comparison src/cs/layer1/cust0/l1_cust.c @ 69:50a15a54801e

src/cs/layer1: import from tcs211-l1-reconst project
author Mychaela Falconia <falcon@freecalypso.org>
date Sat, 01 Oct 2016 23:45:38 +0000
parents
children daddb933047d
comparison
equal deleted inserted replaced
68:838717193e09 69:50a15a54801e
1 /************* Revision Controle System Header *************
2 * GSM Layer 1 software
3 * L1_CUST.C
4 *
5 * Filename l1_cust.c
6 * Version 3.66
7 * Date 03/21/03
8 *
9 ************* Revision Controle System Header *************/
10
11 //#define GLOBAL
12
13
14 #include "string.h"
15
16 #include "l1_confg.h"
17 #include "l1_const.h"
18 #include "ulpd.h"
19 #include "tm_defs.h"
20 #include "l1_types.h"
21 #include "l1_time.h"
22 #include "l1_trace.h"
23 #include "sys_types.h"
24 #include "sim.h"
25 #include "buzzer.h"
26 #include "serialswitch.h"
27
28 #include "abb.h"
29
30 #if TESTMODE
31 #include "l1tm_defty.h"
32 #endif
33
34 #if (AUDIO_TASK == 1)
35 #include "l1audio_const.h"
36 #include "l1audio_cust.h"
37 #include "l1audio_defty.h"
38 #endif
39
40 #if (L1_GTT == 1)
41 #include "l1gtt_const.h"
42 #include "l1gtt_defty.h"
43 #endif
44 #include "l1_defty.h"
45 #include "l1_msgty.h"
46 #include "l1_tabs.h"
47 #include "l1_varex.h"
48
49 #if (VCXO_ALGO == 1)
50 #include "l1_ctl.h"
51 #endif
52
53 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3))
54 #include "spi_drv.h"
55 #endif
56
57 #if (RF==35)
58 #include "tpudrv35.h"
59 #include "l1_rf35.h"
60 #include "l1_rf35.c"
61 #endif
62
63 #if (RF==12)
64 #include "tpudrv12.h"
65 #include "l1_rf12.h"
66 #include "l1_rf12.c"
67 #endif
68
69 #if (RF==10)
70 #include "tpudrv10.h"
71 #include "l1_rf10.h"
72 #include "l1_rf10.c"
73 #endif
74
75 #if (RF==8)
76 #include "tpudrv8.h"
77 #include "l1_rf8.h"
78 #include "l1_rf8.c"
79 #endif
80
81 #if (RF==2)
82 #include "l1_rf2.h"
83 #include "l1_rf2.c"
84 #endif
85
86 // Nucleus functions
87 extern INT TMD_Timer_State;
88 extern UWORD32 TMD_Timer; // for big sleep
89 extern UWORD32 TCD_Priority_Groups;
90 extern VOID *TCD_Current_Thread;
91 extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
92 extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
93 extern TC_PROTECT TCD_System_Protect;
94
95 #if (L2_L3_SIMUL == 0)
96 #define FFS_WORKAROUND 1
97 #else
98 #define FFS_WORKAROUND 0
99 #endif
100 #if (FFS_WORKAROUND == 1)
101 #include "ffs.h"
102 #else
103 typedef signed int int32;
104 typedef signed char effs_t;
105 typedef int32 filesize_t;
106 effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
107 effs_t ffs_fread(const char *name, void *addr, filesize_t size);
108 #endif
109
110 // Import band configuration from Flash module (need to replace by an access function)
111 //extern UWORD8 std;
112 extern T_L1_CONFIG l1_config;
113 extern T_L1S_GLOBAL l1s;
114
115 #if (CODE_VERSION != SIMULATION)
116 // Import serial switch configuration
117 extern char ser_cfg_info[2];
118 #endif
119
120 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
121 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
122 void config_rf_rw_band(char type, UWORD8 read);
123 void config_rf_read(char type);
124 void config_rf_write(char type);
125
126 enum {
127 RF_ID = 0,
128 ADC_ID = 1
129 };
130
131 /*-------------------------------------------------------*/
132 /* Parameters: none */
133 /* Return: none */
134 /* Functionality: Defines the location of rf-struct */
135 /* for each std. */
136 /*-------------------------------------------------------*/
137
138 const static T_BAND_CONFIG band_config[] =
139 { /*ffs name, default addr, max carrier, min tx pwr */
140 {"",(T_RF_BAND *) 0,0,0},//undefined
141 {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM
142 {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
143 {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
144 {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850
145 #if (RF == 10)
146 {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
147 #endif
148 {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry
149 };
150
151 /*-------------------------------------------------------*/
152 /* Parameters: none */
153 /* Return: none */
154 /* Functionality: Defines the indices into band_config */
155 /* for each std. */
156 /*-------------------------------------------------------*/
157 const T_STD_CONFIG std_config[] =
158 {
159 /* band1 index, band2 index, txpwr turning point, first arfcn*/
160 { 0, 0, 0, 0 }, // std = 0 not used
161 { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM
162 { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM
163 { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS
164 { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS
165 { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL
166 { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT
167 { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850
168 #if (RF == 10)
169 { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900
170 #else
171 { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900
172 #endif
173 };
174
175 /*-------------------------------------------------------*/
176 /* Prototypes of external functions used in this file. */
177 /*-------------------------------------------------------*/
178 void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
179 WORD16 Convert_l1_radio_freq (UWORD16 radio_freq);
180
181 /*-------------------------------------------------------*/
182 /* Cust_recover_Os() */
183 /*-------------------------------------------------------*/
184 /* */
185 /* Description: adjust OS from sleep duration */
186 /* ------------ */
187 /* This function fix the : */
188 /* - system clock */
189 /* - Nucleus timers */
190 /* - xxxxxx (customer dependant) */
191 /*-------------------------------------------------------*/
192
193 UWORD8 Cust_recover_Os(void)
194 {
195 #if (CODE_VERSION != SIMULATION)
196 UWORD32 current_system_clock;
197
198 /***************************************************/
199 // Fix System clock and Nucleus Timers if any.... */
200 /***************************************************/
201 // Fix System clock ....
202 current_system_clock = NU_Retrieve_Clock();
203 current_system_clock += l1s.pw_mgr.sleep_duration;
204 NU_Set_Clock(current_system_clock);
205
206 // Fix Nucleus timer (if needed) ....
207 if (TMD_Timer_State == TM_ACTIVE)
208 {
209 TMD_Timer -= l1s.pw_mgr.sleep_duration;
210 if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
211 }
212
213 /***************************************************/
214 // Cust dependant part ... */
215 /***************************************************/
216 //.............
217 //.............
218 //..............
219 return(TRUE);
220
221 #endif
222 }
223
224
225
226 /*-------------------------------------------------------*/
227 /* Cust_check_system() */
228 /*-------------------------------------------------------*/
229 /* */
230 /* Description: */
231 /* ------------ */
232 /* GSM 1.5 : */
233 /* - authorize UWIRE clock to be stopped */
234 /* and write value in l1s.pw_mgr.modules_status. */
235 /* - authorize ARMIO clock to be stopped if the light is */
236 /* off and write value in l1s.pw_mgr.modules_status. */
237 /* - check if SIM clock have been stopped */
238 /* before allowing DEEP SLEEP. */
239 /* - check if UARTs are ready to enter deep sleep */
240 /* - choose the sleep mode */
241 /* */
242 /* Return: */
243 /* ------- */
244 /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */
245 /*-------------------------------------------------------*/
246 UWORD8 Cust_check_system(void)
247 {
248 extern UWORD8 why_big_sleep;
249 #if (CODE_VERSION != SIMULATION)
250 #if (L2_L3_SIMUL == 0)
251 // Forbid deep sleep if the light is on
252 if(LT_Status())
253 {
254 //cut ARMIO and UWIRE clocks in big sleep
255 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
256 why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
257 return(FRAME_STOP); // BIG sleep
258 }
259
260 // Forbid deep sleep if the SIM and UARTs not ready
261 if(SIM_SleepStatus())
262 {
263 #endif
264 if(SER_UartSleepStatus())
265 {
266 return(CLOCK_STOP); // DEEP sleep
267 }
268 else why_big_sleep = BIG_SLEEP_DUE_TO_UART;
269 #if (L2_L3_SIMUL == 0)
270 }
271 else why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
272 #endif
273 // cut ARMIO and UWIRE clocks in big sleep
274 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
275 return(FRAME_STOP); // BIG sleep
276 #else // Simulation part
277 return(CLOCK_STOP); // DEEP sleep
278 #endif
279 }
280
281
282 /*-------------------------------------------------------*/
283 /* Parameters: none */
284 /* Return: none */
285 /* Functionality: Read the RF configuration, tables etc. */
286 /* from FFS files. */
287 /*-------------------------------------------------------*/
288 const static T_CONFIG_FILE config_files_common[] =
289 {
290 #if (CODE_VERSION != SIMULATION)
291
292 // The first char is NOT part of the filename. It is used for
293 // categorizing the ffs file contents:
294 // f=rf-cal, F=rf-config,
295 // t=tx-cal, T=tx-config,
296 // r=rx-cal, R=rx-config,
297 // s=sys-cal, S=sys-config,
298 "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
299 "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support),
300 #if (VCXO_ALGO == 1)
301 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
302 #else
303 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
304 #endif
305
306 "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16),
307 "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
308 "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE),
309
310 "s/sys/adccal", &adc_cal, sizeof(adc_cal),
311
312 "S/sys/abb", &abb, sizeof(abb),
313 "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info),
314
315 #endif
316 NULL, 0, 0 // terminator
317 };
318
319 /*-------------------------------------------------------*/
320 /* Parameters: none */
321 /* Return: none */
322 /* Functionality: Read the RF configurations for */
323 /* each band from FFS files. These files */
324 /* are defined for one band, and and used */
325 /* for all bands. */
326 /*-------------------------------------------------------*/
327 const static T_CONFIG_FILE config_files_band[] =
328 {
329 // The first char is NOT part of the filename. It is used for
330 // categorizing the ffs file contents:
331 // f=rf-cal, F=rf-config,
332 // t=tx-cal, T=tx-config,
333 // r=rx-cal, R=rx-config,
334 // s=sys-cal, S=sys-config,
335
336 // generic for all bands
337 // band[0] is used as template for all bands.
338 "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables),
339 "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels),
340 "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
341 "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp),
342
343 "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands),
344 "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp),
345 "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params),
346 NULL, 0, 0 // terminator
347 };
348
349 void config_ffs_read(char type)
350 {
351 config_rf_read(type);
352 config_rf_rw_band(type, 1);
353 }
354
355 void config_ffs_write(char type)
356 {
357 config_rf_write(type);
358 config_rf_rw_band(type, 0);
359 }
360
361 void config_rf_read(char type)
362 {
363 const T_CONFIG_FILE *file = config_files_common;
364
365 while (file->name != NULL)
366 {
367 if (type == '*' || type == file->name[0]) {
368 ffs_fread(&file->name[1], file->addr, file->size);
369 }
370 file++;
371 }
372 }
373
374 void config_rf_write(char type)
375 {
376 const T_CONFIG_FILE *file = config_files_common;
377
378 while (file->name != NULL)
379 {
380 if (type == '*' || type == file->name[0]) {
381 ffs_fwrite(&file->name[1], file->addr, file->size);
382 }
383 file++;
384 }
385 }
386
387 void config_rf_rw_band(char type, UWORD8 read)
388 {
389 const T_CONFIG_FILE *f1 = config_files_band;
390 UWORD8 i;
391 WORD32 offset;
392 char name[64];
393 char *p;
394 UWORD8 std = l1_config.std.id;
395
396 #if FFS_WORKAROUND == 1
397 struct stat_s stat;
398 UWORD16 time;
399 #endif
400 for (i=0; i< GSM_BANDS; i++)
401 {
402 if(std_config[std].band[i] !=0 )
403 {
404 f1 = &config_files_band[0];
405 while (f1->name != NULL)
406 {
407 offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
408 p = ((char *) &rf_band[i]) + offset;
409 if (type == '*' || type == f1->name[0])
410 {
411 strcpy(name, &f1->name[1]);
412 strcat(name, ".");
413 strcat(name, band_config[std_config[std].band[i]].name);
414
415 if (read == 1)
416 ffs_fread(name, p, f1->size);
417 else //write == 0
418 {
419 ffs_fwrite(name, p, f1->size);
420
421 // wait until ffs write has finished
422 #if FFS_WORKAROUND == 1
423 stat.inode = 0;
424 time = 0;
425
426 do {
427 rvf_delay(10); // in milliseconds
428 time += 10;
429 ffs_stat(name, &stat);
430 } while (stat.inode == 0 && time < 500);
431 #endif
432 }
433 }
434 f1++;
435 }
436 }
437 }
438 }
439
440 /*-------------------------------------------------------*/
441 /* Cust_init_std() */
442 /*-------------------------------------------------------*/
443 /* Parameters : */
444 /* Return : */
445 /* Functionality : Init Standard variable configuration */
446 /*-------------------------------------------------------*/
447 void Cust_init_std(void)
448 {
449 UWORD8 std = l1_config.std.id;
450 UWORD8 band1, band2;
451 T_RF_BAND *pt1, *pt2;
452
453 band1 = std_config[std].band[0];
454 band2 = std_config[std].band[1];
455
456 //get these from std
457 pt1 = band_config[band1].addr;
458 pt2 = band_config[band2].addr;
459
460 // copy rf-struct from default flash to ram
461 memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
462
463 if(std_config[std].band[1] != BAND_NONE )
464 memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
465
466 // Read all RF and system configuration from FFS *before* we copy any of
467 // the rf structure variables to other places, like L1.
468
469 config_ffs_read('*');
470
471 l1_config.std.first_radio_freq = std_config[std].first_arfcn;
472
473 if(band2!=0)
474 l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
475 else
476 l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
477
478 // if band2 is not used it is initialised with zeros
479 l1_config.std.nbmax_carrier = band_config[band1].max_carrier;
480 if(band2!=0)
481 l1_config.std.nbmax_carrier += band_config[band2].max_carrier;
482
483 l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr;
484 l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr;
485 l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp;
486 l1_config.std.cal_freq1_band1 = 0;
487 l1_config.std.cal_freq1_band2 = 0;
488
489 l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
490 l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
491 l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
492 l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
493 l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq;
494
495 l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
496 l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
497 l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
498 l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
499 l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq;
500
501 l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1;
502
503 // init variable indicating which radio bands are supported by the chosen RF
504 l1_config.std.radio_band_support = rf.radio_band_support;
505 }
506
507
508 /*-------------------------------------------------------*/
509 /* Cust_init_params() */
510 /*-------------------------------------------------------*/
511 /* Parameters : */
512 /* Return : */
513 /* Functionality : Init RF dependent paramters (AGC, TX) */
514 /*-------------------------------------------------------*/
515 void Cust_init_params(void)
516 {
517
518 #if (CODE_VERSION==SIMULATION)
519 extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
520 extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
521
522 l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME;
523 l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME;
524 #else
525 l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME;
526 l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME;
527 #endif
528
529
530 // Convert SYNTH_SETUP_TIME into SPLIT.
531 // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
532 l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
533 l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
534
535 l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
536 l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
537
538 l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
539 l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
540
541 l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
542 TA_MAX -
543 l1_config.params.tx_synth_setup_time -
544 EPSILON_OFFS;
545
546 // TX duration = ramp up time + burst duration (data + tail bits)
547 l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
548 l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
549
550 l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
551 l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
552
553 // time for the end of RX and TX TPU scenarios
554 l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
555 l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;
556
557 // FB26 anchoring time is computed backward to leave only 6 qbit margin between
558 // FB26 window and next activity (RX time tracking).
559 // This margin is used as follow:
560 // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
561 // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD)
562 // ---------
563 // Total: 3 qbit
564
565 l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
566 #if (CODE_VERSION == SIMULATION)
567 // simulator: end of scenario not included in window (no serialization)
568 1 -
569 #else
570 // RF dependent end of RX TPU scenario
571 l1_config.params.rx_tpu_scenario_ending -
572 #endif
573 EPSILON_SYNC -
574 TPU_SLEEP_LOAD -
575 SERV_OFFS_REST_LOAD -
576 FB26_ACQUIS_DURATION -
577 PROVISION_TIME +
578 TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
579
580 l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time +
581 PROVISION_TIME -
582 l1_config.params.rx_synth_setup_time -
583 EPSILON_OFFS;
584
585 l1_config.params.guard_bits = rf.tx.guard_bits;
586
587 l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
588 l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet
589
590 l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr;
591 l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr;
592 l1_config.params.low_agc = rf.rx.agc.low_agc;
593 l1_config.params.high_agc = rf.rx.agc.high_agc;
594 l1_config.params.il_min = IL_MIN;
595
596 l1_config.params.fixed_txpwr = FIXED_TXPWR;
597 l1_config.params.eeprom_afc = rf.afc.eeprom_afc;
598 l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF;
599
600 l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv;
601 l1_config.params.psi_st = rf.afc.psi_st;
602 l1_config.params.psi_st_32 = rf.afc.psi_st_32;
603 l1_config.params.psi_st_inv = rf.afc.psi_st_inv;
604
605 #if (CODE_VERSION == SIMULATION)
606 #if (VCXO_ALGO == 1)
607 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
608 #endif
609 #else
610 #if (VCXO_ALGO == 1)
611 l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity
612 l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity
613 l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity
614 l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold
615 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
616 l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value
617 l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm
618 l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
619 #endif
620 #endif
621
622 #if DCO_ALGO
623 #if (RF == 10)
624 // Enable DCO algorithm for direct conversion RFs
625 l1_config.params.dco_enabled = TRUE;
626 #else
627 l1_config.params.dco_enabled = FALSE;
628 #endif
629 #endif
630
631 #if (ANLG_FAM == 1)
632 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
633 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
634 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
635 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
636 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
637 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
638 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
639 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
640 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
641 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
642 l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
643 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
644 #endif
645 #if (ANLG_FAM == 2)
646 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
647 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
648 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
649 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
650 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
651 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
652 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
653 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
654 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
655 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
656 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
657 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
658 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
659 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
660 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
661 #endif
662 #if (ANLG_FAM == 3)
663 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
664 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
665 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
666 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
667 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
668 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
669 l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled
670 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
671 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
672 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
673 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
674 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0
675 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
676 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
677 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
678 l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled
679 l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
680 l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset
681 l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR
682 l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset
683 l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset
684 #endif
685
686 #if 0 /* present in MV100 version, but not in TCS211 */
687 // global variable for access to deep sleep time
688 l1_config.params.sleep_time = 0;
689 #endif
690 }
691
692
693 /************************************/
694 /* Automatic Gain Control */
695 /************************************/
696
697 /*-------------------------------------------------------*/
698 /* Cust_get_agc_from_IL() */
699 /*-------------------------------------------------------*/
700 /* Parameters : */
701 /* Return : */
702 /* Functionality : returns agc value */
703 /*-------------------------------------------------------*/
704 WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id)
705 {
706 WORD8 agc_value;
707
708 // radio_freq currently not used
709 // this parameter is passed in order to allow band dependent tables for specific RFs
710 // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
711
712 if (agc_index > 120)
713 agc_index = 120; // Clip agc_index
714
715 switch (table_id)
716 {
717 case MAX_ID:
718 agc_value = rf.rx.agc.il2agc_max[agc_index];
719 break;
720 case AV_ID:
721 agc_value = rf.rx.agc.il2agc_av[agc_index];
722 break;
723 case PWR_ID:
724 agc_value = rf.rx.agc.il2agc_pwr[agc_index];
725 break;
726 }
727
728 return agc_value;
729 }
730
731 /*-------------------------------------------------------*/
732 /* Cust_get_agc_band */
733 /*-------------------------------------------------------*/
734 /* Parameters : radio_freq */
735 /* Return : band number */
736 /* Functionality : Computes the band for RF calibration */
737 /*-------------------------------------------------------*/
738 /*---------------------------------------------*/
739
740
741 #if (CODE_VERSION == SIMULATION)
742 UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
743 #else
744 UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
745 #endif
746 {
747 WORD32 i ;
748
749 for (i=0;i<RF_RX_CAL_CHAN_SIZE;i++)
750 {
751 if (arfcn <= rf_band[gsm_band].rx.agc_bands[i].upper_bound)
752 return(i);
753 }
754 // Should never happen!
755 return(0);
756 }
757
758 /*-------------------------------------------------------*/
759 /* Cust_is_band_high */
760 /*-------------------------------------------------------*/
761 /* Parameters : arfcn */
762 /* Return : 0 if low band */
763 /* 1 if high band */
764 /* Functionality : Generic function which return 1 if */
765 /* arfcn is in the high band */
766 /*-------------------------------------------------------*/
767
768 UWORD8 Cust_is_band_high(UWORD16 radio_freq)
769 {
770 UWORD16 max_carrier;
771 UWORD8 std = l1_config.std.id;
772
773 max_carrier = band_config[std_config[std].band[0]].max_carrier;
774
775 return(((radio_freq >= l1_config.std.first_radio_freq) &&
776 (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
777 }
778
779 /*-------------------------------------------------------*/
780 /* l1ctl_encode_delta2() */
781 /*-------------------------------------------------------*/
782 /* Parameters : */
783 /* Return : */
784 /* Functionality : */
785 /*-------------------------------------------------------*/
786 WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
787 {
788 WORD8 delta2_freq;
789 UWORD16 i;
790 UWORD16 arfcn;
791 UWORD8 band;
792
793 band = Cust_is_band_high(radio_freq);
794 arfcn = Convert_l1_radio_freq(radio_freq);
795
796 i = Cust_get_agc_band(arfcn,band); //
797 delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
798
799 //temperature compensation
800 for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
801 {
802 if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
803 {
804 delta2_freq += rf_band[band].rx.temp[i].agc_calib;
805 break;
806 }
807 }
808
809 return(delta2_freq);
810 }
811
812 /************************************/
813 /* TX Management */
814 /************************************/
815 /*-------------------------------------------------------*/
816 /* Cust_get_ramp_tab */
817 /*-------------------------------------------------------*/
818 /* Parameters : */
819 /* Return : */
820 /* Functionality : */
821 /*-------------------------------------------------------*/
822
823 void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
824 {
825 UWORD16 index_up, index_down, j;
826 UWORD8 band;
827
828 band = Cust_is_band_high(radio_freq);
829
830 index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
831 index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
832
833 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3))
834 for (j=0; j<16; j++)
835 {
836 a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
837 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) |
838 0x14;
839 }
840 #endif
841 }
842
843 /*-------------------------------------------------------*/
844 /* get_pwr_data */
845 /*-------------------------------------------------------*/
846 /* Parameters : */
847 /* Return : */
848 /* Functionality : */
849 /*-------------------------------------------------------*/
850
851 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3))
852 UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq)
853 {
854
855 UWORD16 i,j;
856 UWORD16 arfcn;
857 UWORD8 band;
858
859 #if(ORDER2_TX_TEMP_CAL==1)
860 WORD16 pwr_data;
861 #else
862 UWORD16 pwr_data;
863 #endif
864
865 band = Cust_is_band_high(radio_freq);
866 arfcn = Convert_l1_radio_freq(radio_freq);
867
868 i = rf_band[band].tx.levels[txpwr].chan_cal_index;
869 j=0;
870 // get uncalibrated apc
871 pwr_data = rf_band[band].tx.levels[txpwr].apc;
872
873 while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
874 j++;
875
876 // channel calibrate apc
877 pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;
878
879 // temperature compensate apc
880 {
881 T_TX_TEMP_CAL *pt;
882
883 pt = rf_band[band].tx.temp;
884 while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1)))
885 pt++;
886 #if(ORDER2_TX_TEMP_CAL==1)
887 pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c
888 if(pwr_data < 0) pwr_data = 0;
889 #else
890 pwr_data += pt->apc_calib;
891 #endif
892 }
893 return(pwr_data);
894 }
895 #endif
896 /*-------------------------------------------------------*/
897 /* Cust_Init_Layer1 */
898 /*-------------------------------------------------------*/
899 /* Parameters : */
900 /* Return : */
901 /* Functionality : Load and boot the DSP */
902 /* Initialize shared memory and L1 data structures */
903 /*-------------------------------------------------------*/
904
905 void Cust_Init_Layer1(void)
906 {
907 T_MMI_L1_CONFIG cfg;
908
909 // Get the current band configuration from the flash
910 #if (OP_WCP==1)
911 extern unsigned char ffs_GetBand();
912 cfg.std = ffs_GetBand();
913 #else // NO OP_WCP
914 // cfg.std = std;
915 cfg.std = STD;
916 #endif // OP_WCP
917
918 cfg.tx_pwr_code = 1;
919
920 // sleep management configuration
921 cfg.pwr_mngt = 0;
922 cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
923 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
924
925
926
927 #if (CODE_VERSION != SIMULATION)
928 cfg.dwnld = DWNLD; //external define from makefile
929 #endif
930
931 l1_initialize(&cfg);
932
933 get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
934 get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
935
936 }
937
938
939 /*****************************************************************************************/
940 /*************************** TESTMODE functions **********************************/
941 /*****************************************************************************************/
942
943
944
945 /*------------------------------------------------------*/
946 /* madc_hex_2_physical */
947 /*------------------------------------------------------*/
948 /* Parameters : */
949 /* Return : */
950 /* Functionality : Function to convert MAD hexadecimal */
951 /* values into physical values */
952 /*------------------------------------------------------*/
953
954 void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
955 {
956 WORD16 i;
957 UWORD16 y;
958 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
959 WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */
960
961 //store raw ADC values
962 memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));
963
964 // Convert Vbat [mV] : direct equation with slope and offset compensation
965 for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
966 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
967
968 /*Convert RF Temperature [Celsius]: binsearch into a table*/
969 y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/
970 while((Smax-Smin) > 1 )
971 {
972 if(y < temperature[index].adc)
973 Smax=index;
974 else
975 Smin=index;
976
977 index = (Smax+Smin)/2;
978 }
979 adc.converted[ADC_RFTEMP] = temperature[index].temp;
980
981 for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
982 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
983
984 //store converted ADC values
985 memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
986 }
987
988
989 /*------------------------------------------------------*/
990 /* get_cal_from_nvmem */
991 /*------------------------------------------------------*/
992 /* Parameters : */
993 /* Return : */
994 /* Functionality : Copy calibrated parameter to */
995 /* calibration structure in RAM */
996 /*------------------------------------------------------*/
997
998 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
999 {
1000
1001 }
1002
1003 /*------------------------------------------------------*/
1004 /* save_cal_from_nvmem */
1005 /*------------------------------------------------------*/
1006 /* Parameters : */
1007 /* Return : */
1008 /* Functionality : Copy calibrated structure from RAM */
1009 /* into NV memory */
1010 /*------------------------------------------------------*/
1011
1012 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
1013 {
1014 #if (OP_WCP == 1)
1015 // FFS backup implementation an Avenger 2
1016 // Request MPU-S to backup the FFS
1017 // after full calibration of device
1018 extern void ffs_backup(void);
1019 ffs_backup();
1020 #endif
1021 return (0);
1022 }
1023
1024 #if (TRACE_TYPE == 4)
1025
1026 /*------------------------------------------------------*/
1027 /* l1_cst_l1_parameters */
1028 /*------------------------------------------------------*/
1029 /* Parameters : s: pointer on configuration string */
1030 /* Return : nothing: global var are set */
1031 /* Functionality : Set global L1 vars for dynamic trace */
1032 /* and configuration */
1033 /* */
1034 /* This function is called when a CST message is sent */
1035 /* from the Condat Panel. */
1036 /*------------------------------------------------------*/
1037 void l1_cst_l1_parameters(char *s)
1038 {
1039 /*
1040 a sample command string can be:
1041 L1_PARAMS=<1,2,3,4,5> or
1042 L1_PARAMS=<1,23,3E32,4,5>
1043 with n parameters (here: 5 params); n>=1
1044 parameters are decoded as hexadecimal unsigned integers (UWORD16)
1045 */
1046
1047 UWORD8 uNParams = 0; /* Number of parameters */
1048 UWORD32 aParam[10]; /* Parameters array */
1049 UWORD8 uIndex = 0;
1050
1051 /* *** retrieve all parameters *** */
1052 while (s[uIndex] != '<') uIndex++;
1053 uIndex++;
1054 aParam[0] = 0;
1055
1056 /* uIndex points on 1st parameter */
1057
1058 while (s[uIndex] != '>')
1059 {
1060 if (s[uIndex] == ',')
1061 {
1062 uNParams++;
1063 aParam[uNParams] = 0;
1064 }
1065 else
1066 {
1067 /* uIndex points on a parameter char */
1068 UWORD8 uChar = s[uIndex];
1069 aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
1070 if ((uChar>='0') && (uChar<='9'))
1071 aParam[uNParams] += (uChar - '0'); /* retrieve value */
1072 else if ((uChar>='A') && (uChar<='F'))
1073 aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */
1074 else if ((uChar>='a') && (uChar<='f'))
1075 aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */
1076 }
1077
1078 uIndex++; /* go to next char */
1079 }
1080
1081 /* increment number of params */
1082 uNParams++;
1083
1084 /* *** handle parameters *** */
1085 /*
1086 1st param: command type
1087 2nd param: argument for command type
1088 */
1089 switch (aParam[0])
1090 {
1091 case 0: /* Trace setting */
1092 /* The 2nd parameter contains the trace bitmap*/
1093 if (uNParams >=2)
1094 trace_info.current_config->l1_dyn_trace = aParam[1];
1095 else
1096 trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
1097 Trace_dyn_trace_change();
1098 break;
1099 default: /* ignore it */
1100 break;
1101 } // switch
1102 }
1103
1104 #endif
1105
1106 #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
1107 (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
1108 (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
1109 (CHIPSET == 11) || (CHIPSET == 12))
1110 /*-------------------------------------------------------*/
1111 /* power_down_config() : temporary implementation !!! */
1112 /*-------------------------------------------------------*/
1113 /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
1114 /* clocks to be cut in BIG sleep */
1115 /* Return : */
1116 /* Functionality : set the l1s variables */
1117 /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */
1118 /* according to the desired mode. */
1119 /*-------------------------------------------------------*/
1120 void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
1121 {
1122 #if (OP_L1_STANDALONE == 1)
1123 if(sleep_mode != NO_SLEEP)
1124 #endif
1125 {
1126 l1_config.pwr_mngt = PWR_MNGT;
1127 l1s.pw_mgr.mode_authorized = sleep_mode;
1128 l1s.pw_mgr.clocks = clocks;
1129 }
1130
1131 #if (OP_L1_STANDALONE == 0)
1132 l1s.pw_mgr.enough_gaug = FALSE;
1133 #endif
1134 }
1135 #endif