FreeCalypso > hg > fc-magnetite
comparison src/cs/drivers/drv_app/ffs/board/fsck.c @ 0:945cf7f506b2
src/cs: chipsetsw import from tcs211-fcmodem
binary blobs and LCD demo files have been excluded,
all line endings are LF only
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 25 Sep 2016 22:50:11 +0000 |
parents | |
children | ba45f6514fb1 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:945cf7f506b2 |
---|---|
1 /****************************************************************************** | |
2 * Flash File System (ffs) | |
3 * Idea, design and coding by Mads Meisner-Jensen, mmj@ti.com | |
4 * | |
5 * FFS file system integrity checking, journalling, init and exit | |
6 * | |
7 * $Id: fsck.c 1.3.1.1.1.33 Thu, 08 Jan 2004 15:05:23 +0100 tsj $ | |
8 * | |
9 ******************************************************************************/ | |
10 | |
11 #ifndef TARGET | |
12 #include "ffs.cfg" | |
13 #endif | |
14 | |
15 #include <string.h> | |
16 #include <assert.h> | |
17 | |
18 #include "ffs/ffs.h" | |
19 #include "ffs/board/core.h" | |
20 #include "ffs/board/drv.h" | |
21 #include "ffs/board/ffstrace.h" | |
22 | |
23 /****************************************************************************** | |
24 * Functions | |
25 ******************************************************************************/ | |
26 | |
27 bref_t blocks_fsck(void); | |
28 iref_t inodes_fsck(void); | |
29 | |
30 /****************************************************************************** | |
31 * Init and Exit | |
32 ******************************************************************************/ | |
33 | |
34 effs_t ffs_initialize(void) | |
35 { | |
36 bref_t b; | |
37 struct inode_s *ip; | |
38 int i; | |
39 | |
40 tlw(led_set(0)); | |
41 tlw(led_on(LED_INIT)); | |
42 ttw(str(TTrInit, "initialize {" NL)); | |
43 tw(tr(TR_BEGIN, TrFsck, "ffs_initialize() {\n")); | |
44 | |
45 // default to non-initialized ffs | |
46 fs.root = 0; | |
47 fs.debug[0] = fs.debug[1] = fs.debug[2] = fs.debug[3] = 0; | |
48 fs.testflags = 0; | |
49 | |
50 tlw(led_on(LED_DRV_INIT)); | |
51 fs.initerror = ffsdrv_init(); // read manufacturer and device ID | |
52 tlw(led_off(LED_DRV_INIT)); | |
53 if (fs.initerror < 0) { | |
54 tlw(led_off(0)); | |
55 tw(tr(TR_END, TrFsck, "} %d\n", fs.initerror)); | |
56 ttw(ttr(TTrInit, "} %d" NL, fs.initerror)); | |
57 return fs.initerror; | |
58 } | |
59 | |
60 for (i = 0; i < 2; i++) | |
61 { | |
62 tlw(led_on(LED_BLOCKS_FSCK)); | |
63 fs.initerror = EFFS_INVALID; | |
64 fs.initerror = b = blocks_fsck(); | |
65 tlw(led_off(LED_BLOCKS_FSCK)); | |
66 if (fs.initerror < 0) { | |
67 tlw(led_off(0)); | |
68 tw(tr(TR_END, TrFsck, "} %d\n", fs.initerror)); | |
69 ttw(ttr(TTrInit, "} %d" NL, fs.initerror)); | |
70 return fs.initerror; | |
71 } | |
72 | |
73 tlw(led_on(LED_INODES_FSCK)); | |
74 fs.initerror = EFFS_INVALID; | |
75 fs.initerror = inodes_fsck(); | |
76 tlw(led_off(LED_INODES_FSCK)); | |
77 if (fs.initerror < 0) { | |
78 tlw(led_off(0)); | |
79 tw(tr(TR_END, TrFsck, "} %d\n", fs.initerror)); | |
80 ttw(ttr(TTrInit, "} %d" NL, fs.initerror)); | |
81 return fs.initerror; | |
82 } | |
83 | |
84 // parse the fs options in the root inode's name | |
85 ip = inode_addr(fs.root); | |
86 fs_params_init(addr2name(offset2addr(location2offset(ip->location)))); | |
87 | |
88 if ((fs.initerror = journal_init(fs.ijournal)) == 0) | |
89 break; | |
90 } | |
91 | |
92 // Init all file_descriptors to zero | |
93 memset(fs.fd, 0, sizeof(struct file_descriptor_s) * fs.fd_max); | |
94 | |
95 // If blocks_fsck() found a block that needs cleaning, we do it, now | |
96 // that all the file system has been initialized. | |
97 if (b > 0) { | |
98 block_clean(b - 1); | |
99 block_free(b - 1); | |
100 } | |
101 | |
102 statistics_init(); | |
103 | |
104 // In target, we do this before entering the task event loop... | |
105 // Otherwise we would in some cases impose a long reboot delay if we did | |
106 // it here. If we test in target it is nessesary to call | |
107 // blocks_reclaim() anyway because we re-init ffs. | |
108 | |
109 #if (TARGET == 1) //NOTEME: can this be done in another/better way? | |
110 #if (WITH_TFFS == 1) | |
111 blocks_reclaim(); | |
112 #endif | |
113 #else | |
114 blocks_reclaim(); | |
115 #endif | |
116 tlw(led_off(LED_INIT)); | |
117 tw(tr(TR_END, TrFsck, "} %d\n", EFFS_OK)); | |
118 ttw(str(TTrInit, "} 0" NL)); | |
119 | |
120 return EFFS_OK; | |
121 } | |
122 | |
123 void fs_params_init(const char *p) | |
124 { | |
125 uint8 opt, digit; | |
126 uint32 n; | |
127 int numdatablocks; | |
128 | |
129 tw(tr(TR_BEGIN, TrFsck, "fsparams_init('%s') {\n", p)); | |
130 | |
131 // Compiled default values | |
132 fs.filename_max = FFS_FILENAME_MAX; | |
133 fs.path_depth_max = FFS_PATH_DEPTH_MAX; | |
134 fs.fd_max = FFS_FD_MAX; | |
135 fs.journal_size = FFS_JOURNAL_SIZE_IN256THS; | |
136 fs.flags = 0; | |
137 fs.testflags = 0; | |
138 | |
139 // Flag that it not has been changed by an input arg. | |
140 fs.block_files_max = 0; | |
141 | |
142 // The default lost bytes percentage of a block before it is reclaimed | |
143 // is approx. 90%. | |
144 fs.lost_threshold = (256 - 256/10); | |
145 | |
146 // If we only have two blocks, we cannot make any reclaims and thus we | |
147 // have a write-once FFS system. | |
148 fs.blocks_free_min = (dev.numblocks > 2 ? 1 : 0); | |
149 | |
150 // Don't count free and inodes blocks | |
151 numdatablocks = dev.numblocks - fs.blocks_free_min - 1; | |
152 | |
153 // Abselute max number of inodes. | |
154 fs.inodes_max = dev.blocksize / sizeof(struct inode_s); | |
155 if (fs.inodes_max > FFS_INODES_MAX) | |
156 fs.inodes_max = FFS_INODES_MAX; | |
157 | |
158 // MUST be true: objects_max <= inodes_max - block_files_max, this is do | |
159 // to the fact that we always need to have block_files_max number of | |
160 // inodes left when we run a data reclaim. | |
161 fs.objects_max = fs.inodes_max / 2; | |
162 | |
163 // Find a suitable chunk_size | |
164 if (dev.numblocks*dev.blocksize > 1024*1024) | |
165 fs.chunk_size_max = 8192; | |
166 else | |
167 fs.chunk_size_max = (2048 > (dev.blocksize / 8) | |
168 ? (dev.blocksize / 8) | |
169 : 2048); | |
170 fs.fd_buf_size = fs.chunk_size_max; | |
171 | |
172 fs.journal_size = fs.journal_size * dev.blocksize / 256; | |
173 if (fs.journal_size < FFS_JOURNAL_SIZE_MIN) | |
174 fs.journal_size = FFS_JOURNAL_SIZE_MIN; | |
175 | |
176 // Set it just below the same amount as entries in one journal file | |
177 fs.block_files_max = (fs.journal_size / sizeof(struct journal_s) | |
178 - FFS_JOURNAL_MARGIN - 2); | |
179 | |
180 // MUST be true: block_files_max < objects_max / 2. But if we want | |
181 // to reach objects_max must block_files_max >= objects_max / number | |
182 // of datablocks, however a big block_files_max require higher | |
183 // reserved_space. | |
184 if (fs.block_files_max > fs.objects_max / 2) | |
185 fs.block_files_max = fs.objects_max / 2 - 4; | |
186 | |
187 // Are we able to reach objects_max? If not then lower the number | |
188 if (fs.objects_max > numdatablocks * fs.block_files_max) | |
189 fs.objects_max = numdatablocks * fs.block_files_max + 10; | |
190 | |
191 // Absolute minimum is RESERVED_LOW the rest is 'workspace' which is | |
192 // needed to have a reasonable performance. | |
193 fs.reserved_space = dev.blocksize / 2 + | |
194 numdatablocks * dev.blocksize / 16 + RESERVED_LOW; | |
195 | |
196 // skip to first char following second slash in name | |
197 n = 0; | |
198 while (*p) { | |
199 if (*p++ == '/') { | |
200 n++; | |
201 if (n == 2) | |
202 break; | |
203 } | |
204 } | |
205 if (n == 2) { | |
206 // while still options to process... | |
207 while (*p) { | |
208 opt = *p++; // save option letter for later | |
209 // collect option value... | |
210 n = 0; | |
211 while ((digit = *p)) { | |
212 if (digit >= '0' && digit <= '9') { | |
213 n = 10 * n + digit - '0'; | |
214 p++; | |
215 } | |
216 else | |
217 break; | |
218 } | |
219 switch (opt) { | |
220 case 'b': dev.numblocks = n; break; | |
221 case 'm': fs.blocks_free_min = n; break; | |
222 case 'i': fs.inodes_max = n; break; | |
223 case 'o': fs.objects_max = n; break; | |
224 case 'n': fs.filename_max = n; break; | |
225 case 'f': fs.block_files_max = n; break; | |
226 case 'd': fs.fd_max = n; break; | |
227 case 's': fs.fd_buf_size = n; break; | |
228 case 't': fs.lost_threshold = n; break; | |
229 case 'z': fs.flags = n; break; | |
230 case 'j': fs.journal_size = n; break; | |
231 case 'c': fs.chunk_size_max = n; break; | |
232 case 'r': fs.reserved_space = n; break; | |
233 // d = &fs.path_depth_max; // really necessary? | |
234 default: | |
235 break; | |
236 } | |
237 } | |
238 } | |
239 | |
240 // Now recompute a few parameters based on adjusted values. | |
241 | |
242 // No journal file thuse no reserved space. | |
243 if (fs.journal_size == 0) { | |
244 fs.block_files_max = fs.objects_max / 2; | |
245 fs.reserved_space = 0; | |
246 fs.block_files_reserved = 0; | |
247 } | |
248 | |
249 else { | |
250 // If journal size is less than minimum must it have been changed by an | |
251 // input arg, recalculate. | |
252 if (fs.journal_size < FFS_JOURNAL_SIZE_MIN) | |
253 fs.journal_size = fs.journal_size * dev.blocksize / 256; | |
254 | |
255 if (fs.reserved_space < RESERVED_LOW) | |
256 fs.reserved_space = fs.reserved_space * dev.blocksize / 256; | |
257 | |
258 // Only one reserved is needed however we want a margin and set it to two | |
259 fs.block_files_reserved = 2; | |
260 } | |
261 | |
262 // Don't count free blocks, inode block, reserved space, block headers | |
263 // and the size of one filename. | |
264 fs.filesize_max = numdatablocks * dev.blocksize - fs.reserved_space - | |
265 numdatablocks * BHEADER_SIZE - FFS_FILENAME_MAX; | |
266 | |
267 // Furthermore don't count the overhead from each chunk (alignment) | |
268 fs.filesize_max -= ((fs.filesize_max / fs.chunk_size_max) * dev.atomsize | |
269 + dev.atomsize); | |
270 | |
271 // NOTEME: chunk_size_min is never used | |
272 fs.chunk_size_min = numdatablocks / fs.objects_max; | |
273 | |
274 tw(tr(TR_FUNC, TrFsck, "dev.numblocks = %d\n", dev.numblocks)); | |
275 tw(tr(TR_FUNC, TrFsck, "fs.blocks_free_min = %d\n", fs.blocks_free_min)); | |
276 tw(tr(TR_FUNC, TrFsck, "fs.inodes_max = %d\n", fs.inodes_max)); | |
277 tw(tr(TR_FUNC, TrFsck, "fs.objects_max = %d\n", fs.objects_max)); | |
278 tw(tr(TR_FUNC, TrFsck, "fs.block_files_max = %d\n", fs.block_files_max)); | |
279 tw(tr(TR_FUNC, TrFsck, "fs.block_files_reserved = %d\n", fs.block_files_reserved)); | |
280 tw(tr(TR_FUNC, TrFsck, "fs.chunk_size_max = %d\n", fs.chunk_size_max)); | |
281 tw(tr(TR_FUNC, TrFsck, "fs.filename_max = %d\n", fs.filename_max)); | |
282 tw(tr(TR_FUNC, TrFsck, "fs.lost_threshold = %d\n", fs.lost_threshold)); | |
283 tw(tr(TR_FUNC, TrFsck, "fs.path_depth_max = %d\n", fs.path_depth_max)); | |
284 tw(tr(TR_FUNC, TrFsck, "fs.journal_size = %d\n", fs.journal_size)); | |
285 tw(tr(TR_FUNC, TrFsck, "fs.reserved_space = %d\n", fs.reserved_space)); | |
286 tw(tr(TR_FUNC, TrFsck, "fs.fd_max = %d\n", fs.fd_max)); | |
287 tw(tr(TR_FUNC, TrFsck, "fs.fd_buf_size = 0x%02x\n", fs.fd_buf_size)); | |
288 tw(tr(TR_FUNC, TrFsck, "fs.flags = 0x%02x\n", fs.flags)); | |
289 tw(tr(TR_END, TrFsck, "}\n")); | |
290 } | |
291 | |
292 // TODO: Finish pending commits/writes. | |
293 effs_t ffs_exit(void) | |
294 { | |
295 tw(tr(TR_FUNC, TrFsck, "exit() 0\n")); | |
296 | |
297 | |
298 return EFFS_OK; | |
299 } | |
300 | |
301 #if 0 // Not used in this version | |
302 // Purely for core internal use; Read a file. | |
303 effs_t file_read_int(const char *path, void *src, int size) | |
304 { | |
305 if (fs.initerror != EFFS_OK) | |
306 return fs.initerror; | |
307 | |
308 return object_read(path, src, size, 0); | |
309 } | |
310 | |
311 // Purely for core internal use; Update a file. | |
312 effs_t file_update(const char *path, void *src, int size) | |
313 { | |
314 char *name; | |
315 iref_t i, dir; | |
316 | |
317 if (fs.initerror != EFFS_OK) | |
318 return fs.initerror; | |
319 | |
320 if ((i = object_lookup(path, &name, &dir)) < 0) | |
321 return i; | |
322 | |
323 journal_begin(i); | |
324 | |
325 if ((i = object_create(name, src, size, -dir)) < 0) | |
326 return i; | |
327 | |
328 journal_end(0); | |
329 | |
330 return EFFS_OK; | |
331 } | |
332 #endif | |
333 | |
334 /****************************************************************************** | |
335 * blocks_fsck() | |
336 ******************************************************************************/ | |
337 | |
338 blocksize_t block_used(bref_t b) | |
339 { | |
340 blocksize_t used; | |
341 uint32 *p, *q; | |
342 | |
343 tlw(led_toggle(LED_BLOCKS_FSCK)); | |
344 | |
345 // We search backwards through block to find the last used byte and | |
346 // thus the total number of used bytes. Note that this code depends | |
347 // on the fact that an erased flash location is 0xFF! | |
348 p = (uint32 *) offset2addr(dev.binfo[b].offset); | |
349 for (q = p + dev.blocksize/4 - 4; q > p; q -= 4) { | |
350 if ( ~(q[0] & q[1] & q[2] & q[3]) ) | |
351 break; | |
352 } | |
353 | |
354 if ( ~(q[0] & q[1] & q[2] & q[3]) ) | |
355 q += 4; | |
356 used = atomalign((char *) q - (char *) p); | |
357 | |
358 tw(tr(TR_FUNC, TrFsckLow, "ffs_block_used(%d) %d\n", b, used)); | |
359 | |
360 return used; | |
361 } | |
362 | |
363 | |
364 age_t age_distance(age_t x, age_t y) | |
365 { | |
366 age_t a = x - y; | |
367 | |
368 if (a > 0x8000) | |
369 a = -a; | |
370 | |
371 tw(tr(TR_FUNC, TrFsckLow, "age_distance(%d, %d) %d\n", x, y, a)); | |
372 | |
373 return a; | |
374 } | |
375 | |
376 // For each ffs block, we initialise the basic bstat array information, | |
377 // namely the number of used bytes. Also, we locate the inodes block and if | |
378 // a previous operation was interrupted by a powerfail, we clean it up. | |
379 // | |
380 // We return EFFS_OK if all is fine. If a positive integer is returned, it | |
381 // denotes a block that needs to be cleaned by block_clean() once FFS | |
382 // has been properly intialized (we actually return the block number + 1 | |
383 // because otherwise it would clash with EFFS_OK return code). If no inodes | |
384 // block is found or another error occurs, we return the error code. | |
385 bref_t blocks_fsck(void) | |
386 { | |
387 bref_t b, b_to_clean, b_inode_lost; | |
388 int age_valid; | |
389 age_t age_min, age_max, age_dist, age_dist_min, age_dist_max; | |
390 struct block_header_s *bhp; | |
391 struct block_header_old_s *obhp; | |
392 | |
393 ttw(str(TTrInitLow, "blocks_fsck {" NL)); | |
394 tw(tr(TR_BEGIN, TrFsck, "blocks_fsck() {\n")); | |
395 | |
396 // initialize ages to the illegal/unset value | |
397 age_min = age_max = age_dist = 0; | |
398 | |
399 fs.format = 0; | |
400 fs.inodes = -1; | |
401 fs.newinodes = -1; | |
402 b_inode_lost = -1; | |
403 b_to_clean = EFFS_OK; | |
404 | |
405 for (b = 0; b < dev.numblocks; b++) | |
406 { | |
407 tlw(led_toggle(LED_DRV_INIT)); | |
408 | |
409 // read block flags from flash | |
410 bhp = (struct block_header_s *) offset2addr(dev.binfo[b].offset); | |
411 obhp = (struct block_header_old_s *) bhp; | |
412 | |
413 bstat[b].used = dev.blocksize; | |
414 bstat[b].lost = bstat[b].used; | |
415 bstat[b].flags = bhp->flags; | |
416 bstat[b].objects = 0; | |
417 | |
418 age_valid = 0; | |
419 | |
420 if (bhp->magic_low != BLOCK_MAGIC_LOW || | |
421 bhp->magic_high != BLOCK_MAGIC_HIGH) { | |
422 // The block magic as bad! It *could* be because the flash | |
423 // memory map is incorrect or because another application has | |
424 // spuriously written to the flash or ... who knows what. First | |
425 // we check to see if the reason is that we are dealing with a | |
426 // (really) old ffs format version. | |
427 if (obhp->magic_low == OLD_BLOCK_MAGIC_LOW && | |
428 obhp->magic_high == OLD_FFS_FORMAT_VERSION) { | |
429 tw(tr(TR_FUNC, TrFsck, "OLD ")); | |
430 fs.format = obhp->magic_high; | |
431 // We simulate that all the blocks are data blocks, in order | |
432 // to have some well-defined state that preformat() can work | |
433 // on. Later we will return EFFS_BADFORMAT and otherwise | |
434 // leave everything as it is, *without* modifying anything! | |
435 bstat[b].flags = BF_IS_DATA; | |
436 } | |
437 else { | |
438 // Quickly test if block is in empty state. We do not make a | |
439 // full check with block_used() because that takes too | |
440 // long --- we let preformat() do that. | |
441 if (bhp->magic_low == FLASH_NULL16 && | |
442 bhp->magic_high == FLASH_NULL16 && | |
443 bhp->age == FLASH_NULL16 && | |
444 bhp->version == FLASH_NULL16 && | |
445 bhp->flags == FLASH_NULL16) | |
446 { | |
447 bstat[b].used = 0; | |
448 bstat[b].lost = 0; | |
449 bstat[b].flags = BF_IS_EMPTY; | |
450 tw(tr(TR_FUNC, TrFsck, "EMPTY ")); | |
451 } | |
452 else { | |
453 // If the block is not free, it is probably corrupted. | |
454 // Thus we reset its age and free it. | |
455 tw(tr(TR_FUNC, TrFsck, "magic = 0x%08x\n", | |
456 bhp->magic_low | (bhp->magic_high << 16))); | |
457 ffsdrv.write_halfword(&bhp->age, 0); | |
458 block_free(b); | |
459 tw(tr(TR_FUNC, TrFsck, "BAD ")); | |
460 } | |
461 } | |
462 } | |
463 else { | |
464 fs.format = bhp->version; | |
465 age_valid = 1; | |
466 | |
467 if (!is_block(b, BF_IS_FREE)) { | |
468 bstat[b].used = block_used(b); | |
469 bstat[b].lost = bstat[b].used - BHEADER_SIZE; | |
470 } | |
471 | |
472 if (is_block(b, BF_IS_FREE)) { | |
473 // The only case where we do not call block_used() is | |
474 // when the block is truly free. | |
475 bstat[b].used = 0; | |
476 bstat[b].lost = 0; | |
477 tw(tr(TR_FUNC, TrFsck, "FREE ")); | |
478 ttw(ttr(TTrInitLow, "FREE" NL)); | |
479 | |
480 } | |
481 else if (is_block(b, BF_IS_DATA)) { | |
482 tw(tr(TR_FUNC, TrFsck, "DATA ")); | |
483 ttw(ttr(TTrInitLow, "DATA" NL)); | |
484 } | |
485 else if (is_block(b, BF_IS_CLEANING)) { | |
486 // Here we schedule a block_clean(). Note that we can | |
487 // and do not execute the block cleaning now, as the info | |
488 // that block_clean() needs is not at all ready at this | |
489 // point in the initialization. So we set a flag and then | |
490 // clean the block at the end of ffs_initialize() | |
491 tw(tr(TR_FUNC, TrFsck, "CLEANING ")); | |
492 ttw(ttr(TTrInitLow, "CLEANING" NL)); | |
493 b_to_clean = b + 1; | |
494 } | |
495 else if (is_block(b, BF_IS_COPYING)) { | |
496 tw(tr(TR_FUNC, TrFsck, "COPYING ")); | |
497 ttw(ttr(TTrInitLow, "COPYING" NL)); | |
498 fs.newinodes = b; | |
499 } | |
500 else if (is_block(b, BF_IS_INODES)) { | |
501 tw(tr(TR_FUNC, TrFsck, "INODES ")); | |
502 ttw(ttr(TTrInitLow, "INODES" NL)); | |
503 fs.inodes = b; | |
504 } | |
505 else if (is_block(b, BF_IS_INODES_LOST)) { | |
506 tw(tr(TR_FUNC, TrFsck, "INODESLOST")); | |
507 ttw(ttr(TTrInitLow, "INODESLOST" NL)); | |
508 b_inode_lost = b; | |
509 } | |
510 else { | |
511 block_free(b); | |
512 tw(tr(TR_FUNC, TrFsck, "INVALID ")); | |
513 ttw(ttr(TTrInitLow, "INVALID" NL)); | |
514 } | |
515 } | |
516 | |
517 tw(tr(TR_NULL, TrFsck, " %2d: (0x%05x) %02x, used = %6d\n", | |
518 b, dev.binfo[b].offset, bstat[b].flags & 0xFF, bstat[b].used)); | |
519 | |
520 if (age_valid) { | |
521 if (age_min == 0) { | |
522 // Initialize minimum and maximum block ages | |
523 age_min = age_max = bhp->age; | |
524 tw(tr(TR_FUNC, TrFsckLow, "age_min/max = %d\n", age_min)); | |
525 } | |
526 else { | |
527 age_dist_min = age_distance(bhp->age, age_min); | |
528 age_dist_max = age_distance(bhp->age, age_max); | |
529 if (age_dist_min > age_dist || | |
530 age_dist_max > age_dist) { | |
531 if (age_dist_max > age_dist_min) { | |
532 age_dist = age_dist_max; | |
533 age_min = bhp->age; | |
534 tw(tr(TR_FUNC, TrFsckLow, "age_min = %d (dist = %d)\n", | |
535 age_min, age_dist)); | |
536 } | |
537 else { | |
538 age_dist = age_dist_min; | |
539 age_max = bhp->age; | |
540 tw(tr(TR_FUNC, TrFsckLow, "age_max = %d (dist = %d)\n", | |
541 age_max, age_dist)); | |
542 } | |
543 } | |
544 } | |
545 } | |
546 } | |
547 tlw(led_off(LED_DRV_INIT)); | |
548 tw(tr(TR_FUNC, TrFsck, "age min, max, max-min = %d, %d, %d\n", | |
549 age_min, age_max, (uint16) (age_max-age_min))); | |
550 // If age_max is untouched is is because all blocks were in the 'Empty' | |
551 // state. In this case we let the age be as it is (0xFFFF). | |
552 if (age_max == 0) | |
553 age_max = age_min = BLOCK_AGE_MAX; | |
554 | |
555 // Handle age wrap around thus ensuring fs.age_max is set correctly. We | |
556 // have to type-cast the whole computation, otherwise it will be | |
557 // incorrect. | |
558 if ((age_t) (age_max - age_min) > 0x8000) { | |
559 age_dist = age_max; | |
560 age_max = age_min; | |
561 age_min = age_dist; | |
562 } | |
563 | |
564 // save maximum age found for the case of a bad block that is going to | |
565 // be reclaimed later on by blocks_reclaim() | |
566 fs.age_max = age_max; | |
567 | |
568 tw(tr(TR_FUNC, TrFsck, "fs.format = 0x%04x\n", fs.format)); | |
569 tw(tr(TR_FUNC, TrFsck, "fs.inodes, newinodes = %d, %d\n", | |
570 fs.inodes, fs.newinodes)); | |
571 ttw(ttr(TTrInit, "fs.inodes, newinodes = %d, %d" NL, | |
572 fs.inodes, fs.newinodes)); | |
573 tw(tr(TR_FUNC, TrFsck, "age min, max = %d, %d\n", age_min, age_max)); | |
574 | |
575 // If any blocks were in the EMPTY state, now is the time to bring them | |
576 // into the FREE state. Note that we must only do this *after* | |
577 // fs.age_max has been initialized. | |
578 for (b = 0; b < dev.numblocks; b++) { | |
579 if (is_block(b, BF_IS_EMPTY)) { | |
580 if ((bstat[b].used = block_used(b)) == 0) | |
581 block_preformat(b, 0); | |
582 else | |
583 block_free(b); | |
584 } | |
585 } | |
586 | |
587 if (fs.inodes >= 0) { | |
588 // The 'old' inode block is still valid thus we keep it. | |
589 if (fs.newinodes >= 0) | |
590 // The copying of inodes to the new block was not finished thus | |
591 // we free the block | |
592 block_free(fs.newinodes); | |
593 inodes_set(fs.inodes); | |
594 } | |
595 else { | |
596 // Copying must have been finished | |
597 if (fs.newinodes >= 0 && b_inode_lost >= 0) { | |
598 // The inode reclaim did finish but currently there is no valid | |
599 // inode block thus the operation must be finished by committing | |
600 // the new block as the valid inode block. | |
601 fs.inodes = b_inode_lost; | |
602 block_commit(); | |
603 | |
604 } | |
605 else { | |
606 // No old or new Inode block! | |
607 tw(tr(TR_END, TrFsck, "} %d\n", EFFS_NOFORMAT)); | |
608 ttw(ttr(TTrInitLow, "} %d" NL, EFFS_NOFORMAT)); | |
609 return EFFS_NOFORMAT; | |
610 } | |
611 } | |
612 | |
613 if ((fs.format >> 8) != (FFS_FORMAT_VERSION >> 8)) { | |
614 tw(tr(TR_END, TrFsck, "} %d\n", EFFS_BADFORMAT)); | |
615 ttw(ttr(TTrInitLow, "} %d" NL, EFFS_BADFORMAT)); | |
616 return EFFS_BADFORMAT; | |
617 } | |
618 | |
619 // FIXME: Insert age sanity check; age distance must not be too big (> 2 | |
620 // * FFS_AGE_DISTANCE)? | |
621 | |
622 tw(tr(TR_END, TrFsck, "} %d\n", b_to_clean)); | |
623 ttw(ttr(TTrInitLow, "} %d" NL, b_to_clean)); | |
624 | |
625 return b_to_clean; | |
626 } | |
627 | |
628 // Set fs.inodes and fs.inodes_addr | |
629 void inodes_set(iref_t i) | |
630 { | |
631 fs.inodes = i; | |
632 fs.inodes_addr = (struct inode_s *) | |
633 (offset2addr(dev.binfo[fs.inodes].offset) | |
634 + dev.atomsize - sizeof(struct inode_s)); | |
635 } | |
636 | |
637 | |
638 /****************************************************************************** | |
639 * inodes_fsck() | |
640 ******************************************************************************/ | |
641 | |
642 // Now for each inode in the inodes block, update the bstat array | |
643 // information: free, used, objects. Also, locate the root inode. We could | |
644 // optimize this a little, because bstat[binodes].used gives an inidication | |
645 // of how many inodes are actually present in the system. | |
646 iref_t inodes_fsck(void) | |
647 { | |
648 iref_t i; | |
649 struct inode_s *ip; | |
650 char *addr; | |
651 bref_t block; | |
652 | |
653 ttw(str(TTrInitLow, "inodes_fsck {" NL)); | |
654 tw(tr(TR_BEGIN, TrFsck, "inodes_fsck() {\n")); | |
655 tw(tr(TR_FUNC, TrFsck, "inodes in block %d:\n", fs.inodes)); | |
656 | |
657 // the fields of the bstat entry for the inodes have the meaning: | |
658 // used = total number of used inodes (valid, erased, invalid) | |
659 // lost = total number of lost inodes (erased, invalid) | |
660 // objects = index of first free inode (used by inode_alloc()) | |
661 | |
662 fs.root = 0; // default to root inode not found | |
663 fs.ijournal = 0; // default to journal file inode not found | |
664 bstat[fs.inodes].objects = 1; | |
665 bstat[fs.inodes].used = 0; | |
666 bstat[fs.inodes].lost = 0; | |
667 fs.sequence = 0; // just for debug (fun) | |
668 | |
669 // we must set some default value for this, so we set it to max possible! | |
670 fs.inodes_max = dev.blocksize / sizeof(struct inode_s); | |
671 | |
672 ip = inode_addr(1); | |
673 tw(tr(TR_FUNC, TrFsck, " i addr cld sib seq upd flag size name\n")); | |
674 for (i = 1; i < fs.inodes_max; i++, ip++) | |
675 { | |
676 // just for debug (fun) | |
677 if (ip->sequence > fs.sequence) | |
678 fs.sequence = ip->sequence; | |
679 | |
680 // compute block index and total data space occupied | |
681 block = offset2block(location2offset(ip->location)); | |
682 | |
683 // Only scan used inodes. blocks_fsck() accounted all used space as | |
684 // also being lost space, so now we subtract from the lost space, | |
685 // the space used by valid objects | |
686 if (ip->location != FLASH_NULL32) | |
687 { | |
688 bstat[fs.inodes].used++; | |
689 | |
690 tw(tr(TR_FUNC, TrFsck, "%3d 0x%05X %3d %3d %4d %3d %s%s%s%s%s%s %6d %s\n", | |
691 i, | |
692 location2offset(ip->location), | |
693 ip->child, ip->sibling, | |
694 ip->sequence, ip->updates, | |
695 is_object(ip, OT_DIR) ? "d" : "", | |
696 is_object(ip, OT_LINK) ? "l" : "", | |
697 is_object(ip, OT_FILE) ? "f" : "", | |
698 is_object(ip, OT_SEGMENT) ? "s" : "", | |
699 is_object(ip, OT_ERASED) ? " " : "", | |
700 IS_BIT_SET(ip->flags, OF_READONLY) && !is_object(ip, OT_ERASED) ? | |
701 "r" : " ", | |
702 ip->size, | |
703 // Erased chunks do not have any name so we can not trace erased objects! | |
704 (ip->size && !is_object(ip, OT_SEGMENT) && !is_object(ip, OT_ERASED) ? | |
705 addr2name(offset2addr(location2offset(ip->location))) : "") | |
706 )); | |
707 | |
708 if (is_object_valid(ip)) { | |
709 // This inode is valid, so we account the data space as used | |
710 // and the inode as used too. | |
711 bstat[block].lost -= ip->size; | |
712 bstat[block].objects++; | |
713 // test if this is the root inode. store index if it is. | |
714 if (!is_object(ip, OT_SEGMENT)) { | |
715 addr = addr2name(offset2addr(location2offset(ip->location))); | |
716 if (*addr == '/') | |
717 fs.root = i; | |
718 else if (*addr == '.' && | |
719 ffs_strcmp(addr, FFS_JOURNAL_NAME) == 0) { | |
720 fs.ijournal = i; | |
721 } | |
722 } | |
723 } | |
724 else if (is_object(ip, OT_ERASED)) { | |
725 // this inode's data is deleted, so we account the data | |
726 // space as used and lost and the inode as lost too. | |
727 bstat[fs.inodes].lost++; | |
728 } | |
729 else { | |
730 // This is an invalid object, so we account the data space | |
731 // as used and lost and the inode as lost too. NOTEME: error | |
732 // what should we do? Perhaps we should record semi-lost | |
733 // inodes? Can we safely account for it here if this is an | |
734 // object to be recovered because another inode.copied is | |
735 // referring to this? Will used/lost etc. be updated | |
736 // correctly then? | |
737 bstat[fs.inodes].lost++; | |
738 tw(tr(TR_NULL, TrFsck, "(invalid = %d)\n", ip->flags & OT_MASK)); | |
739 } | |
740 } | |
741 } | |
742 ttw(ttr(TTrInit, "fs.root=%d, journal=%d" NL, fs.root, fs.ijournal)); | |
743 tw(tr(TR_END, TrFsck, "} used: %d, lost: %d, root: %d, journal: %d\n", | |
744 bstat[fs.inodes].used, bstat[fs.inodes].lost, fs.root, fs.ijournal)); | |
745 | |
746 fs.sequence++; | |
747 | |
748 tw(tr_bstat()); | |
749 | |
750 if (fs.root == 0) { | |
751 ttw(ttr(TTrInitLow, "} %d" NL, EFFS_NOFORMAT)); | |
752 return EFFS_NOFORMAT; | |
753 } | |
754 | |
755 ttw(str(TTrInitLow, "} 0" NL)); | |
756 | |
757 return EFFS_OK; | |
758 } | |
759 | |
760 | |
761 /****************************************************************************** | |
762 * Preformat and format | |
763 ******************************************************************************/ | |
764 | |
765 // Prepare all blocks for fs_format(). Because ffs_is_formattable() has | |
766 // already been called prior to this function, we know that no sector erase | |
767 // is in progress! The blocks are prepared by putting them into the 'Free' | |
768 // state. | |
769 effs_t fs_preformat(void) | |
770 { | |
771 bref_t b; | |
772 | |
773 ttw(str(TTrFormat, "preformat {" NL)); | |
774 tw(tr(TR_BEGIN, TrFormat, "fs_preformat() {\n")); | |
775 | |
776 // Mark ffs as being non-formatted from now on. | |
777 fs.root = 0; | |
778 | |
779 // We must initialize bstat[fs.inodes].used and inodes_high, such that | |
780 // inodes_reclaim() isn't triggered in reclaim() on the following | |
781 // fs_format(). | |
782 inodes_set(0); | |
783 bstat[fs.inodes].used = 0; | |
784 bstat[fs.inodes].lost = 0; | |
785 bstat[fs.inodes].objects = 0; | |
786 | |
787 // While format is in progress, we make FFS inaccessible to other | |
788 // functions... | |
789 fs.initerror = EFFS_NOFORMAT; | |
790 | |
791 if (dev.manufact == 0) { | |
792 b = EFFS_NODEVICE; | |
793 } | |
794 else { | |
795 for (b = 0; b < dev.numblocks; b++) { | |
796 if (is_block(b, BF_IS_EMPTY)) { | |
797 if ((bstat[b].used = block_used(b)) == 0) | |
798 block_preformat(b, 0); | |
799 else | |
800 block_free(b); | |
801 } | |
802 else if (!is_block(b, BF_IS_FREE)) { | |
803 block_free(b); | |
804 } | |
805 } | |
806 b = EFFS_OK; | |
807 } | |
808 | |
809 tw(tr(TR_END, TrFormat, "} %d\n", b)); | |
810 ttw(ttr(TTrFormat, "} %d" NL, b)); | |
811 | |
812 return b; | |
813 } | |
814 | |
815 // Preformat a single block thus taking it from the 'Empty' state into | |
816 // 'Free' state. | |
817 void block_preformat(bref_t b, age_t age) | |
818 { | |
819 int set_age_max; | |
820 struct block_header_s *bhp = | |
821 (struct block_header_s *) offset2addr(dev.binfo[b].offset); | |
822 | |
823 tw(tr(TR_BEGIN, TrFormat, "fs_block_preformat(%d, %d)\n", b, age)); | |
824 | |
825 if (age == 0) { | |
826 age = fs.age_max; | |
827 } | |
828 else { | |
829 // We schedule an update of fs.age_max. Due to proper handling of | |
830 // age wrap-around, we can not actually set it now. | |
831 set_age_max = (age == fs.age_max); | |
832 age++; | |
833 if (age == 0) | |
834 age++; | |
835 if (set_age_max) { | |
836 fs.age_max = age; | |
837 tw(tr(TR_FUNC, TrFormat, "new fs.age_max = %d\n", fs.age_max)); | |
838 } | |
839 } | |
840 | |
841 ffsdrv.write_halfword(&bhp->age, age); | |
842 ffsdrv.write_halfword(&bhp->version, FFS_FORMAT_VERSION); | |
843 ffsdrv.write_halfword(&bhp->magic_low, BLOCK_MAGIC_LOW); | |
844 ffsdrv.write_halfword(&bhp->magic_high, BLOCK_MAGIC_HIGH); | |
845 | |
846 bstat[b].flags = BF_IS_EMPTY; | |
847 bstat[b].used = 0; | |
848 bstat[b].lost = 0; | |
849 bstat[b].objects = 0; | |
850 | |
851 block_flags_write(b, BF_FREE); | |
852 | |
853 tw(tr(TR_END, TrFormat, "")); | |
854 } | |
855 | |
856 // After preformat() has erased two blocks, this function can be called to | |
857 // initialize ffs by writing fs data and metadata. Note that ffs_begin() is | |
858 // *not* called before this function in ffs.c. Otherwise we would never | |
859 // enter this function because fs.root is zero. NOTEME: this is also a bug | |
860 // as this means we risk that this operation is started while an erase (or a | |
861 // write) is in progress! How the flash device reacts to this is currently | |
862 // unknown. | |
863 effs_t fs_format(const char *name) | |
864 { | |
865 bref_t i, b; | |
866 | |
867 ttw(str(TTrFormat, "format {" NL)); | |
868 tw(tr(TR_BEGIN, TrFormat, "fs_format('%s') {\n", name)); | |
869 | |
870 // Initialize file system parameters. It should be safe to change these | |
871 // now, as the format cannot fail at this point onwards. | |
872 fs_params_init(name); | |
873 | |
874 // Make the first block be the inodes block | |
875 if ((fs.inodes = block_alloc(1, BF_COPYING)) < 0) | |
876 return EFFS_AGAIN; | |
877 block_flags_write(fs.inodes, BF_INODES); | |
878 inodes_set(fs.inodes); | |
879 | |
880 // Make all block as data blocks except from the free_min and inode block | |
881 for (i = 0; i < dev.numblocks - fs.blocks_free_min - 1; i++) | |
882 if ((b = block_alloc(0, BF_DATA)) < 0) | |
883 return EFFS_AGAIN; | |
884 | |
885 // Restart object sequencing (debug feature only) | |
886 fs.sequence = 0; | |
887 | |
888 // Create root directory | |
889 journal_begin(0); | |
890 if ((fs.root = object_create(name, 0, 0, 0)) < 0) { | |
891 tw(tr(TR_END, TrFormat, "} %d\n", fs.root)); | |
892 return fs.root; | |
893 } | |
894 journal_commit(OT_DIR); | |
895 | |
896 if ((fs.ijournal = journal_create(0)) < 0) { | |
897 tw(tr(TR_END, TrFormat, "} %d\n", fs.ijournal)); | |
898 return fs.ijournal; | |
899 } | |
900 | |
901 fs.initerror = ffs_initialize(); | |
902 | |
903 ttw(ttr(TTrFormat, "} %d" NL, fs.initerror)); | |
904 tw(tr(TR_END, TrFormat, "} %d\n", fs.initerror)); | |
905 | |
906 return fs.initerror; | |
907 } | |
908 | |
909 // Check if we are ready to preformat (flag = 0) or format (flag = 1) | |
910 // | |
911 // For a format, we must first ensure no blocks are valid e.g. a preformat | |
912 // has already been run. Next, we must ensure we have preformatted all | |
913 // blocks e.g. all blocks are in the 'Free' state. This is actually the same | |
914 // thing but it sure helps the user because it yields a more precise error | |
915 // code when the format fails. In future we might be able to start a format | |
916 // when only two blocks have been preformatted, but this is harder because | |
917 // we have to make sure not to read from the physical sector that we are | |
918 // erasing, and this is exactly what ffs_ffs_initialize() currently does | |
919 // (when it is called at the end of format()). | |
920 // | |
921 // For a preformat, we must ensure an erase is not in progress (because we | |
922 // don't know how the device will react to a new erase when an erase is | |
923 // currently suspended). | |
924 effs_t is_formattable(int8 flag) | |
925 { | |
926 bref_t i, free, valid; | |
927 effs_t error = EFFS_OK; | |
928 | |
929 tw(tr(TR_FUNC, TrFormat, "is_formattable() ")); | |
930 | |
931 // Count the number of valid and free blocks. These numbers will later | |
932 // be checked to see if we are really ready for a (pre)format(). Note | |
933 // that we *only* read block flags from the bstat[] array. We must not | |
934 // read directly from the flash sectors because an erase might be in | |
935 // progress! | |
936 for (i = 0, free = 0, valid = 0; i < dev.numblocks; i++) { | |
937 if (is_block(i, BF_IS_DATA) || is_block(i, BF_IS_INODES)) | |
938 valid++; | |
939 if (is_block(i, BF_IS_FREE)) | |
940 free++; | |
941 } | |
942 if (flag == 0) { | |
943 // In the case of a preformat, ensure an erase is not in | |
944 // progress (because we don't know how the device will react to a new | |
945 // erase when an erase is currently suspended). | |
946 if (dev.state == DEV_ERASE || dev.state == DEV_ERASE_SUSPEND) { | |
947 tw(tr(TR_NULL, TrFormat, "(%d)\n", EFFS_AGAIN)); | |
948 return EFFS_AGAIN; | |
949 } | |
950 } | |
951 else { | |
952 if (valid > 0) | |
953 // Ensure we have preformatted prior to a format. | |
954 error = EFFS_NOPREFORMAT; | |
955 else if (free < dev.numblocks) | |
956 // Ensure all blocks are free before a format(). If not, a | |
957 // preformat() is currently in progress. | |
958 error = EFFS_AGAIN; | |
959 } | |
960 | |
961 tw(tr(TR_NULL, TrFormat, "(%d)\n", error)); | |
962 return error; | |
963 } | |
964 | |
965 | |
966 /****************************************************************************** | |
967 * Journalling | |
968 ******************************************************************************/ | |
969 | |
970 // The following matrix illustrates how the members of an inode change for | |
971 // the various (journalled) operations: | |
972 // | |
973 // | flags | size | loc | child | siblg | dir | oldi | updates | |
974 // ---------+-------+------+-----+-------+-------+-----+------+-------- | |
975 // create | new | new | new | - | - | ins | n/a | 0 | |
976 // fupdate | o | new | new | o | - | ins | del | old+1 | |
977 // relocate | o | o | new | o | - | ins | del | old+1 | |
978 // fctrl | new | o | o | o | - | ins | del | old+1 | |
979 // remove | n/a | n/a | n/a | n/a | n/a | n/a | del | n/a | |
980 // | |
981 // - = leave empty (0xFFFF) | |
982 // ins = insert/append into directory | |
983 // o = old value | |
984 // | |
985 // We don't have to store child member in the journal entry because either | |
986 // it is EMPTY (fs.journal.oldi = 0) or it is retrieved from oldip->child. | |
987 | |
988 // NOTEME: With journalling implemented, object_relocate might be able just | |
989 // to make a simple data copy! | |
990 | |
991 // block_clean() is safe (without journalling), now that only ip->size is | |
992 // set to zero. | |
993 | |
994 // Begin a new journal. Either a fresh object create (oldi == 0) or an | |
995 // update of an existing object (oldi == iref of old object) | |
996 void journal_begin(iref_t oldi) | |
997 { | |
998 tw(tr(TR_FUNC, TrJournal, "journal_begin(%d)\n", oldi)); | |
999 | |
1000 fs.journal.i = 0; | |
1001 fs.journal.state = JOURNAL_IS_EMPTY; | |
1002 fs.journal.repli = 0; | |
1003 fs.link_child = 1; //Default link child in journal_commit() | |
1004 | |
1005 if (oldi == 0) { | |
1006 fs.journal.flags = 0xFF; | |
1007 fs.journal.diri = 0; | |
1008 fs.journal.oldi = 0; | |
1009 fs.journal.location = 0; | |
1010 fs.journal.size = 0; | |
1011 } | |
1012 else { | |
1013 struct inode_s *oldip = inode_addr(oldi); | |
1014 fs.journal.flags = oldip->flags; | |
1015 fs.journal.diri = oldi; | |
1016 fs.journal.oldi = oldi; | |
1017 fs.journal.location = oldip->location; | |
1018 fs.journal.size = oldip->size; | |
1019 } | |
1020 } | |
1021 | |
1022 // NOTEME: We have compressed the macro code because it will NOT compile on | |
1023 // Unix otherwise. So until we find out why, we use this as a work-around. | |
1024 #if (FFS_TEST == 1) | |
1025 #define JOURNAL_TEST(testcase, text) if (fs.testflags == testcase) { tw(tr(TR_END, TrJournal, "} (" text ")\n")); return; } | |
1026 #else | |
1027 #define JOURNAL_TEST(testcase, text) | |
1028 #endif | |
1029 | |
1030 // NOTEME: Should we empty journal file when we are anyway relocating it in | |
1031 // data_reclaim()? | |
1032 void journal_end(uint8 type) | |
1033 { | |
1034 struct inode_s *ip = inode_addr(fs.ijournal); | |
1035 struct journal_s *addr = (struct journal_s *) | |
1036 offset2addr(location2offset(ip->location) + fs.journal_pos); | |
1037 | |
1038 tw(tr(TR_BEGIN, TrJournal, "journal_end(0x%x) {\n", type)); | |
1039 tw(tr(TR_FUNC, TrJournal, "journal_pos = 0x%04x (%d)\n", fs.journal_pos, | |
1040 (fs.journal_pos - JOURNAL_POS_INITIAL) / sizeof(struct journal_s))); | |
1041 | |
1042 // If this is a create, set the object type | |
1043 if (type != 0 && fs.journal.oldi == 0) | |
1044 fs.journal.flags = (fs.journal.flags & OF_MASK) | type; | |
1045 | |
1046 // If there is no journal file, we can do without it, although we | |
1047 // certainly don't like it! | |
1048 if (fs.ijournal == 0) { | |
1049 journal_commit(0); | |
1050 tw(tr(TR_END, TrJournal, "} No jounal file\n")); | |
1051 return; | |
1052 } | |
1053 | |
1054 JOURNAL_TEST(JOURNAL_TEST_EMPTY, "Oops in JOURNAL_IS_EMPTY"); | |
1055 | |
1056 // Write RAM journal to journal file. | |
1057 if (fs.journal.state == (uint8) JOURNAL_IS_EMPTY) { | |
1058 fs.journal.state = JOURNAL_IS_WRITING; | |
1059 ffsdrv.write(addr, &fs.journal, sizeof(fs.journal)); | |
1060 } | |
1061 | |
1062 JOURNAL_TEST(JOURNAL_TEST_WRITING, "Oops in JOURNAL_IS_WRITING"); | |
1063 | |
1064 // Advance journal file's state | |
1065 if (fs.journal.state == (uint8) JOURNAL_IS_WRITING) { | |
1066 fs.journal.state = JOURNAL_IS_READY; | |
1067 ffsdrv_write_byte(&addr->state, fs.journal.state); | |
1068 } | |
1069 | |
1070 JOURNAL_TEST(JOURNAL_TEST_READY, "Oops in JOURNAL_IS_READY"); | |
1071 | |
1072 journal_commit(0); | |
1073 | |
1074 JOURNAL_TEST(JOURNAL_TEST_COMMITTING, "Oops in JOURNAL_TEST_COMMITTING"); | |
1075 JOURNAL_TEST(JOURNAL_TEST_COMMITTED, "Oops in JOURNAL_COMMITTED"); | |
1076 | |
1077 // Advance journal file's state | |
1078 ffsdrv_write_byte(&addr->state, JOURNAL_IS_DONE); | |
1079 | |
1080 JOURNAL_TEST(JOURNAL_TEST_DONE, "Oops in JOURNAL_IS_DONE"); | |
1081 | |
1082 // Advance journal | |
1083 fs.journal_pos += sizeof(struct journal_s); | |
1084 | |
1085 // Unless we are currently relocating the journal file itself, check if | |
1086 // journal file is near full and relocate it if it is. | |
1087 if (fs.journal_pos >= fs.journal_size - FFS_JOURNAL_MARGIN * | |
1088 sizeof(struct journal_s) && fs.journal.oldi != fs.ijournal) { | |
1089 tw(tr(TR_FUNC, TrJournal, "Journal file (near) full!\n")); | |
1090 journal_create(fs.ijournal); | |
1091 } | |
1092 | |
1093 // Check if we have just committed the journal file itself | |
1094 if (fs.journal.oldi == fs.ijournal) { | |
1095 fs.journal_pos = JOURNAL_POS_INITIAL; | |
1096 fs.ijournal = fs.journal.i; | |
1097 tw(tr(TR_FUNC, TrJournal, "Journal file re-created, fs.ijournal = %d\n", | |
1098 fs.ijournal)); | |
1099 } | |
1100 tw(tr(TR_END, TrJournal, "}\n")); | |
1101 } | |
1102 | |
1103 // Write contents of fs.journal to FFS meta data (inodes). Note that we do | |
1104 // NOT traverse ip->copied as we used to do in the old | |
1105 // object_update_commit(). Also, we do not check if object has been | |
1106 // erased after traversing ip->copied. All this code has been removed | |
1107 // because we will very soon have full callback functionality and thus the | |
1108 // code is redundant. | |
1109 void journal_commit(uint8 type) | |
1110 { | |
1111 struct inode_s *ip = inode_addr(fs.journal.i); | |
1112 struct inode_s *oldip = inode_addr(fs.journal.oldi); | |
1113 struct inode_s *dp; | |
1114 bref_t b; | |
1115 | |
1116 tw(tr(TR_BEGIN, TrJournal, "journal_commit(%d) {\n", type)); | |
1117 tw(tr(TR_FUNC, TrJournal, "i = %d\n", fs.journal.i)); | |
1118 ttw(ttr(TTrObj, "jc(){" NL)); | |
1119 | |
1120 if (fs.journal.i) | |
1121 { | |
1122 // If this is a create, set the object type | |
1123 if (type != 0 && fs.journal.oldi == 0) | |
1124 fs.journal.flags = (fs.journal.flags & OF_MASK) | type; | |
1125 | |
1126 tw(tr(TR_FUNC, TrJournal, "loc = 0x%04x, size = %d\n", | |
1127 fs.journal.location, fs.journal.size)); | |
1128 ffsdrv.write((uint32 *) &ip->location, (uint32 *) &fs.journal.location, sizeof(location_t)); | |
1129 ffsdrv.write_halfword((uint16 *) &ip->size, fs.journal.size); | |
1130 | |
1131 if (fs.journal.oldi != 0 && fs.link_child != 0) | |
1132 // If this is an update, we copy the child member from old | |
1133 // inode. We must do this before we validate the new object, | |
1134 // otherwise an intermediate readdir() will detect an empty | |
1135 // directory! | |
1136 ffsdrv.write_halfword((uint16*) &ip->child, oldip->child); | |
1137 | |
1138 tw(tr(TR_FUNC, TrJournal, "seq = %d\n", fs.sequence)); | |
1139 // We must check if sequence is already written because if this | |
1140 // commit was inititiated by journal_init(), we don't know exactly | |
1141 // what was written | |
1142 if (ip->sequence == FLASH_NULL16) | |
1143 ffsdrv.write_halfword(&ip->sequence, fs.sequence++); | |
1144 if (fs.journal.oldi == 0) | |
1145 ffsdrv.write_halfword(&ip->updates, 0); | |
1146 else | |
1147 ffsdrv.write_halfword(&ip->updates, oldip->updates + 1); | |
1148 | |
1149 JOURNAL_TEST(JOURNAL_TEST_COMMITTING, "Oops in JOURNAL_TEST_COMMITTING") | |
1150 | |
1151 // Insert object into directory structure. We must do this before | |
1152 // deleting old object, otherwise an intermediate readdir() will | |
1153 // fail with EFFS_NOTFOUND. Note that when the root directory is | |
1154 // created, fs.journal.diri is zero --- thus the test! | |
1155 if (fs.journal.diri != 0) { | |
1156 tw(tr(TR_FUNC, TrJournal, "diri = %d ", fs.journal.diri)); | |
1157 if (fs.journal.diri < 0) { | |
1158 tw(tr(TR_NULL, TrJournal, "child\n")); | |
1159 dp = inode_addr(-fs.journal.diri); | |
1160 ffsdrv.write_halfword((uint16 *) &dp->child, fs.journal.i); | |
1161 } | |
1162 else { | |
1163 tw(tr(TR_NULL, TrJournal, "sibling\n")); | |
1164 dp = inode_addr(fs.journal.diri); | |
1165 ffsdrv.write_halfword((uint16 *) &dp->sibling, fs.journal.i); | |
1166 } | |
1167 } | |
1168 | |
1169 // The new object is validated before the old object is deleted. | |
1170 // This is in order to avoid an interrupting stat or read operation | |
1171 // to fail with EFFS_NOTFOUND | |
1172 tw(tr(TR_FUNC, TrJournal, "flags = 0x%02x\n", fs.journal.flags)); | |
1173 ffsdrv_write_byte(&ip->flags, fs.journal.flags); | |
1174 | |
1175 // Update bstat[] appropriately | |
1176 b = offset2block(location2offset(ip->location)); | |
1177 bstat[b].objects++; | |
1178 tw(tr(TR_FUNC, TrJournal, "bstat[%d].objects = %d\n", b, bstat[b].objects)); | |
1179 } | |
1180 | |
1181 tw(tr(TR_FUNC, TrJournal, "oldi = %d\n", fs.journal.oldi)); | |
1182 if (fs.journal.oldi != 0) | |
1183 { | |
1184 // If this is an update or an erase, we erase the old object | |
1185 ffsdrv_write_byte(&oldip->flags, OT_ERASED); | |
1186 | |
1187 // Update bstat according to deletion of the old object. | |
1188 b = offset2block(location2offset(oldip->location)); | |
1189 bstat[b].objects--; | |
1190 tw(tr(TR_FUNC, TrJournal, "bstat[%d].objects = %d\n", b, bstat[b].objects)); | |
1191 | |
1192 // If we moved the data (all cases, except fcontrol), update lost | |
1193 if (fs.journal.location != oldip->location) | |
1194 bstat[b].lost += oldip->size; | |
1195 | |
1196 bstat[fs.inodes].lost++; | |
1197 | |
1198 // If we renamed a file to an existing filename, remove the replaced file. | |
1199 if (fs.journal.repli > 0) | |
1200 object_remove(fs.journal.repli); // Ignore error! | |
1201 } | |
1202 | |
1203 tw(tr(TR_END, TrJournal, "}\n")); | |
1204 ttw(ttr(TTrObj, "}" NL)); | |
1205 } | |
1206 | |
1207 // Save the current journal into "old" journal. We need this because an | |
1208 // object_create() can call data_reclaim() which can call object_relocate() | |
1209 // which uses the journal system. | |
1210 int journal_push(void) | |
1211 { | |
1212 memcpy(&fs.ojournal, &fs.journal, sizeof(struct journal_s)); | |
1213 fs.journal_depth++; | |
1214 if (fs.journal_depth > 1) { | |
1215 tw(tr(TR_FUNC, TrAll, "FATAL: journal_push() to depth %d\n", | |
1216 fs.journal_depth)); | |
1217 return -1; | |
1218 } | |
1219 | |
1220 tw(tr(TR_FUNC, TrJournal, "journal_push() to depth %d\n", | |
1221 fs.journal_depth)); | |
1222 | |
1223 return EFFS_OK; | |
1224 } | |
1225 | |
1226 // Recall "old" journal into current journal | |
1227 int journal_pop(void) | |
1228 { | |
1229 tw(tr(TR_FUNC, TrJournal, "journal_pop() from depth %d\n", | |
1230 fs.journal_depth)); | |
1231 | |
1232 fs.journal_depth--; | |
1233 if (fs.journal_depth < 0) { | |
1234 tw(tr(TR_FUNC, TrAll, "FATAL: journal_pop() to depth %d\n", | |
1235 fs.journal_depth)); | |
1236 return -1; | |
1237 } | |
1238 memcpy(&fs.journal, &fs.ojournal, sizeof(struct journal_s)); | |
1239 | |
1240 return EFFS_OK; | |
1241 } | |
1242 | |
1243 // Initialize the journalling system. Create journal file if it not already | |
1244 // exist. Commit/write pending journal if such exists --- return 1 in that | |
1245 // case. Otherwise, if journal file is clean (no journals pending) and all | |
1246 // is fine, return EFFS_OK. | |
1247 effs_t journal_init(iref_t i) | |
1248 { | |
1249 int j; | |
1250 struct inode_s *ip = inode_addr(i); | |
1251 struct journal_s *addr; | |
1252 | |
1253 if (i == 0) { | |
1254 // Journal file does not exist, so create it | |
1255 if ((i = journal_create(0)) <= 0) { | |
1256 fs.ijournal = 0; | |
1257 return i; | |
1258 } | |
1259 } | |
1260 | |
1261 fs.journal_depth = 0; | |
1262 fs.journal_pos = JOURNAL_POS_INITIAL; | |
1263 | |
1264 addr = (struct journal_s *) | |
1265 offset2addr(location2offset(ip->location) + fs.journal_pos); | |
1266 | |
1267 tw(tr(TR_BEGIN, TrJournal, "journal_init(%d) {\n", i)); | |
1268 | |
1269 fs.ijournal = i; | |
1270 | |
1271 // Search for first non-completed journal entry. | |
1272 for (j = 0; /* FIXME: limit to end of journal */; j++, addr++) { | |
1273 if (addr->state != (uint8) JOURNAL_IS_DONE) | |
1274 break; | |
1275 } | |
1276 tw(tr(TR_FUNC, TrJournal, "entry %d is in state 0x%x\n", j, addr->state)); | |
1277 | |
1278 fs.journal_pos += j * sizeof(fs.journal); | |
1279 i = EFFS_OK; | |
1280 | |
1281 if (addr->state == (uint8) JOURNAL_IS_EMPTY) { | |
1282 tw(tr(TR_FUNC, TrJournal, "Last journal is in EMPTY state\n")); | |
1283 // Journal file is proper, so just record position | |
1284 } | |
1285 else if (addr->state == (uint8) JOURNAL_IS_READY) { | |
1286 // Copy the entry into fs.journal. | |
1287 tw(tr(TR_FUNC, TrJournal, "Last journal is in READY state\n")); | |
1288 memcpy(&fs.journal, addr, sizeof(fs.journal)); | |
1289 journal_end(0); | |
1290 i = 1; | |
1291 } | |
1292 else { | |
1293 // Journal entry wasn't finished, so just ignore it after updating | |
1294 // its state to JOURNAL_IS_DONE. | |
1295 tw(tr(TR_FUNC, TrJournal, "Last journal is between EMPTY and READY\n")); | |
1296 ffsdrv_write_byte(&addr->state, JOURNAL_IS_DONE); | |
1297 fs.journal_pos += sizeof(fs.journal); | |
1298 } | |
1299 | |
1300 if (ip->size != fs.journal_size + atomalign(sizeof(FFS_JOURNAL_NAME) + 1)) { | |
1301 tw(tr(TR_FUNC, TrJournal, "Wrong journal size, create new\n")); | |
1302 // Journal size do not match default size, so create new. This | |
1303 // should only happen if we use an old FFS image with a newer FFS | |
1304 // version. | |
1305 if ((i = journal_create(fs.ijournal)) <= 0) { | |
1306 fs.ijournal = 0; | |
1307 return i; | |
1308 } | |
1309 } | |
1310 | |
1311 tw(tr(TR_FUNC, TrJournal, "journal_pos = 0x%04x\n", fs.journal_pos)); | |
1312 tw(tr(TR_END, TrJournal, "} %d\n", i)); | |
1313 | |
1314 return i; | |
1315 } | |
1316 | |
1317 // Create the journal file from scratch or relocate an existing one. It is | |
1318 // marked read-only just for clarity --- it cannot be deleted anyway! | |
1319 // fs_format() calls this function. Note that no data are written in | |
1320 // object_create() because the journal file is handled specially in that | |
1321 // function. | |
1322 iref_t journal_create(iref_t oldi) | |
1323 { | |
1324 iref_t i; | |
1325 | |
1326 tw(tr(TR_BEGIN, TrJournal, "journal_create(%d) {\n", oldi)); | |
1327 tw(tr(TR_FUNC, TrJournal, "journal file size = %d\n", fs.journal_size)); | |
1328 | |
1329 if (fs.journal_size == 0) { | |
1330 tw(tr(TR_FUNC, TrJournal, "Journal file creation aborted because fs.journal_size = 0 (No journal file wanted)\n")); | |
1331 tw(tr(TR_END, TrJournal, "} %d\n", 0)); | |
1332 return 0; | |
1333 } | |
1334 | |
1335 // If we are working on a write-once file system, we do not need a | |
1336 // journal. | |
1337 if (fs.blocks_free_min == 0) { | |
1338 tw(tr(TR_FUNC, TrJournal, "Journal file creation aborted because fs.blocks_free_min = 0 (write-once system)\n")); | |
1339 tw(tr(TR_END, TrJournal, "} %d\n", 0)); | |
1340 return 0; | |
1341 } | |
1342 | |
1343 journal_begin(oldi); | |
1344 | |
1345 i = object_create(FFS_JOURNAL_NAME, 0, fs.journal_size, -fs.root); | |
1346 if (i < 0) { | |
1347 tw(tr(TR_END, TrJournal, "} %d\n", i)); | |
1348 return i; | |
1349 } | |
1350 fs.journal.flags = BIT_SET(fs.journal.flags, OF_READONLY); | |
1351 | |
1352 // commit the creation or relocation | |
1353 if (oldi != 0) | |
1354 journal_end(0); | |
1355 else { | |
1356 journal_commit(OT_FILE); | |
1357 fs.journal_pos = JOURNAL_POS_INITIAL; | |
1358 } | |
1359 | |
1360 tw(tr(TR_END, TrJournal, "} %d\n", i)); | |
1361 | |
1362 return i; | |
1363 } | |
1364 | |
1365 /****************************************************************************** | |
1366 * FFS Begin and End | |
1367 ******************************************************************************/ | |
1368 | |
1369 // The following two functions should surround the code of every API | |
1370 // function in ffs.c (except preformat and format). The functions | |
1371 // ensures that the operation about to be executed can be made without | |
1372 // race-conditions or other problems. | |
1373 #if (TARGET == 0) | |
1374 int debug_suspend = 0; | |
1375 #endif | |
1376 | |
1377 | |
1378 // Check if ffs has been initialized. Suspend an erase operation. | |
1379 effs_t ffs_begin(void) | |
1380 { | |
1381 #if (TARGET == 0) | |
1382 if (debug_suspend > 0) { | |
1383 tw(tr(TR_FUNC, TrAll, "FATAL: Previous erase_suspend was not resumed\n")); | |
1384 return EFFS_CORRUPTED; | |
1385 } | |
1386 // tw(tr(TR_FUNC, TrHelper, "Set debug_suspend\n")); | |
1387 debug_suspend = 1; | |
1388 #endif | |
1389 | |
1390 if (fs.initerror != EFFS_OK) | |
1391 return fs.initerror; | |
1392 | |
1393 // Suspend an erase in progress (only applicable if we are using a | |
1394 // multi-bank device driver) | |
1395 if (dev.state == DEV_ERASE) { | |
1396 ffsdrv.erase_suspend(); | |
1397 } | |
1398 else if (dev.state == DEV_WRITE) { | |
1399 ffsdrv.write_end(); | |
1400 } | |
1401 | |
1402 return EFFS_OK; | |
1403 } | |
1404 | |
1405 // Resume an erase operation that was in progress. | |
1406 int ffs_end(int error) | |
1407 { | |
1408 #if (TARGET == 1) | |
1409 // Resume an erase in progress (only applicable if we are using a | |
1410 // multi-bank device driver) | |
1411 if (dev.state == DEV_ERASE_SUSPEND) { | |
1412 ffsdrv.erase_resume(); | |
1413 } | |
1414 #else | |
1415 debug_suspend = 0; | |
1416 #endif | |
1417 | |
1418 return error; | |
1419 } | |
1420 | |
1421 /****************************************************************************** | |
1422 * FFS Statistics functions | |
1423 ******************************************************************************/ | |
1424 | |
1425 // Not implemented: | |
1426 int statistics_file_create(void) | |
1427 { | |
1428 return 0; | |
1429 } | |
1430 | |
1431 // Not implemented: | |
1432 // Rewrite the statistics file if it exists. Otherwise return error | |
1433 // code. The function is called after each data and inodes reclaim (after | |
1434 // writing the file that provoked the reclaim). | |
1435 int statistics_write(void) | |
1436 { | |
1437 return 0; | |
1438 } | |
1439 | |
1440 // Read the statistics file if it exists. Otherwise reset all statistics to | |
1441 // zero and set the magic. This function is called from ffs_init(). | |
1442 void statistics_init(void) | |
1443 { | |
1444 memset(&stats, 0, sizeof(struct ffs_stats_s)); | |
1445 } | |
1446 | |
1447 void statistics_update_drec(int valid, int lost, int candidate) | |
1448 { | |
1449 unsigned int old; | |
1450 | |
1451 switch (candidate) { | |
1452 case MOST_LOST: stats.drec.most_lost++; break; | |
1453 case MOST_UNUSED: stats.drec.most_unused++; break; | |
1454 case YOUNGEST: stats.drec.youngest++; break; | |
1455 } | |
1456 | |
1457 // Increment Most Significant Word if overflow is detected | |
1458 old = stats.drec.valid[0]; | |
1459 stats.drec.valid[0] += valid; | |
1460 if (old > stats.drec.valid[0]) | |
1461 stats.drec.valid[1]++; | |
1462 | |
1463 old = stats.drec.lost[0]; | |
1464 stats.drec.lost[0] += lost; | |
1465 if (old > stats.drec.lost[0]) | |
1466 stats.drec.lost[1]++; | |
1467 } | |
1468 | |
1469 void statistics_update_irec(int valid, int lost) | |
1470 { | |
1471 stats.irec.num++; | |
1472 stats.irec.valid += valid; | |
1473 stats.irec.lost += lost; | |
1474 } | |
1475 |