------------------------------------*/ | |
1971 /* Description: */ | |
1972 /* ============ */ | |
1973 /* If we are running the first pass of a measurement */ | |
1974 /* session, we use the HIGH_AGC default agc setting to */ | |
1975 /* compute the input level from the measured power from */ | |
1976 /* the DSP. If this input level is saturated we set a */ | |
1977 /* saturation flag, otherwise we validate the measure and*/ | |
1978 /* store, for the considered carrier, the input level. */ | |
1979 /* When all the carriers have been scanned and some have */ | |
1980 /* been flagged "saturated", we measure them with the */ | |
1981 /* LOW_AGC agc setting, then store, for the considered */ | |
1982 /* carrier, the input level. */ | |
1983 /*-------------------------------------------------------*/ | |
1984 UWORD8 l1ctl_csgc(UWORD8 pm, UWORD16 radio_freq) | |
1985 { | |
1986 WORD16 current_IL, current_calibrated_IL; | |
1987 WORD8 delta1_freq, delta2_freq; | |
1988 WORD16 delta_drp_gain=0; | |
1989 UWORD32 index; | |
1990 UWORD16 g_magic; | |
1991 #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0) | |
1992 UWORD16 arfcn; | |
1993 #endif | |
1994 UWORD16 dco_algo_ctl_pw_temp = 0; | |
1995 UWORD8 if_ctl = 0; | |
1996 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
1997 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
1998 #endif | |
1999 | |
2000 #if (L1_FF_MULTIBAND == 0) | |
2001 | |
2002 // initialize index | |
2003 index = radio_freq - l1_config.std.radio_freq_index_offset; | |
2004 | |
2005 #else | |
2006 | |
2007 index = | |
2008 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); | |
2009 | |
2010 #endif /*if(L1_FF_MULTIBAND == 0)*/ | |
2011 | |
2012 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2013 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2014 | |
2015 g_magic = l1ctl_get_g_magic(radio_freq); | |
2016 | |
2017 #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0) | |
2018 arfcn = Convert_l1_radio_freq(radio_freq); | |
2019 #endif | |
2020 | |
2021 if (l1a_l1s_com.full_list.meas_1st_pass_read) | |
2022 { | |
2023 // We validate or not power measure (pm) for the considered carrier | |
2024 // with measurement achieved with HIGH_AGC setting. We are working | |
2025 // with non calibrated IL to avoid saturation | |
2026 #if(RF_FAM == 61) | |
2027 #if (CODE_VERSION != SIMULATION) | |
2028 | |
2029 #if (PWMEAS_IF_MODE_FORCE == 0) | |
2030 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , | |
2031 0, | |
2032 radio_freq,if_threshold); | |
2033 #else | |
2034 if_ctl = IF_120KHZ_DSP; | |
2035 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
2036 #endif | |
2037 | |
2038 #if (L1_FF_MULTIBAND == 0) | |
2039 delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format | |
2040 #else | |
2041 delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format | |
2042 #endif // MULTIBAND == 0 else | |
2043 | |
2044 if(if_ctl == IF_100KHZ_DSP){ | |
2045 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2046 } | |
2047 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2048 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2049 } | |
2050 | |
2051 #endif | |
2052 #endif | |
2053 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2054 current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); | |
2055 else | |
2056 { | |
2057 #if TESTMODE | |
2058 if (!l1_config.agc_enable) | |
2059 current_IL = (WORD16)(-(pm - ( (l1_config.tmode.rx_params.agc << 1) - delta_drp_gain ) - g_magic)); | |
2060 else | |
2061 #endif | |
2062 current_IL = (WORD16)(-(pm - ( (l1_config.params.high_agc <<1) - delta_drp_gain) - g_magic)); | |
2063 // for array index purpose, we work with positive IL | |
2064 | |
2065 } | |
2066 | |
2067 // NOTE: lna_value do not appear in this formula because lna is ALWAYS ON for | |
2068 // ---- this algorithm, so lna_value=lna_off*l1_config.params.lna_att_gsm=0 | |
2069 | |
2070 if ((current_IL<l1_config.params.high_agc_sat_thr) // Warning : we are working with positive IL | |
2071 // for IL_2_AGC_xx index purpose. | |
2072 #if TESTMODE | |
2073 && (l1_config.agc_enable) | |
2074 #endif | |
2075 ) | |
2076 { | |
2077 // pm is saturated so measure is not valid | |
2078 l1a_l1s_com.full_list.nbr_sat_carrier_ctrl++; | |
2079 l1a_l1s_com.full_list.nbr_sat_carrier_read++; | |
2080 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 1; | |
2081 } | |
2082 else | |
2083 { | |
2084 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2085 | |
2086 #if TESTMODE | |
2087 // When running with fixed AGC setting saturated carriers may occur: | |
2088 // protect against negative IL; | |
2089 if ((!l1_config.agc_enable) && (current_calibrated_IL < 0)) | |
2090 { | |
2091 current_calibrated_IL=0; | |
2092 current_IL=0; | |
2093 } | |
2094 #endif | |
2095 | |
2096 // Protect IL stores against overflow | |
2097 if (current_calibrated_IL>INDEX_MAX) | |
2098 current_calibrated_IL=INDEX_MAX; | |
2099 if (current_IL>INDEX_MAX) | |
2100 current_IL=INDEX_MAX; | |
2101 | |
2102 // we validate the measure and save input_level and lna_off fields. | |
2103 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2104 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2105 radio_freq); | |
2106 | |
2107 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + | |
2108 l1ctl_get_lna_att(radio_freq) * | |
2109 l1a_l1s_com.last_input_level[index].lna_off; | |
2110 | |
2111 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; | |
2112 } | |
2113 } | |
2114 else // 2nd pass if any. | |
2115 { | |
2116 // we validate the measure and save input_level and lna_off(always 0) | |
2117 // fields. | |
2118 #if(RF_FAM == 61) | |
2119 #if (CODE_VERSION != SIMULATION) | |
2120 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID, | |
2121 0,radio_freq,if_threshold); | |
2122 #if (L1_FF_MULTIBAND == 0) | |
2123 delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format | |
2124 #else | |
2125 delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format | |
2126 #endif | |
2127 if(if_ctl == IF_100KHZ_DSP){ | |
2128 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2129 } | |
2130 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2131 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2132 } | |
2133 #endif | |
2134 #endif | |
2135 | |
2136 | |
2137 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2138 current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); | |
2139 else | |
2140 current_IL = (WORD16)(-(pm - ( (l1_config.params.low_agc << 1) - delta_drp_gain ) - g_magic)); | |
2141 | |
2142 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2143 | |
2144 // Protect IL stores against overflow | |
2145 if (current_calibrated_IL>INDEX_MAX) | |
2146 current_calibrated_IL=INDEX_MAX; | |
2147 if (current_IL>INDEX_MAX) | |
2148 current_IL=INDEX_MAX; | |
2149 | |
2150 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2151 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2152 radio_freq); | |
2153 | |
2154 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + | |
2155 l1ctl_get_lna_att(radio_freq) * | |
2156 l1a_l1s_com.last_input_level[index].lna_off; | |
2157 | |
2158 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; | |
2159 } | |
2160 | |
2161 return((UWORD8)current_calibrated_IL); | |
2162 } | |
2163 | |
2164 /*-------------------------------------------------------*/ | |
2165 /* l1ctl_pgc() */ | |
2166 /*-------------------------------------------------------*/ | |
2167 /* Description : For a given radio_freq, last_known_agc is */ | |
2168 /* ============ based on a prior knowledge (the last */ | |
2169 /* stored input_level for the considered */ | |
2170 /* carrier). From the power measurement on */ | |
2171 /* this carrier (pm), we update the */ | |
2172 /* input_level for this carrier, for the */ | |
2173 /* next task to control. */ | |
2174 /*-------------------------------------------------------*/ | |
2175 UWORD8 l1ctl_pgc(UWORD8 pm, UWORD8 last_known_il, | |
2176 UWORD8 lna_off, UWORD16 radio_freq) | |
2177 { | |
2178 WORD32 last_known_agc; | |
2179 WORD32 current_IL, current_calibrated_IL; | |
2180 WORD8 delta1_freq, delta2_freq; | |
2181 WORD16 delta_drp_gain=0; | |
2182 WORD32 index, lna_value; | |
2183 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2184 UWORD16 arfcn; | |
2185 #endif | |
2186 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2187 UWORD8 if_ctl = 0; | |
2188 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2189 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2190 #endif | |
2191 | |
2192 #if (L1_FF_MULTIBAND == 0) | |
2193 | |
2194 // initialize index | |
2195 index = radio_freq - l1_config.std.radio_freq_index_offset; | |
2196 | |
2197 #else | |
2198 | |
2199 index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); | |
2200 | |
2201 #endif // #if (L1_FF_MULTIBAND == 0) else | |
2202 | |
2203 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2204 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2205 | |
2206 lna_value = lna_off * l1ctl_get_lna_att(radio_freq); | |
2207 | |
2208 last_known_agc = (Cust_get_agc_from_IL(radio_freq, last_known_il >> 1, PWR_ID)) << 1; | |
2209 // F7.1 in order to be compatible with | |
2210 // pm and IL formats [-20,+140 in F7.1] | |
2211 // contain the input_level value we use | |
2212 // in the associated CTL task to build | |
2213 // the agc used in this CTL. | |
2214 | |
2215 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2216 #if (L1_FF_MULTIBAND == 0) | |
2217 arfcn = Convert_l1_radio_freq(radio_freq); | |
2218 #else | |
2219 arfcn = radio_freq; | |
2220 #endif | |
2221 #endif | |
2222 | |
2223 #if(RF_FAM == 61) | |
2224 #if (CODE_VERSION != SIMULATION) | |
2225 | |
2226 #if (PWMEAS_IF_MODE_FORCE == 0) | |
2227 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2228 last_known_il, | |
2229 radio_freq,if_threshold); | |
2230 #else | |
2231 if_ctl = IF_120KHZ_DSP; | |
2232 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
2233 #endif | |
2234 | |
2235 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2236 if(if_ctl == IF_100KHZ_DSP){ | |
2237 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2238 } | |
2239 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2240 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2241 } | |
2242 | |
2243 #endif | |
2244 #endif | |
2245 | |
2246 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2247 current_IL = l1a_l1s_com.last_input_level[index].input_level - lna_value; | |
2248 else | |
2249 current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2250 | |
2251 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2252 | |
2253 // Protect IL stores against overflow | |
2254 if (current_calibrated_IL>INDEX_MAX) | |
2255 current_calibrated_IL=INDEX_MAX; | |
2256 if (current_IL>INDEX_MAX) | |
2257 current_IL=INDEX_MAX; | |
2258 | |
2259 // we validate the measure and save input_level and lna_off fields | |
2260 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2261 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2262 radio_freq); | |
2263 | |
2264 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + | |
2265 l1ctl_get_lna_att(radio_freq) * | |
2266 l1a_l1s_com.last_input_level[index].lna_off; | |
2267 | |
2268 return((UWORD8)current_calibrated_IL); | |
2269 } | |
2270 | |
2271 | |
2272 /*-------------------------------------------------------*/ | |
2273 /* l1ctl_pgc2() */ | |
2274 /*-------------------------------------------------------*/ | |
2275 /* Description : */ | |
2276 /* ============= */ | |
2277 /* from power measurement pm_high_agc, */ | |
2278 /* achieve with an HIGH_AGC setting, and pm_low_agc */ | |
2279 /* achieve with a LOW_AGC seeting, we deduce the new */ | |
2280 /* AGC to apply in the next CTL task. */ | |
2281 /*-------------------------------------------------------*/ | |
2282 void l1ctl_pgc2(UWORD8 pm_high_agc, UWORD8 pm_low_agc, UWORD16 radio_freq) | |
2283 { | |
2284 UWORD8 pm; | |
2285 WORD32 IL_high_agc, IL_low_agc, new_IL, current_calibrated_IL; | |
2286 WORD8 delta1_freq, delta2_freq; | |
2287 WORD16 delta_high_drp_gain=0; | |
2288 WORD16 delta_low_drp_gain=0; | |
2289 WORD32 index; | |
2290 UWORD16 g_magic; | |
2291 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2292 UWORD16 arfcn; | |
2293 #endif | |
2294 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2295 UWORD8 if_ctl = 0; | |
2296 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2297 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2298 #endif | |
2299 | |
2300 #if (L1_FF_MULTIBAND == 0) | |
2301 | |
2302 // initialize index | |
2303 index = radio_freq - l1_config.std.radio_freq_index_offset; | |
2304 | |
2305 #else | |
2306 | |
2307 index = | |
2308 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); | |
2309 | |
2310 #endif // #if (L1_FF_MULTIBAND == 0) else | |
2311 | |
2312 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2313 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2314 | |
2315 g_magic = l1ctl_get_g_magic(radio_freq); | |
2316 | |
2317 // lna_off was set to 0 during CTRL, so lna_value = 0 do not appear in the following | |
2318 // formula. | |
2319 | |
2320 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2321 #if (L1_FF_MULTIBAND == 0) | |
2322 arfcn = Convert_l1_radio_freq(radio_freq); | |
2323 #else | |
2324 arfcn = radio_freq; | |
2325 #endif | |
2326 #endif | |
2327 | |
2328 if ((0==pm_high_agc) || (0==pm_low_agc)) // Check and filter illegal pm value(s) by using last valid IL | |
2329 new_IL = l1a_l1s_com.last_input_level[index].input_level; | |
2330 else | |
2331 { | |
2332 | |
2333 #if(RF_FAM == 61) | |
2334 #if (CODE_VERSION != SIMULATION) | |
2335 | |
2336 #if (PWMEAS_IF_MODE_FORCE == 0) | |
2337 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , | |
2338 0, | |
2339 radio_freq,if_threshold); | |
2340 #else | |
2341 if_ctl = IF_120KHZ_DSP; | |
2342 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
2343 #endif | |
2344 | |
2345 | |
2346 delta_high_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format | |
2347 delta_low_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format | |
2348 if(if_ctl == IF_100KHZ_DSP){ | |
2349 delta_high_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2350 delta_low_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2351 } | |
2352 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2353 delta_high_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2354 delta_low_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2355 } | |
2356 #endif | |
2357 #endif | |
2358 | |
2359 IL_high_agc = -(pm_high_agc - ((l1_config.params.high_agc << 1) - delta_high_drp_gain) - g_magic); | |
2360 IL_low_agc = -(pm_low_agc - ((l1_config.params.low_agc << 1) - delta_low_drp_gain) - g_magic); | |
2361 | |
2362 // HIGH_AGC and LOW_AGC are formatted to F7.1 in order to be compatible with | |
2363 // pm and IL formats | |
2364 | |
2365 if (IL_low_agc>=l1_config.params.low_agc_noise_thr) | |
2366 // pm_low_agc was on the noise floor, so not valid | |
2367 { | |
2368 // whatever the value of pm_high_agc, we consider it | |
2369 // as the right setting | |
2370 new_IL = IL_high_agc; | |
2371 pm = pm_high_agc; | |
2372 } | |
2373 else | |
2374 { | |
2375 // pm_low_agc is valid. | |
2376 if (IL_high_agc<=l1_config.params.high_agc_sat_thr) | |
2377 { | |
2378 // pm_high_agc is not valid, it's saturated. | |
2379 new_IL = IL_low_agc; | |
2380 pm = pm_low_agc; | |
2381 } | |
2382 else | |
2383 { | |
2384 // both pm_low_agc and pm_high_agc are valid, so we test the one that | |
2385 // gives the maximum input level and consider it as the right setting. | |
2386 if (IL_high_agc<=IL_low_agc) | |
2387 { | |
2388 new_IL = IL_high_agc; | |
2389 pm = pm_high_agc; | |
2390 } | |
2391 else | |
2392 { | |
2393 new_IL = IL_low_agc; | |
2394 pm = pm_low_agc; | |
2395 } | |
2396 } | |
2397 } | |
2398 } | |
2399 | |
2400 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
2401 RTTL1_FILL_MON_MEAS(pm_high_agc, IL_high_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) | |
2402 RTTL1_FILL_MON_MEAS(pm_low_agc, IL_low_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) | |
2403 #endif | |
2404 | |
2405 current_calibrated_IL = new_IL - delta1_freq - delta2_freq; | |
2406 | |
2407 // Protect IL stores against overflow | |
2408 if (current_calibrated_IL>INDEX_MAX) | |
2409 current_calibrated_IL=INDEX_MAX; | |
2410 if (new_IL>INDEX_MAX) | |
2411 new_IL=INDEX_MAX; | |
2412 | |
2413 // Updating of input_level and lna_off fields in order to correctly | |
2414 // setting the AGC for the next task. | |
2415 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), | |
2416 &(l1a_l1s_com.last_input_level[index].lna_off), | |
2417 radio_freq); | |
2418 | |
2419 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)new_IL + | |
2420 l1ctl_get_lna_att(radio_freq) * | |
2421 l1a_l1s_com.last_input_level[index].lna_off; | |
2422 } | |
2423 | |
2424 | |
2425 /*-------------------------------------------------------*/ | |
2426 /* l1ctl_find_max() */ | |
2427 /*-------------------------------------------------------*/ | |
2428 /* Parameters : */ | |
2429 /* Return : */ | |
2430 /* Functionality : */ | |
2431 /*-------------------------------------------------------*/ | |
2432 UWORD8 l1ctl_find_max(UWORD8 *buff, UWORD8 buffer_len) | |
2433 { | |
2434 | |
2435 // WARNING: for array index purpose we work with POSITIVE input level | |
2436 // so maximum search for negative numbers is equivalent to | |
2437 // minimum search for positive numbers!!!!!! | |
2438 // (-30 > -120 but 30 < 120) | |
2439 | |
2440 UWORD8 maximum = 240; | |
2441 UWORD8 i; | |
2442 | |
2443 for (i=0; i<buffer_len; i++) | |
2444 { | |
2445 if (buff[i]<maximum) | |
2446 maximum=buff[i]; | |
2447 } | |
2448 | |
2449 return(maximum); | |
2450 } | |
2451 | |
2452 /*-------------------------------------------------------*/ | |
2453 /* l1ctl_pagc() */ | |
2454 /*-------------------------------------------------------*/ | |
2455 /* Description : */ | |
2456 /* =========== */ | |
2457 /* We deduce the last_known_agc from the last stored */ | |
2458 /* input_level for the considered carrier. We use this */ | |
2459 /* agc value to "build" the input level linked to the pm */ | |
2460 /* we have just read. */ | |
2461 /* This input level is used to feed a fifo of 4 elements */ | |
2462 /* and then compute an input_level maximum. This value is*/ | |
2463 /* used to update the input_level for this carrier. This */ | |
2464 /* input_level will be used for the next task to control.*/ | |
2465 /*-------------------------------------------------------*/ | |
2466 UWORD8 l1ctl_pagc(UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) | |
2467 { | |
2468 WORD8 delta1_freq, delta2_freq; | |
2469 WORD16 delta_drp_gain=0; | |
2470 WORD32 last_known_agc; | |
2471 UWORD8 IL_max; | |
2472 WORD32 current_IL, current_calibrated_IL; | |
2473 UWORD8 i; | |
2474 WORD32 lna_value; | |
2475 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2476 UWORD16 arfcn; | |
2477 #endif | |
2478 UWORD8 lna_off; | |
2479 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2480 UWORD8 if_ctl = 0; | |
2481 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2482 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2483 #endif | |
2484 | |
2485 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2486 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2487 | |
2488 // Update fifo | |
2489 for (i=3;i>0;i--) | |
2490 l1a_l1s_com.Scell_info.buff_beacon[i]=l1a_l1s_com.Scell_info.buff_beacon[i-1]; | |
2491 | |
2492 // from the lna state (ON/OFF) we compute the attenuation | |
2493 // that was applied to signal when performing the power | |
2494 // measure. | |
2495 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); | |
2496 | |
2497 // Compute applied agc for this pm | |
2498 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; | |
2499 // F7.1 in order to be compatible | |
2500 // with pm and IL formats | |
2501 // contain the input_level value we use | |
2502 // in the associated CTL task to build | |
2503 // the agc used in this CTL. | |
2504 | |
2505 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2506 #if (L1_FF_MULTIBAND == 0) | |
2507 arfcn = Convert_l1_radio_freq(radio_freq); | |
2508 #else | |
2509 arfcn = radio_freq; | |
2510 #endif | |
2511 #endif | |
2512 | |
2513 #if(RF_FAM == 61) | |
2514 #if (CODE_VERSION != SIMULATION) | |
2515 | |
2516 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2517 l1a_l1s_com.Scell_used_IL_dd.input_level, | |
2518 radio_freq,if_threshold); | |
2519 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; | |
2520 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2521 if(if_ctl == IF_100KHZ_DSP){ | |
2522 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2523 } | |
2524 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2525 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2526 } | |
2527 | |
2528 #endif | |
2529 #endif | |
2530 | |
2531 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2532 current_IL = IL_info_ptr->input_level - lna_value; | |
2533 else | |
2534 current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2535 | |
2536 current_calibrated_IL = current_IL - delta1_freq - delta2_freq; | |
2537 | |
2538 // Protect IL stores against overflow | |
2539 if (current_calibrated_IL>INDEX_MAX) | |
2540 current_calibrated_IL=INDEX_MAX; | |
2541 if (current_IL>INDEX_MAX) | |
2542 current_IL=INDEX_MAX; | |
2543 | |
2544 l1a_l1s_com.Scell_info.buff_beacon[0] = (UWORD8)current_IL; | |
2545 | |
2546 IL_max = l1ctl_find_max(&(l1a_l1s_com.Scell_info.buff_beacon[0]),4); | |
2547 | |
2548 //input levels are always stored with lna_on | |
2549 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), | |
2550 &(IL_info_ptr->lna_off), | |
2551 radio_freq ); | |
2552 | |
2553 IL_info_ptr->input_level = IL_max + l1ctl_get_lna_att(radio_freq) * | |
2554 IL_info_ptr->lna_off; | |
2555 | |
2556 #if L2_L3_SIMUL | |
2557 #if (DEBUG_TRACE==BUFFER_TRACE_PAGC) | |
2558 buffer_trace(4,IL_info_ptr->input_level,last_known_agc, | |
2559 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, IL_max >> 1, MAX_ID)); | |
2560 #endif | |
2561 #endif | |
2562 | |
2563 return((UWORD8)current_calibrated_IL); | |
2564 } | |
2565 | |
2566 /*-------------------------------------------------------*/ | |
2567 /* l1ctl_dpagc() */ | |
2568 /*-------------------------------------------------------*/ | |
2569 /* Description : */ | |
2570 /* =========== */ | |
2571 /* Based on the same principle as the one used for PAGC */ | |
2572 /* algorithm except that we feed 3 different fifo: */ | |
2573 /* 1) one is dedicated to BCCH carrier */ | |
2574 /* 2) another one is dedicated to all the other type of */ | |
2575 /* bursts */ | |
2576 /* 3) the last one is dedicated to non DTX influenced */ | |
2577 /* bursts */ | |
2578 /*-------------------------------------------------------*/ | |
2579 UWORD8 l1ctl_dpagc(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) | |
2580 { | |
2581 UWORD8 av_G_all, av_G_DTX; | |
2582 UWORD8 max_G_all, max_G_DTX; | |
2583 WORD32 last_known_agc, new_IL, current_calibrated_IL; | |
2584 WORD8 delta1_freq, delta2_freq; | |
2585 WORD16 delta_drp_gain=0; | |
2586 UWORD8 i; | |
2587 UWORD8 *tab_ptr; | |
2588 T_DEDIC_SET *aset; | |
2589 WORD32 lna_value; | |
2590 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2591 UWORD16 arfcn; | |
2592 #endif | |
2593 UWORD8 lna_off; | |
2594 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2595 UWORD8 if_ctl = 0; | |
2596 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2597 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2598 #endif | |
2599 | |
2600 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2601 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2602 | |
2603 aset = l1a_l1s_com.dedic_set.aset; | |
2604 | |
2605 if (beacon) | |
2606 tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; | |
2607 else | |
2608 tab_ptr = aset->G_all; | |
2609 | |
2610 // Update fifo | |
2611 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2612 tab_ptr[i]=tab_ptr[i-1]; | |
2613 | |
2614 #if TESTMODE | |
2615 if (!l1_config.agc_enable) | |
2616 { | |
2617 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) | |
2618 // corresponds to the lna_off bit | |
2619 last_known_agc = (l1_config.tmode.rx_params.agc) << 1; | |
2620 lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); | |
2621 } | |
2622 else | |
2623 #endif | |
2624 { | |
2625 #if DPAGC_MAX_FLAG | |
2626 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; | |
2627 // F7.1 in order to be compatible with pm and IL formats | |
2628 #else | |
2629 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1; | |
2630 // F7.1 in order to be compatible with pm and IL formats | |
2631 #endif | |
2632 // input_level_dd : contain the input_level value we use | |
2633 // in the associated CTL task to build the agc used in this CTL. | |
2634 | |
2635 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); | |
2636 } | |
2637 | |
2638 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2639 #if (L1_FF_MULTIBAND == 0) | |
2640 arfcn = Convert_l1_radio_freq(radio_freq); | |
2641 #else | |
2642 arfcn = radio_freq; | |
2643 #endif | |
2644 #endif | |
2645 | |
2646 #if(RF_FAM == 61) | |
2647 #if (CODE_VERSION != SIMULATION) | |
2648 | |
2649 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2650 l1a_l1s_com.Scell_used_IL_dd.input_level, | |
2651 radio_freq,if_threshold); | |
2652 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; | |
2653 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2654 if(if_ctl == IF_100KHZ_DSP){ | |
2655 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2656 } | |
2657 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2658 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2659 } | |
2660 | |
2661 #endif | |
2662 #endif | |
2663 | |
2664 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2665 new_IL = IL_info_ptr->input_level - lna_value; | |
2666 else | |
2667 new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2668 | |
2669 current_calibrated_IL = new_IL - delta1_freq - delta2_freq; | |
2670 | |
2671 // Protect IL stores against overflow | |
2672 if (current_calibrated_IL>INDEX_MAX) | |
2673 current_calibrated_IL=INDEX_MAX; | |
2674 | |
2675 #if TESTMODE | |
2676 if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 | |
2677 { | |
2678 // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) | |
2679 for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) | |
2680 { | |
2681 l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; | |
2682 } | |
2683 l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 | |
2684 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 | |
2685 } | |
2686 #endif | |
2687 | |
2688 if (new_IL>INDEX_MAX) | |
2689 new_IL=INDEX_MAX; | |
2690 | |
2691 tab_ptr[0] = (UWORD8)new_IL; | |
2692 | |
2693 if (dtx_on && !beacon) | |
2694 { | |
2695 // Update DTX fifo | |
2696 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2697 aset->G_DTX[i]=aset->G_DTX[i-1]; | |
2698 | |
2699 aset->G_DTX[0]=tab_ptr[0]; | |
2700 } | |
2701 | |
2702 /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ | |
2703 #if DPAGC_MAX_FLAG | |
2704 max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); | |
2705 | |
2706 if (!beacon) | |
2707 { | |
2708 max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); | |
2709 | |
2710 // WARNING: for array index purpose we work with POSITIVE input level | |
2711 // so maximum search for negative numbers is equivalent to | |
2712 // minimum search for positive numbers!!!!!! | |
2713 // (-30 > -120 but 30 < 120) | |
2714 if (max_G_all <= max_G_DTX) | |
2715 new_IL = max_G_all; | |
2716 else | |
2717 new_IL = max_G_DTX; | |
2718 } | |
2719 else | |
2720 new_IL = max_G_all; | |
2721 #else | |
2722 av_G_all=av_G_DTX=0; | |
2723 | |
2724 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2725 av_G_all += tab_ptr[i]; | |
2726 | |
2727 av_G_all /= DPAGC_FIFO_LEN; | |
2728 | |
2729 if (!beacon) | |
2730 { | |
2731 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2732 av_G_DTX += aset->G_DTX[i]; | |
2733 | |
2734 av_G_DTX /= DPAGC_FIFO_LEN; | |
2735 | |
2736 if (av_G_all >= av_G_DTX) | |
2737 new_IL = av_G_all; | |
2738 else | |
2739 new_IL = av_G_DTX; | |
2740 } | |
2741 else | |
2742 new_IL = av_G_all; | |
2743 #endif | |
2744 | |
2745 // Updating of input_level and lna_off fields in order to correctly | |
2746 // setting the AGC for the next task. | |
2747 // input_level is always store with lna_on | |
2748 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), | |
2749 &(IL_info_ptr->lna_off), | |
2750 radio_freq ); | |
2751 | |
2752 IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * | |
2753 IL_info_ptr->lna_off; | |
2754 | |
2755 #if L2_L3_SIMUL | |
2756 #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) | |
2757 buffer_trace(4,IL_info_ptr->input_level,last_known_agc, | |
2758 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID)); | |
2759 #endif | |
2760 #endif | |
2761 | |
2762 return((UWORD8)current_calibrated_IL); | |
2763 } | |
2764 | |
2765 #if (AMR == 1) | |
2766 /*-------------------------------------------------------*/ | |
2767 /* l1ctl_dpagc_amr() */ | |
2768 /*-------------------------------------------------------*/ | |
2769 /* Description : */ | |
2770 /* =========== */ | |
2771 /* Based on the same principle as the one used for DPAGC */ | |
2772 /* algorithm except that the way to feed the G_dtx is */ | |
2773 /* different */ | |
2774 /*-------------------------------------------------------*/ | |
2775 UWORD8 l1ctl_dpagc_amr(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) | |
2776 { | |
2777 UWORD8 av_G_all, av_G_DTX; | |
2778 UWORD8 max_G_all, max_G_DTX, max_il; | |
2779 WORD32 last_known_agc, new_IL, current_calibrated_IL; | |
2780 WORD8 delta1_freq, delta2_freq; | |
2781 WORD16 delta_drp_gain=0; | |
2782 UWORD8 i; | |
2783 UWORD8 *tab_ptr, *tab_amr_ptr; | |
2784 T_DEDIC_SET *aset; | |
2785 WORD32 lna_value; | |
2786 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2787 UWORD16 arfcn; | |
2788 #endif | |
2789 UWORD8 lna_off; | |
2790 UWORD16 dco_algo_ctl_pw_temp = 0; | |
2791 UWORD8 if_ctl = 0; | |
2792 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2793 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
2794 #endif | |
2795 | |
2796 delta1_freq = l1ctl_encode_delta1(radio_freq); | |
2797 delta2_freq = l1ctl_encode_delta2(radio_freq); | |
2798 | |
2799 aset = l1a_l1s_com.dedic_set.aset; | |
2800 | |
2801 if (beacon) | |
2802 tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; | |
2803 else | |
2804 tab_ptr = aset->G_all; | |
2805 | |
2806 // Update fifo | |
2807 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2808 tab_ptr[i]=tab_ptr[i-1]; | |
2809 | |
2810 tab_amr_ptr = aset->G_amr; | |
2811 for (i=DPAGC_AMR_FIFO_LEN-1;i>0;i--) | |
2812 tab_amr_ptr[i]=tab_amr_ptr[i-1]; | |
2813 | |
2814 #if TESTMODE | |
2815 if (!l1_config.agc_enable) | |
2816 { | |
2817 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) | |
2818 // corresponds to the lna_off bit | |
2819 last_known_agc = (l1_config.tmode.rx_params.agc) << 1; | |
2820 lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); | |
2821 } | |
2822 else | |
2823 #endif | |
2824 { | |
2825 #if DPAGC_MAX_FLAG | |
2826 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; | |
2827 // F7.1 in order to be compatible with pm and IL formats | |
2828 #else | |
2829 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1; | |
2830 // F7.1 in order to be compatible with pm and IL formats | |
2831 #endif | |
2832 // input_level_dd : contain the input_level value we use | |
2833 // in the associated CTL task to build the agc used in this CTL. | |
2834 | |
2835 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); | |
2836 } | |
2837 | |
2838 #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) | |
2839 #if (L1_FF_MULTIBAND == 0) | |
2840 arfcn = Convert_l1_radio_freq(radio_freq); | |
2841 #else | |
2842 arfcn = radio_freq; | |
2843 #endif | |
2844 #endif | |
2845 | |
2846 #if(RF_FAM == 61) | |
2847 #if (CODE_VERSION != SIMULATION) | |
2848 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
2849 l1a_l1s_com.Scell_used_IL_dd.input_level, | |
2850 radio_freq,if_threshold); | |
2851 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; | |
2852 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format | |
2853 if(if_ctl == IF_100KHZ_DSP){ | |
2854 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; | |
2855 } | |
2856 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ | |
2857 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; | |
2858 } | |
2859 #endif | |
2860 #endif | |
2861 | |
2862 if (0==pm) // Check and filter illegal pm value by using last valid IL | |
2863 new_IL = IL_info_ptr->input_level - lna_value; | |
2864 else | |
2865 new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); | |
2866 | |
2867 current_calibrated_IL = new_IL - delta1_freq - delta2_freq; | |
2868 | |
2869 // Protect IL stores against overflow | |
2870 if (current_calibrated_IL>INDEX_MAX) | |
2871 current_calibrated_IL=INDEX_MAX; | |
2872 | |
2873 #if TESTMODE | |
2874 if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 | |
2875 { | |
2876 // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) | |
2877 for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) | |
2878 { | |
2879 l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; | |
2880 } | |
2881 l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 | |
2882 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 | |
2883 } | |
2884 #endif | |
2885 | |
2886 if (new_IL>INDEX_MAX) | |
2887 new_IL=INDEX_MAX; | |
2888 | |
2889 tab_ptr[0] = (UWORD8)new_IL; | |
2890 tab_amr_ptr[0] = (UWORD8)new_IL; | |
2891 | |
2892 if (dtx_on && !beacon) | |
2893 { | |
2894 // a new AMR block is received, feed the G_dtx with the max_il of the block | |
2895 for (i=DPAGC_FIFO_LEN-1;i>0;i--) | |
2896 aset->G_DTX[i]=aset->G_DTX[i-1]; | |
2897 | |
2898 if (l1a_l1s_com.dedic_set.aset->achan_ptr->mode == TCH_AHS_MODE) | |
2899 { | |
2900 // Keep the max_il between the last 2 bursts | |
2901 if (aset->G_amr[0] > aset->G_amr[1]) | |
2902 max_il = aset->G_amr[0]; | |
2903 else | |
2904 max_il = aset->G_amr[1]; | |
2905 } | |
2906 else | |
2907 { | |
2908 // Keep the max_il between the last 4 bursts | |
2909 max_il = l1ctl_find_max(&aset->G_amr[0], DPAGC_AMR_FIFO_LEN); | |
2910 } | |
2911 | |
2912 aset->G_DTX[0]= max_il; | |
2913 } | |
2914 | |
2915 /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ | |
2916 #if DPAGC_MAX_FLAG | |
2917 max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); | |
2918 | |
2919 if (!beacon) | |
2920 { | |
2921 max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); | |
2922 | |
2923 // WARNING: for array index purpose we work with POSITIVE input level | |
2924 // so maximum search for negative numbers is equivalent to | |
2925 // minimum search for positive numbers!!!!!! | |
2926 // (-30 > -120 but 30 < 120) | |
2927 if (max_G_all <= max_G_DTX) | |
2928 new_IL = max_G_all; | |
2929 else | |
2930 new_IL = max_G_DTX; | |
2931 } | |
2932 else | |
2933 new_IL = max_G_all; | |
2934 #else | |
2935 av_G_all=av_G_DTX=0; | |
2936 | |
2937 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2938 av_G_all += tab_ptr[i]; | |
2939 | |
2940 av_G_all /= DPAGC_FIFO_LEN; | |
2941 | |
2942 if (!beacon) | |
2943 { | |
2944 for (i=0;i<DPAGC_FIFO_LEN;i++) | |
2945 av_G_DTX += aset->G_DTX[i]; | |
2946 | |
2947 av_G_DTX /= DPAGC_FIFO_LEN; | |
2948 | |
2949 if (av_G_all >= av_G_DTX) | |
2950 new_IL = av_G_all; | |
2951 else | |
2952 new_IL = av_G_DTX; | |
2953 } | |
2954 else | |
2955 new_IL = av_G_all; | |
2956 #endif | |
2957 | |
2958 // Updating of input_level and lna_off fields in order to correctly | |
2959 // setting the AGC for the next task. | |
2960 // input_level is always store with lna_on | |
2961 | |
2962 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), | |
2963 &(IL_info_ptr->lna_off), | |
2964 radio_freq ); | |
2965 IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * | |
2966 IL_info_ptr->lna_off; | |
2967 | |
2968 #if L2_L3_SIMUL | |
2969 #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) | |
2970 buffer_trace(4,IL_info_ptr->input_level,last_known_agc, | |
2971 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID)); | |
2972 #endif | |
2973 #endif | |
2974 | |
2975 return((UWORD8)current_calibrated_IL); | |
2976 } | |
2977 #endif // AMR == 1 | |
2978 | |
2979 /*-------------------------------------------------------*/ | |
2980 /* l1ctl_get_g_magic() */ | |
2981 /*-------------------------------------------------------*/ | |
2982 /* Parameters : */ | |
2983 /* Return : */ | |
2984 /* Functionality : */ | |
2985 /*-------------------------------------------------------*/ | |
2986 #if (L1_FF_MULTIBAND == 0) | |
2987 UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) | |
2988 { | |
2989 | |
2990 | |
2991 if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) | |
2992 { | |
2993 if (radio_freq >= l1_config.std.first_radio_freq_band2) | |
2994 return(l1_config.std.g_magic_band2); | |
2995 else | |
2996 return(l1_config.std.g_magic_band1); | |
2997 } | |
2998 else | |
2999 return(l1_config.std.g_magic_band1); | |
3000 | |
3001 | |
3002 } | |
3003 #endif | |
3004 | |
3005 /*-------------------------------------------------------*/ | |
3006 /* l1ctl_get_lna_att() */ | |
3007 /*-------------------------------------------------------*/ | |
3008 /* Parameters : */ | |
3009 /* Return : */ | |
3010 /* Functionality : */ | |
3011 /*-------------------------------------------------------*/ | |
3012 #if (L1_FF_MULTIBAND == 0) | |
3013 UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) | |
3014 { | |
3015 | |
3016 | |
3017 if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) | |
3018 { | |
3019 if (radio_freq >= l1_config.std.first_radio_freq_band2) | |
3020 return(l1_config.std.lna_att_band2); | |
3021 else | |
3022 return(l1_config.std.lna_att_band1); | |
3023 } | |
3024 else | |
3025 return(l1_config.std.lna_att_band1); | |
3026 | |
3027 | |
3028 } | |
3029 #endif | |
3030 /*-------------------------------------------------------*/ | |
3031 /* l1ctl_update_TPU_with_toa() */ | |
3032 /*-------------------------------------------------------*/ | |
3033 /* Parameters : */ | |
3034 /* Return : */ | |
3035 /* Functionality : */ | |
3036 /*-------------------------------------------------------*/ | |
3037 void l1ctl_update_TPU_with_toa(void) | |
3038 { | |
3039 #if (TOA_ALGO != 0) | |
3040 WORD16 toa_shift; | |
3041 | |
3042 #if (TOA_ALGO == 2) | |
3043 toa_shift = l1s.toa_var.toa_shift; | |
3044 #else | |
3045 toa_shift = l1s.toa_shift; | |
3046 #endif | |
3047 | |
3048 if (toa_shift != ISH_INVALID) | |
3049 // New ISH (TOA shift) has been stored in "l1s.toa_shift". | |
3050 { | |
3051 // NEW !!! For EOTD measurements in IDLE mode, cut AFC updates... | |
3052 #if (L1_EOTD==1) | |
3053 #if (L1_GPRS) | |
3054 if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || | |
3055 (l1a_l1s_com.mode == DEDIC_MODE)|| | |
3056 (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED)) | |
3057 #else | |
3058 if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || | |
3059 (l1a_l1s_com.mode == DEDIC_MODE)) | |
3060 #endif | |
3061 { | |
3062 // In dedicated or transfer modes we need to track an TOA | |
3063 // updates to post correct th results, else E-OTD implementation | |
3064 // has qb errors... | |
3065 | |
3066 if( (l1a_l1s_com.nsync.eotd_meas_session == TRUE) | |
3067 && (l1a_l1s_com.nsync.eotd_toa_phase == 1) ) | |
3068 { | |
3069 l1a_l1s_com.nsync.eotd_toa_tracking += toa_shift; | |
3070 } | |
3071 #endif | |
3072 // Update tpu offset. | |
3073 l1s.tpu_offset = (l1s.tpu_offset + TPU_CLOCK_RANGE + toa_shift) % TPU_CLOCK_RANGE; | |
3074 | |
3075 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) | |
3076 #if (GSM_IDLE_RAM == 0) | |
3077 l1_trace_new_toa(); | |
3078 #else | |
3079 l1_trace_new_toa_intram(); | |
3080 #endif | |
3081 #endif | |
3082 | |
3083 #if (L1_EOTD==1) | |
3084 } | |
3085 #endif | |
3086 | |
3087 #if (TRACE_TYPE == 5) | |
3088 #if (TOA_ALGO == 2) | |
3089 trace_toa_sim_update (toa_shift,l1s.tpu_offset); | |
3090 #endif | |
3091 #endif | |
3092 | |
3093 // Reset ISH. | |
3094 #if (TOA_ALGO == 2) | |
3095 l1s.toa_var.toa_shift = ISH_INVALID; // Reset the ISH. | |
3096 #else | |
3097 l1s.toa_shift = ISH_INVALID; // Reset the ISH. | |
3098 #endif | |
3099 } | |
3100 #endif | |
3101 } | |
3102 | |
3103 | |
3104 /*-------------------------------------------------------*/ | |
3105 /* l1ctl_saic() */ | |
3106 /*-------------------------------------------------------*/ | |
3107 /* Parameters : */ | |
3108 /* Return : */ | |
3109 /* Functionality : */ | |
3110 /*-------------------------------------------------------*/ | |
3111 | |
3112 #if (L1_SAIC != 0) | |
3113 #define SWH_CHANTAP_INIT 0xFFD068CE | |
3114 #if (NEW_SNR_THRESHOLD == 1) | |
3115 UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode, UWORD8 task, UWORD8 * saic_flag) | |
3116 #else | |
3117 UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode) | |
3118 #endif /* NEW_SNR_THRESHOLD */ | |
3119 { | |
3120 UWORD16 SWH_flag = 0; | |
3121 UWORD8 CSF_Filter_choice = L1_SAIC_HARDWARE_FILTER; | |
3122 #if (NEW_SNR_THRESHOLD == 0) | |
3123 volatile UWORD16 *ptr; | |
3124 UWORD8 saic_flag; | |
3125 #endif /* NEW_SNR_THRESHOLD */ | |
3126 #if (NEW_SNR_THRESHOLD == 0) | |
3127 ptr = (volatile UWORD16 * ) (SWH_CHANTAP_INIT); | |
3128 *ptr = 0; | |
3129 saic_flag=1; | |
3130 #else | |
3131 *saic_flag=0; | |
3132 #endif | |
3133 | |
3134 switch (l1_mode) | |
3135 { | |
3136 case DEDIC_MODE: // GSM DEDICATED MODE | |
3137 { | |
3138 #if (NEW_SNR_THRESHOLD == 1) | |
3139 *saic_flag=1; | |
3140 #endif | |
3141 if(IL_for_rxlev < L1_SAIC_GENIE_GSM_DEDIC_THRESHOLD) | |
3142 { | |
3143 SWH_flag=1; | |
3144 } | |
3145 | |
3146 break; | |
3147 } | |
3148 #if L1_GPRS | |
3149 case PACKET_TRANSFER_MODE: // PACKET TRANSFER MODE | |
3150 { | |
3151 #if (NEW_SNR_THRESHOLD == 0) | |
3152 #if (L1_SAIC == 1) | |
3153 if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) | |
3154 { | |
3155 *ptr = 4; | |
3156 } | |
3157 #endif /*#if (L1_SAIC == 3)*/ | |
3158 #endif | |
3159 | |
3160 #if (L1_SAIC == 3) | |
3161 if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) | |
3162 { | |
3163 SWH_flag = 1; | |
3164 } | |
3165 #endif /*#if (L1_SAIC == 3)*/ | |
3166 break; | |
3167 } | |
3168 #endif /*#if L1_GPRS*/ | |
3169 default: /* GSM OR GPRS IDLE MODES */ | |
3170 { | |
3171 #if ((L1_SAIC == 2)||(L1_SAIC == 3)) | |
3172 if(IL_for_rxlev < L1_SAIC_GENIE_GSM_GPRS_IDLE_THRESHOLD) | |
3173 { | |
3174 SWH_flag=1; | |
3175 } | |
3176 #endif | |
3177 break; | |
3178 } | |
3179 } | |
3180 | |
3181 l1ddsp_load_swh_flag (SWH_flag , | |
3182 #if (NEW_SNR_THRESHOLD == 0) | |
3183 saic_flag | |
3184 #else | |
3185 *saic_flag | |
3186 #endif | |
3187 ); | |
3188 | |
3189 if(SWH_flag == 1) | |
3190 { | |
3191 CSF_Filter_choice = L1_SAIC_PROGRAMMABLE_FILTER; | |
3192 } | |
3193 | |
3194 | |
3195 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
3196 l1_trace_saic(SWH_flag, | |
3197 #if (NEW_SNR_THRESHOLD == 0) | |
3198 saic_flag | |
3199 #else | |
3200 *saic_flag | |
3201 #endif | |
3202 ); | |
3203 #endif | |
3204 #if (TRACE_TYPE == 5) | |
3205 trace_saic_sim(IL_for_rxlev, l1_mode, SWH_flag); | |
3206 #endif | |
3207 | |
3208 return(CSF_Filter_choice); | |
3209 } | |
3210 #endif | |
3211 | |
3212 #if (FF_L1_FAST_DECODING == 1) | |
3213 /*-----------------------------------------------------------------*/ | |
3214 /* l1ctl_pagc_missing_bursts */ | |
3215 /*-----------------------------------------------------------------*/ | |
3216 /* */ | |
3217 /* Description: */ | |
3218 /* ------------ */ | |
3219 /* When fast decoding is active, fewer bursts are decoded. As a */ | |
3220 /* result, fewer gain values are available. The PAGC algo must */ | |
3221 /* be updated with the missed values. */ | |
3222 /* */ | |
3223 /* Input parameters: */ | |
3224 /* ----------------- */ | |
3225 /* UWORD8 skipped_values: the number of skipped bursts due to fast */ | |
3226 /* decoding. */ | |
3227 /* */ | |
3228 /* Input parameters from globals: */ | |
3229 /* ------------------------------ */ | |
3230 /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ | |
3231 /* l1_config.params.il_min: minimum level */ | |
3232 /* */ | |
3233 /* Output parameters: */ | |
3234 /* ------------------ */ | |
3235 /* none */ | |
3236 /* */ | |
3237 /* Modified parameters from globals: */ | |
3238 /* --------------------------------- */ | |
3239 /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ | |
3240 /* */ | |
3241 /*-----------------------------------------------------------------*/ | |
3242 | |
3243 void l1ctl_pagc_missing_bursts (UWORD8 skipped_values) | |
3244 { | |
3245 UWORD8 i = 0; | |
3246 | |
3247 /* skipped_values cannot be greater than 3, otherwise this is an error | |
3248 * and the PAGC algorithm mustn't be updated. */ | |
3249 if (skipped_values > 3) | |
3250 { | |
3251 return; | |
3252 } | |
3253 | |
3254 /* Update fifo by removing skipped_values of samples */ | |
3255 for (i = 3; i > (skipped_values - 1); i--) | |
3256 { | |
3257 l1a_l1s_com.Scell_info.buff_beacon[i] = l1a_l1s_com.Scell_info.buff_beacon[i-skipped_values]; | |
3258 } | |
3259 | |
3260 /* Insert minimum IL level as many times a burst has been skipped */ | |
3261 for (i = 0; i < skipped_values; i++) | |
3262 { | |
3263 l1a_l1s_com.Scell_info.buff_beacon[i] = l1_config.params.il_min; | |
3264 } | |
3265 } | |
3266 #endif /* #if (FF_L1_FAST_DECODING == 1) */ |