FreeCalypso > hg > fc-magnetite
comparison src/cs/drivers/drv_app/sim/sim.c @ 0:945cf7f506b2
src/cs: chipsetsw import from tcs211-fcmodem
binary blobs and LCD demo files have been excluded,
all line endings are LF only
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 25 Sep 2016 22:50:11 +0000 |
parents | |
children | 8cd8fd15a095 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:945cf7f506b2 |
---|---|
1 /* | |
2 * SIM.C | |
3 * | |
4 * Pole Star SIM | |
5 * | |
6 * Target : ARM | |
7 * | |
8 * | |
9 * SIM card driver. This module contents all functions | |
10 * included in specifications GSM 11.11 V4.10 | |
11 * | |
12 * | |
13 * Copyright (c) Texas Instruments 1995-1997 | |
14 * | |
15 */ | |
16 | |
17 #define SIM_C 1 | |
18 | |
19 #ifndef _WINDOWS | |
20 #include "l1sw.cfg" | |
21 #include "chipset.cfg" | |
22 #endif | |
23 | |
24 #include "main/sys_types.h" | |
25 | |
26 #include "memif/mem.h" | |
27 | |
28 //#include "assert.h" | |
29 #if (CHIPSET == 12) | |
30 #include "inth/sys_inth.h" | |
31 #else | |
32 #include "inth/iq.h" | |
33 #endif | |
34 #include "sim.h" | |
35 #include <string.h> | |
36 #include "armio/armio.h" | |
37 #include "ind_os.h" | |
38 #include "abb/abb.h" //controls level shifter of ABB | |
39 | |
40 | |
41 //current voltage mode 3V or 5V, or 1.8V | |
42 SYS_UWORD8 CurrentVolt; | |
43 | |
44 | |
45 | |
46 #ifdef SIM_DEBUG_TRACE | |
47 | |
48 #ifdef SIM_RETRY | |
49 /* one byte more to trace the number of retry for each functions */ | |
50 #define SIM_DBG_NULL 5 | |
51 #else | |
52 /* size of buffer tracing the reception of NULL byte */ | |
53 #define SIM_DBG_NULL 4 | |
54 #endif | |
55 | |
56 /* working buffer for NULL BYTE and number of RETRY */ | |
57 SYS_UWORD8 SIM_dbg_null[SIM_DBG_NULL]; | |
58 /* size of buffer tracing the chronology of calls */ | |
59 #define SIM_DBG_CMD 7500 | |
60 /* working buffer for chronology calls */ | |
61 SYS_UWORD8 SIM_dbg_cmd[SIM_DBG_CMD]; | |
62 /* index for positionning in working buffer for chronology calls */ | |
63 SYS_UWORD16 SIM_dbg_cmd_cmpt; | |
64 /* working variable to calculate the TDMA ecart */ | |
65 SYS_UWORD16 SIM_dbg_tdma_diff; | |
66 /* working variable to store the maximum TDMA frame between two characters */ | |
67 SYS_UWORD16 SIM_dbg_max_interchardelay; | |
68 /* working variable used in each L2/L3 access function */ | |
69 SYS_UWORD8 SIM_dbg_tmp[10]; | |
70 /* internal function due to factorization of use of traces */ | |
71 void SIM_dbg_write_trace(SYS_UWORD8 *ptr, SYS_UWORD16 len); | |
72 | |
73 #endif | |
74 | |
75 #ifdef SIM_RETRY | |
76 /* number of retry */ | |
77 #define NUM_SIM_RETRIES 10 | |
78 /* Add variables to support sim retry */ | |
79 SYS_UWORD8 SimRetries; | |
80 #endif | |
81 | |
82 | |
83 | |
84 | |
85 | |
86 | |
87 /* | |
88 * Low level routines : mapped to hardware | |
89 * SIM_WriteBuffer | |
90 * SIM_Command | |
91 * SIM_Reset | |
92 * | |
93 */ | |
94 | |
95 | |
96 | |
97 /* | |
98 * SIM_WriteBuffer | |
99 * | |
100 * Write n bytes to SIM card in interrupt mode: | |
101 * return the line, write first byte and let interrupt handler do the rest | |
102 * return the line, write first byte and let interrupt handler do the rest | |
103 * | |
104 * Parameters : | |
105 * SIM_PORT *p : buffer for received chars | |
106 * offset : starting point for reading data. | |
107 * n : number of chars to read. | |
108 */ | |
109 void SIM_WriteBuffer(SIM_PORT *p, SYS_UWORD16 offset, SYS_UWORD16 n) | |
110 { | |
111 unsigned volatile i; | |
112 | |
113 // Set write direction | |
114 p->conf1 |= SIM_CONF1_TXRX; | |
115 p->c->conf1 = p->conf1; | |
116 | |
117 p->SWcount = 0; | |
118 p->rx_index = 0; | |
119 p->expected_data = 0; | |
120 | |
121 p->xOut = p->xbuf + offset; | |
122 p->xIn = p->xbuf + offset + n; | |
123 | |
124 if ((p->xIn - p->xOut) == 1) //if only one char is transmitted | |
125 { //need to wait a minimum of 1 ETU | |
126 ind_os_sleep (1); //for IO line to stay in TX mode | |
127 } | |
128 // Write first byte | |
129 p->c->tx = *(p->xOut); // transmit | |
130 | |
131 if ((p->xIn - p->xOut) == 1) //if only one char to transmit | |
132 { // return the direction to rx | |
133 p->conf1 &= ~SIM_CONF1_TXRX; //to be able to receive ACK char | |
134 p->c->conf1 = p->conf1; | |
135 | |
136 } | |
137 } | |
138 | |
139 /* | |
140 * SIM_Result | |
141 * | |
142 * Parameters : SIM port, buffer for received chars, pointer to receive size | |
143 * | |
144 * Return the result code (SW1/SW2) at the end of the string | |
145 */ | |
146 SYS_UWORD16 SIM_Result(SIM_PORT *p, SYS_UWORD8 *rP, SYS_UWORD16 *lenP, SYS_UWORD8 offset) | |
147 { | |
148 SYS_UWORD8 sw1, sw2; | |
149 SYS_UWORD8 verdict; | |
150 SYS_UWORD16 len; | |
151 | |
152 // Check if all characters were transmitted | |
153 if (p->xIn - 1 != p->xOut) | |
154 return (SIM_ERR_XMIT); | |
155 | |
156 len = p->rx_index; | |
157 *lenP = len - offset; | |
158 if ((*lenP == 0) && (p->apdu_ans_length == 256)) | |
159 *lenP = 256; | |
160 | |
161 if (p->expected_data == 256) | |
162 { | |
163 verdict = SIM_Memcpy(rP, ((p->rbuf) + offset), 256 - offset); | |
164 if (verdict != 0) | |
165 { | |
166 return (verdict); | |
167 } | |
168 } | |
169 else if ((len != 0) && (len >= offset)) | |
170 { | |
171 verdict = SIM_Memcpy(rP, ((p->rbuf) + offset), len - offset); | |
172 if (verdict != 0) | |
173 { | |
174 return (verdict); | |
175 } | |
176 } | |
177 | |
178 // change to remove SW1 and SW2 bytes from the receive buffer of data | |
179 sw1 = p->rSW12[0]; | |
180 sw2 = p->rSW12[1]; | |
181 | |
182 return((sw1 << 8) | sw2); | |
183 } | |
184 | |
185 | |
186 | |
187 | |
188 | |
189 /* | |
190 * SIM_Command_base | |
191 * | |
192 * Perform a command with the SIM T=0 protocol | |
193 * | |
194 * Arguments : pointer to SIM port structure | |
195 * number of characters above 5 | |
196 * expected command time in TDMA | |
197 * | |
198 * Returns an error code : | |
199 * SIM_ERR_READ : no answer from the card to a command | |
200 * SIM_ERR_LEN : the answer is not corresponding to a | |
201 * correct answer of T=0 protocol | |
202 * 06/11/2002 JYT | |
203 * Modified to be base command function. New SIM_Command() created to call it | |
204 * with wrapper. Created to manage retries on Internals errors of the driver. | |
205 */ | |
206 | |
207 SYS_UWORD16 SIM_Command_Base(SIM_PORT *p, SYS_UWORD16 n, SYS_UWORD8 *dP, SYS_UWORD16 *lP) | |
208 { | |
209 SYS_UWORD16 res; | |
210 SYS_UWORD8 err; | |
211 SYS_UWORD8 ins; | |
212 SYS_UWORD8 nack; | |
213 SYS_UWORD8 nack1; | |
214 SYS_UWORD16 offset; | |
215 | |
216 if (SIM_sleep_status == SIM_SLEEP_DESACT) | |
217 { //freeze the timer | |
218 status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); | |
219 } | |
220 else if (SIM_sleep_status == SIM_SLEEP_ACT) | |
221 { //get out sleep mode | |
222 status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); | |
223 SIM_SleepMode_Out (p); //get up SIM card of sleep mode before executing the command | |
224 } | |
225 | |
226 SIM_WriteBuffer(p, 0, 5); | |
227 | |
228 //adaptative driver | |
229 | |
230 if (n > 0) //need to send data to the card, TX mode | |
231 { | |
232 offset = 0; | |
233 // protocol T=0 returns a acknowledge char which is | |
234 // ins or (ins+1) : transmit the rest of the command in one time | |
235 // ~ins or ~(ins+1) : transmit the rest of the command char by char | |
236 ins = p->xbuf[1] & p->hw_mask; | |
237 nack = (~p->xbuf[1]) & p->hw_mask;; | |
238 | |
239 p->moderx = 6; //mode of wait for ACK char | |
240 | |
241 NEXT_CHAR_PROC: | |
242 | |
243 if (err = SIM_Waitforchars(p, p->etu9600)) | |
244 { | |
245 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
246 { //enable to count 2.5s before entering in sleep mode | |
247 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
248 SIM_SLEEP_WAITING_TIME, | |
249 0, NU_ENABLE_TIMER); | |
250 } | |
251 return (err); | |
252 } | |
253 | |
254 if (p->moderx == 5) //return SW1/SW2 | |
255 { | |
256 res = SIM_Result(p, dP, lP, 0); | |
257 | |
258 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
259 { //enable to count 2.5s before entering in sleep mode | |
260 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
261 SIM_SLEEP_WAITING_TIME, | |
262 0, NU_ENABLE_TIMER); | |
263 } | |
264 | |
265 return(res); | |
266 } | |
267 else if ((p->ack & p->hw_mask) == ins) | |
268 { | |
269 // Write the rest of the command if needed | |
270 // if more than 5 characters, the ack character will disappear | |
271 | |
272 SIM_WriteBuffer(p, 5 + offset, n - offset); | |
273 } | |
274 // special transmission mode if ACK = ~INS or ~(INS + 1). | |
275 // refer to ISO/CEI 7816-3 [8.2.2] | |
276 // need to send char by char | |
277 else if ((p->ack & p->hw_mask) == nack) | |
278 { | |
279 SIM_WriteBuffer(p, 5 + offset, 1); | |
280 offset++; | |
281 goto NEXT_CHAR_PROC; | |
282 } | |
283 | |
284 p->moderx = 5; | |
285 if (err = SIM_Waitforchars (p, p->etu9600)) //wait SW1 / SW2 | |
286 { | |
287 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
288 { //enable to count 2.5s before entering in sleep mode | |
289 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
290 SIM_SLEEP_WAITING_TIME, | |
291 0, NU_ENABLE_TIMER); | |
292 } | |
293 return (err); | |
294 } | |
295 | |
296 } | |
297 else //receive mode | |
298 { | |
299 if (err = SIM_WaitReception(p)) //wait for next procedure character | |
300 { | |
301 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
302 { //enable to count 2.5s before entering in sleep mode | |
303 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
304 SIM_SLEEP_WAITING_TIME, | |
305 0, NU_ENABLE_TIMER); | |
306 } | |
307 return (err); | |
308 } | |
309 } | |
310 | |
311 res = SIM_Result(p, dP, lP, 0); | |
312 | |
313 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
314 { //enable to count 2.5s before entering in sleep mode | |
315 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
316 SIM_SLEEP_WAITING_TIME, | |
317 0, NU_ENABLE_TIMER); | |
318 } | |
319 | |
320 return(res); | |
321 } | |
322 | |
323 | |
324 /* Main function to manage the retry mechanism */ | |
325 SYS_UWORD16 SIM_Command(SIM_PORT *p, SYS_UWORD16 n, SYS_UWORD8 *dP, SYS_UWORD16 *lP) { | |
326 int res; | |
327 | |
328 #ifdef SIM_DEBUG_TRACE | |
329 memset(SIM_dbg_null, 0x00, SIM_DBG_NULL); | |
330 SIM_dbg_tdma_diff = 0; | |
331 #endif | |
332 | |
333 // Issue initial SIM_Command() call | |
334 res = SIM_Command_Base(p, n, dP, lP); | |
335 /* Change from to 10 to 15 for specific SIM card (Racal) */ | |
336 | |
337 #ifdef SIM_RETRY | |
338 // While there is an error then retry NUM_SIM_RETRIES times | |
339 while ((res & 0xFF00) == 0) { // Reissue command | |
340 p->errorSIM = 0; | |
341 if(++SimRetries > NUM_SIM_RETRIES) { // return special retry failure | |
342 res = SIM_ERR_RETRY_FAILURE; | |
343 break; | |
344 } | |
345 res = SIM_Command_Base(p, n, dP, lP); | |
346 } | |
347 | |
348 #ifdef SIM_DEBUG_TRACE | |
349 SIM_dbg_null[SIM_DBG_NULL-1] = SimRetries; | |
350 #endif | |
351 | |
352 SimRetries = 0; | |
353 #endif | |
354 | |
355 return(res); | |
356 } | |
357 | |
358 | |
359 | |
360 | |
361 | |
362 | |
363 /* | |
364 * SIM_ByteReverse | |
365 * | |
366 * Reverse a byte, both up/down (1 <> 0) and left/right (0001 <> 1000) | |
367 * | |
368 */ | |
369 SYS_UWORD8 SIM_ByteReverse(SYS_UWORD8 b) | |
370 { | |
371 SYS_UWORD8 bh, bl; | |
372 int i; | |
373 const SYS_UWORD8 Reverse[] = {0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
374 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF }; | |
375 | |
376 // Up/Down | |
377 b = ~ b; | |
378 | |
379 // left / right (by nibble) | |
380 bh = (b >> 4) & 0xF; | |
381 bl = b & 0xF; | |
382 | |
383 b = (Reverse[bl]) << 4 | Reverse[bh]; | |
384 return(b); | |
385 | |
386 } | |
387 | |
388 /* | |
389 * SIM_TxParityErrors | |
390 * | |
391 * return number of transmit parity errors occured since the last reset | |
392 * of the SIM card | |
393 * | |
394 */ | |
395 SYS_UWORD16 SIM_TxParityErrors(void) | |
396 { | |
397 SIM_PORT *p; | |
398 | |
399 p= &(Sim[0]); | |
400 | |
401 return(p->txParityErr); | |
402 } | |
403 | |
404 | |
405 /* | |
406 * SIM_Reset | |
407 * | |
408 * Reset SIM card | |
409 * Call-back SIM insert if successful | |
410 * or SIM remove otherwise | |
411 * | |
412 * Returns 0 for success, or | |
413 * SIM_ERR_NOCARD : no card | |
414 * SIM_ERR_NATR : no answer to reset | |
415 * SIM_ERR_NOINT : no | |
416 * SIM_ERR_READ : unknown data return by the card | |
417 * SIM_ERR_CARDREJECT : card not accepted | |
418 * | |
419 * 29/01/02, JYT, adding of low voltage managment for IOTA device | |
420 * 06/10/03, JYT, Split of Reset to handle Restart | |
421 */ | |
422 SYS_UWORD16 SIM_Reset(SIM_CARD *cP) | |
423 { | |
424 return(SIM_Reset_Restart_Internal(cP, 1)); | |
425 } | |
426 | |
427 | |
428 | |
429 | |
430 | |
431 | |
432 | |
433 /* | |
434 * SIM_Restart | |
435 * | |
436 * Restart SIM card | |
437 * | |
438 * Returns 0 for success, or | |
439 * SIM_ERR_NOCARD : no card | |
440 * SIM_ERR_NATR : no answer to reset | |
441 * SIM_ERR_NOINT : no | |
442 * SIM_ERR_READ : unknown data return by the card | |
443 * SIM_ERR_CARDREJECT : card not accepted | |
444 * | |
445 * 06/10/03, JYT, Split of Reset to handle Restart | |
446 */ | |
447 SYS_UWORD16 SIM_Restart(SIM_CARD *cP) | |
448 { | |
449 return(SIM_Reset_Restart_Internal(cP, 0)); | |
450 } | |
451 | |
452 | |
453 /* | |
454 * SIM_Reset_Restart_Internal | |
455 * | |
456 * Reset SIM card | |
457 * Call-back SIM insert if successful | |
458 * or SIM remove otherwise | |
459 * | |
460 * Returns 0 for success, or | |
461 * SIM_ERR_NOCARD : no card | |
462 * SIM_ERR_NATR : no answer to reset | |
463 * SIM_ERR_NOINT : no | |
464 * SIM_ERR_READ : unknown data return by the card | |
465 * SIM_ERR_CARDREJECT : card not accepted | |
466 * | |
467 * 29/01/02, JYT, adding of low voltage managment for IOTA device | |
468 * 06/10/03, JYT, Split of Reset to handle Restart, ResetFlag added. | |
469 */ | |
470 SYS_UWORD16 SIM_Reset_Restart_Internal(SIM_CARD *cP, SYS_UWORD8 ResetFlag) | |
471 { | |
472 SIM_PORT *p; | |
473 unsigned int ATR_Attempt; | |
474 SYS_UWORD8 BackValue; | |
475 SYS_UWORD8 Result_ATR; | |
476 | |
477 #ifdef SIM_DEBUG_TRACE | |
478 memset(SIM_dbg_null, 0x00, SIM_DBG_NULL); | |
479 SIM_dbg_cmd_cmpt = 0; | |
480 memset(SIM_dbg_cmd, 0x00, SIM_DBG_CMD); | |
481 #endif | |
482 | |
483 // Initialize pointers | |
484 p = &(Sim[0]); | |
485 | |
486 // begin of JYT modifications | |
487 if ( (BackValue = SIM_StartVolt(ResetFlag)) != SIM_OK) | |
488 return((SYS_UWORD16)BackValue); | |
489 // end of JYT modifications | |
490 | |
491 p->etu9600 = 867; // old = 239, increase of 363% | |
492 p->etu400 = 20; | |
493 p->hw_mask = MASK_INS; | |
494 | |
495 ATR_Attempt = 1; | |
496 | |
497 COLD_RESET: | |
498 | |
499 p->SWcount = 0; | |
500 p->Freq_Algo = 0; | |
501 p->PTS_Try = 0; //use to calculate how many PTS try were already done | |
502 | |
503 // Initialize pointers | |
504 p->xIn = p->xOut = p->xbuf; | |
505 p->rx_index = 0; | |
506 p->errorSIM = 0; | |
507 p->moderx = 0; | |
508 p->null_received = 0; | |
509 | |
510 BackValue = SIM_ManualStart(p); | |
511 if (BackValue != 0) | |
512 return ((SYS_UWORD16)BackValue); | |
513 | |
514 | |
515 p->c->conf1 = p->conf1 &= ~SIM_CONF1_BYPASS; //switch to automatic mode | |
516 | |
517 //#else //SW_WRK_AROUND_H_S == 0 // Automatic procedure -> fails with test 27.11.2.1 | |
518 // | |
519 // // Mask all interrupts | |
520 // p->c->maskit = SIM_MASK_NATR | SIM_MASK_WT | SIM_MASK_OV | | |
521 // SIM_MASK_TX | SIM_MASK_RX | SIM_MASK_CD; | |
522 // | |
523 // | |
524 // IQ_Unmask (IQ_SIM); // Unmask interrupt controller | |
525 // | |
526 // | |
527 // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_STOP; | |
528 // ind_os_sleep(1); | |
529 // | |
530 // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_SWRST; // Set START bit and wait a while | |
531 // ind_os_sleep(1); | |
532 // // Unmask all sources of interrupts except WT, OV, and NATR | |
533 // p->c->maskit = SIM_MASK_OV | SIM_MASK_WT | SIM_MASK_NATR; | |
534 // | |
535 // // Set Configuration bits | |
536 // p->c->conf1 = p->conf1 = SIM_CONF1_SRSTLEV | SIM_CONF1_SCLKEN; | |
537 // p->c->conf2 = 0x0940; | |
538 // | |
539 // //enable VCC | |
540 // #if(ANLG_FAM == 1) | |
541 // SPIABB_wa_VRPC (SPIRead_ABB_Register (PAGE1,VRPCCTRL1) | MODE_ENA_VCC); | |
542 // #elif(ANLG_FAM == 2) | |
543 // SPIABB_wa_VRPC (SPIRead_ABB_Register (PAGE1,VRPCSIM) | MODE_ENA_VCC); | |
544 // #endif | |
545 // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_START; | |
546 // | |
547 //#endif | |
548 | |
549 /*-----------------------------------------------------------*/ | |
550 | |
551 while (p->PTS_Try != 5) | |
552 { | |
553 while (ATR_Attempt != 0) | |
554 { | |
555 // Treat ATR response | |
556 BackValue = SIM_ATRdynamictreatement (p, cP); | |
557 | |
558 if (BackValue == SIM_ERR_NOCARD) | |
559 { | |
560 SIM_PowerOff (); | |
561 return (SIM_ERR_NOCARD); | |
562 } | |
563 // ATR received but wrong characters value | |
564 // Comply with Test 27.11.2.4.5 and Test 27.11.1.3 | |
565 else if (BackValue == SIM_ERR_CARDREJECT) | |
566 { | |
567 if (ATR_Attempt >= 3) | |
568 { | |
569 SIM_PowerOff (); | |
570 return ((SYS_UWORD16)BackValue); | |
571 } | |
572 | |
573 ATR_Attempt++; | |
574 SIM_WARMReset(p); // assert a reset during at least 400 ETU | |
575 } | |
576 else if (BackValue != 0) //SIM_ERR_WAIT | |
577 { | |
578 if (ATR_Attempt == 3) | |
579 { // switch to 5V (ANALOG1) or 3V (ANALOG2) if card send wrong ATR 3 consecutive times | |
580 // Apply 3 consecutive resets at 5V (ANALOG1) or 3V (ANALOG2) | |
581 // fix prb for old chinese card not GSM compliant | |
582 | |
583 if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) | |
584 { | |
585 // SIM cannot be supplied at 3V (ANALOG2), because of an Hardware failure | |
586 SIM_PowerOff (); | |
587 return((SYS_UWORD16)BackValue); | |
588 } | |
589 | |
590 ATR_Attempt++; | |
591 goto COLD_RESET; | |
592 } | |
593 if (ATR_Attempt >= 6) | |
594 { | |
595 SIM_PowerOff (); | |
596 return ((SYS_UWORD16)BackValue); | |
597 } | |
598 | |
599 ATR_Attempt++; | |
600 SIM_WARMReset(p); // assert a reset during at least 400 ETU | |
601 } | |
602 | |
603 else | |
604 { | |
605 ATR_Attempt = 0; | |
606 } | |
607 } | |
608 /*-----------------------------------------------------------*/ | |
609 // PTS procedure | |
610 BackValue = SIM_PTSprocedure(cP,p); //assert PTS if needed | |
611 // need upgrade with FIFO use to avoid CPU overloading | |
612 | |
613 if (BackValue) | |
614 { | |
615 if (BackValue == SIM_ERR_CARDREJECT) | |
616 { | |
617 SIM_PowerOff (); //must be done by protocol stack | |
618 return (SIM_ERR_CARDREJECT); | |
619 } | |
620 if (p->PTS_Try <= 4) //else error treatement | |
621 { | |
622 SIM_WARMReset(p); // assert a reset during at least 400 ETU | |
623 } | |
624 } | |
625 else | |
626 { | |
627 p->PTS_Try = 5; | |
628 } | |
629 } | |
630 /*-----------------------------------------------------------*/ | |
631 | |
632 //interpret SIM coding concerning SIM supply voltage | |
633 | |
634 if (SIM_GetFileCharacteristics(p)) | |
635 { | |
636 #if ((SIM_TYPE == SIM_TYPE_3V) || (SIM_TYPE == SIM_TYPE_1_8V)) | |
637 SIM_PowerOff(); // Needed for tests 27.17.1.5.1 and 27.17.1.5.5 | |
638 #endif | |
639 return (SIM_ERR_READ); | |
640 } | |
641 | |
642 // JYT, certainly unused because of previous test | |
643 if(p->errorSIM) | |
644 { | |
645 return(p->errorSIM); | |
646 } | |
647 | |
648 if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_5V) | |
649 { | |
650 #if ((SIM_TYPE == SIM_TYPE_3V ) || (SIM_TYPE == SIM_TYPE_1_8_3V) || (SIM_TYPE == SIM_TYPE_1_8V)) | |
651 SIM_PowerOff (); // required by ETSI if 5V only card is detected and 3V only ME chosen | |
652 return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 | |
653 #elif (SIM_TYPE == SIM_TYPE_3_5V) | |
654 if (CurrentVolt == SIM_3V) //if 5V only SIM present -> the ME may switch to 5V operation | |
655 { | |
656 if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) // switch to 5V | |
657 { | |
658 SIM_PowerOff (); | |
659 return ((SYS_UWORD16)BackValue); | |
660 } | |
661 ATR_Attempt = 1; | |
662 goto COLD_RESET; // Test 27.17.1.5.3 | |
663 } | |
664 #endif | |
665 } | |
666 else | |
667 { | |
668 if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_3V) | |
669 { | |
670 #if (SIM_TYPE == SIM_TYPE_1_8V) | |
671 SIM_PowerOff (); // required by ETSI if 3V only card is detected and 1.8V only ME chosen | |
672 return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 | |
673 #elif (SIM_TYPE == SIM_TYPE_1_8_3V) | |
674 if (CurrentVolt == SIM_1_8V) //if 3V only SIM present -> the ME may switch to 3V operation | |
675 { | |
676 if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) // switch to 3V | |
677 { | |
678 SIM_PowerOff (); | |
679 return ((SYS_UWORD16)BackValue); | |
680 } | |
681 ATR_Attempt = 1; | |
682 goto COLD_RESET; // Test 27.17.1.5.3 | |
683 } | |
684 #endif | |
685 } | |
686 else | |
687 { | |
688 if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_1_8V) | |
689 { | |
690 #if (SIM_TYPE == SIM_TYPE_5V) | |
691 SIM_PowerOff (); // required by ETSI if 5V only card is detected and 3V only ME chosen | |
692 return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 | |
693 #endif | |
694 } | |
695 else | |
696 { | |
697 // future class of sim card voltage !!!!!! never use it | |
698 SIM_PowerOff (); // Rec. 11.18 | |
699 return (SIM_ERR_CARDREJECT); | |
700 } | |
701 } | |
702 } | |
703 | |
704 SIM_Interpret_FileCharacteristics(p); //find which frequency (13/4 or 13/8 Mhz) | |
705 | |
706 if(p->errorSIM) | |
707 { | |
708 return(p->errorSIM); | |
709 } | |
710 | |
711 status_os_sim = NU_Control_Timer (&SIM_timer, NU_ENABLE_TIMER); | |
712 //enable starting of the os timer for sleep mode | |
713 if (ResetFlag) { | |
714 if (p->InsertFunc != NULL) | |
715 (p->InsertFunc)(cP); | |
716 } | |
717 | |
718 return(0); | |
719 } | |
720 | |
721 | |
722 | |
723 | |
724 | |
725 | |
726 | |
727 | |
728 | |
729 | |
730 | |
731 /* SIM manual start | |
732 * | |
733 * purpose : manage manual start of the SIM interface | |
734 * input : pointer on sim structure SIM_PORT | |
735 * output : none | |
736 */ | |
737 | |
738 SYS_UWORD16 SIM_ManualStart (SIM_PORT *p) | |
739 { | |
740 volatile int i; | |
741 | |
742 //!! | |
743 p->c->conf1 = p->conf1 = 0x8004; //set conf1 to automatic mode SIO low | |
744 //enable sim interface clock module | |
745 p->c->cmd = SIM_CMD_CLKEN; | |
746 | |
747 //#if (SW_WRK_AROUND_H_S == 1) | |
748 | |
749 // Mask all interrupts | |
750 p->c->maskit = SIM_MASK_NATR | SIM_MASK_WT | SIM_MASK_OV | | |
751 SIM_MASK_TX | SIM_MASK_RX | SIM_MASK_CD; | |
752 | |
753 // Unmask interrupt controller | |
754 IQ_Unmask (IQ_SIM); | |
755 | |
756 p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_STOP; | |
757 ind_os_sleep (4); //wait 5 TDMA due to SVCC falling down duration | |
758 | |
759 p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_SWRST; | |
760 ind_os_sleep (1); //wait 5 TDMA due to SVCC falling down duration | |
761 | |
762 | |
763 p->c->conf2 = 0x0940; | |
764 | |
765 i = p->c->it; | |
766 // Unmask all sources of interrupts except WT and OV and NATR | |
767 p->c->maskit = SIM_MASK_WT | SIM_MASK_OV | SIM_MASK_NATR; | |
768 | |
769 | |
770 //enter in manual mode to start the ATR sequence | |
771 p->c->conf1 = p->conf1 |= SIM_CONF1_BYPASS; | |
772 ind_os_sleep(1); | |
773 | |
774 p->c->conf1 = p->conf1 |= SIM_CONF1_SVCCLEV; | |
775 ind_os_sleep(1); | |
776 | |
777 #if(ANLG_FAM == 1) | |
778 //set OMEGA to 3V mode | |
779 //enable VCC | |
780 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) | MODE_ENA_SIMLDOEN); | |
781 ind_os_sleep(1); | |
782 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) | MODE_ENA_SIMEN); | |
783 ind_os_sleep(1); | |
784 #elif(ANLG_FAM == 2) | |
785 //set IOTA to 3V mode | |
786 //enable VCC | |
787 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) | MODE_ENA_SIMEN); | |
788 ind_os_sleep(1); | |
789 #elif(ANLG_FAM == 3) | |
790 //set SYREN to 3V mode | |
791 //enable VCC | |
792 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) | MODE_ENA_SIMEN); | |
793 ind_os_sleep(1); | |
794 #endif | |
795 | |
796 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SIOLOW; | |
797 | |
798 ind_os_sleep(1); | |
799 | |
800 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKEN; | |
801 | |
802 p->c->conf1 = p->conf1 &= ~SIM_CONF1_TXRX; //set to receive mode | |
803 | |
804 | |
805 if(p->errorSIM) //check for card detection | |
806 { | |
807 return(p->errorSIM); | |
808 } | |
809 | |
810 i = 0; | |
811 while ((p->rx_index == 0) && (i < 3)) //wait 40000*Tsclk | |
812 { | |
813 ind_os_sleep (1); | |
814 i++; | |
815 } | |
816 | |
817 if ((p->rx_index == 0) && (i >= 3)) //external reset card ATR treatement | |
818 { | |
819 i = 0; | |
820 | |
821 p->c->conf1 = p->conf1 |= SIM_CONF1_SRSTLEV;//set reset level to high level | |
822 | |
823 while ((p->rx_index == 0) && (i < 3)) //wait 40000*Tsclk | |
824 { | |
825 ind_os_sleep (1); | |
826 i++; | |
827 } | |
828 } | |
829 | |
830 return (0); | |
831 } | |
832 | |
833 /* SIM manual stop | |
834 * | |
835 * purpose : manage manual start of the SIM interface | |
836 * input : pointer on sim structure SIM_PORT | |
837 * output : none | |
838 */ | |
839 | |
840 void SIM_ManualStop (SIM_PORT *p) | |
841 { | |
842 // to write | |
843 } | |
844 | |
845 /* Power off SIM == SIM_CMD_STOP | |
846 * input : none | |
847 * output : none | |
848 */ | |
849 | |
850 void SIM_PowerOff(void) | |
851 { | |
852 SIM_PORT *p; | |
853 volatile SYS_UWORD16 cmd; | |
854 | |
855 | |
856 | |
857 // Initialize pointers | |
858 p = &(Sim[0]); | |
859 | |
860 | |
861 // Reset and wait a while | |
862 cmd = p->c->cmd; | |
863 p->c->cmd = (cmd & MASK_CMD) | SIM_CMD_STOP; | |
864 | |
865 ind_os_sleep(5); //wait for falling of SIM signals (RESET/CLK/IO) | |
866 | |
867 #if(ANLG_FAM == 1) | |
868 //disable VCC : disable level shifter then SVDD | |
869 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & MODE_DIS_SIMEN); | |
870 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & MODE_DIS_SIMLDOEN); | |
871 #elif(ANLG_FAM == 2) | |
872 //disable VCC : disable level shifter then SVDD | |
873 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & MODE_DIS_SIMEN); | |
874 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & MODE_DIS_SIMLDOEN); | |
875 #elif(ANLG_FAM == 3) | |
876 //disable VCC : disable level shifter then SVDD | |
877 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & MODE_DIS_SIMEN); | |
878 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & MODE_DIS_SIMLDOEN); | |
879 #endif | |
880 | |
881 ind_os_sleep(10); //wait for falling of VCC commanf by ABB | |
882 | |
883 p->c->cmd = 0x0000; //disable clock of sim module | |
884 | |
885 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
886 { //SIM sleep timer is not more needed | |
887 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
888 } | |
889 } | |
890 | |
891 | |
892 /* | |
893 * SIM_Init | |
894 * | |
895 * Function for backward compatibility only | |
896 * | |
897 */ | |
898 | |
899 void SIM_Init(void (Insert(SIM_CARD *cP)), void (Remove(void))) | |
900 { | |
901 // Call SIM Registration function. | |
902 (void) SIM_Register (Insert, Remove); | |
903 } | |
904 | |
905 /* | |
906 * SIM_Initialize | |
907 * | |
908 * Initialize data structures. | |
909 * | |
910 */ | |
911 | |
912 void SIM_Initialize(void) | |
913 { | |
914 int n; | |
915 SIM_PORT *p; | |
916 volatile SYS_UWORD32 dum; | |
917 | |
918 // Initialize registers | |
919 p = &(Sim[0]); | |
920 p->c = (SIM_CONTROLLER *) SIM_CMD; | |
921 | |
922 p->errorSIM = 0; | |
923 dum = (volatile SYS_UWORD32) SIM_Dummy; // to force linking SIM32 | |
924 | |
925 status_os_sim = NU_Create_Timer (&SIM_timer, "SIM_sleep_timer", &SIM_SleepMode_In, | |
926 0, SIM_SLEEP_WAITING_TIME, 0, NU_DISABLE_TIMER); | |
927 //timer start only with NU_Control_Timer function | |
928 //waiting time set to 2.3s | |
929 SIM_sleep_status = SIM_SLEEP_NONE; | |
930 | |
931 #ifdef SIM_RETRY | |
932 SimRetries = 0; | |
933 #endif | |
934 } | |
935 | |
936 /* | |
937 * SIM_Register | |
938 * | |
939 * SIM Registration function: Initialize callback functions | |
940 * | |
941 * Insert(void) : pointer to the function called when a card is inserted | |
942 * Remove(void) : pointer to the function called when the card is removed | |
943 * | |
944 */ | |
945 | |
946 SYS_UWORD16 SIM_Register(void (Insert(SIM_CARD *cP)), void (Remove(void))) | |
947 { | |
948 SIM_PORT *p; | |
949 | |
950 // Initialize pointers | |
951 p = &(Sim[0]); | |
952 | |
953 p->InsertFunc = Insert; | |
954 p->RemoveFunc = Remove; | |
955 | |
956 return (SIM_OK); | |
957 } | |
958 | |
959 | |
960 /* | |
961 * High level routines : mapped to GSM 11.11 function calls | |
962 * | |
963 * Uses a Nucleus semaphore to ensure no simultaneous access to SIM and buffer | |
964 * | |
965 * Each routine does : | |
966 * write command | |
967 * sleep long enough for the expected transmission and reception | |
968 * return rest code | |
969 * | |
970 * SYS_UWORD8 *result : pointer to the string return by the SIM card | |
971 * SYS_UWORD8 *rcvSize : size of the string return by the SIM card | |
972 * | |
973 * other parameters : parameters needed by the SIM card to | |
974 * execute the function. | |
975 * | |
976 */ | |
977 //unsigned char SIM_flag = 0; | |
978 | |
979 | |
980 /* | |
981 * SIM_Select | |
982 * | |
983 * Select a DF or a EF | |
984 */ | |
985 SYS_UWORD16 SIM_Select(SYS_UWORD16 id, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
986 { | |
987 SIM_PORT *p; | |
988 int res; | |
989 | |
990 p = &(Sim[0]); | |
991 | |
992 p->xbuf[0] = GSM_CLASS; | |
993 p->xbuf[1] = SIM_SELECT; | |
994 p->xbuf[2] = 0; | |
995 p->xbuf[3] = 0; | |
996 p->xbuf[4] = 2; | |
997 p->xbuf[5] = id >> 8; // high byte | |
998 p->xbuf[6] = id & 0xFF; // low byte | |
999 | |
1000 | |
1001 res = SIM_Command(p, 2, dat, rcvSize); | |
1002 /* Change from to 10 to 15 for specific SIM card (Racal) */ | |
1003 | |
1004 // if (id == 0x6F07) | |
1005 // SIM_flag = 1; | |
1006 | |
1007 #ifdef SIM_DEBUG_TRACE | |
1008 SIM_dbg_write_trace((SYS_UWORD8 *)"AACMD", 5); | |
1009 SIM_dbg_write_trace(p->xbuf, 7); | |
1010 SIM_dbg_write_trace((SYS_UWORD8 *)"AAANS", 5); | |
1011 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1012 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1013 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1014 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1015 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1016 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1017 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1018 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1019 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1020 #endif | |
1021 | |
1022 return(res); | |
1023 } | |
1024 | |
1025 | |
1026 /* | |
1027 * SIM_Status | |
1028 * | |
1029 * Returns data received from card and number of bytes received | |
1030 */ | |
1031 SYS_UWORD16 SIM_Status(SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
1032 { | |
1033 SIM_PORT *p; | |
1034 | |
1035 short len = 0x16; // length specified in GSM 11.11 | |
1036 int res; | |
1037 | |
1038 p = &(Sim[0]); | |
1039 | |
1040 p->xbuf[0] = GSM_CLASS; | |
1041 p->xbuf[1] = SIM_STATUS; | |
1042 p->xbuf[2] = 0; | |
1043 p->xbuf[3] = 0; | |
1044 p->xbuf[4] = len; | |
1045 | |
1046 res = SIM_Command(p, 0, dat, rcvSize); | |
1047 | |
1048 #ifdef SIM_DEBUG_TRACE | |
1049 SIM_dbg_write_trace((SYS_UWORD8 *)"ABCMD", 5); | |
1050 SIM_dbg_write_trace(p->xbuf, 5); | |
1051 SIM_dbg_write_trace((SYS_UWORD8 *)"ABANS", 5); | |
1052 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1053 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1054 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1055 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1056 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1057 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1058 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1059 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1060 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1061 #endif | |
1062 | |
1063 return(res); | |
1064 } | |
1065 | |
1066 /* | |
1067 * SIM_Status_Extended | |
1068 * | |
1069 * Returns data received from card and number of bytes received | |
1070 * Add extra parameter len : number of returned byte | |
1071 */ | |
1072 SYS_UWORD16 SIM_Status_Extended(SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1073 { | |
1074 SIM_PORT *p; | |
1075 int res; | |
1076 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1077 | |
1078 p = &(Sim[0]); | |
1079 | |
1080 p->xbuf[0] = GSM_CLASS; | |
1081 p->xbuf[1] = SIM_STATUS; | |
1082 p->xbuf[2] = 0; | |
1083 p->xbuf[3] = 0; | |
1084 p->xbuf[4] = (SYS_UWORD8)llen; | |
1085 | |
1086 res = SIM_Command(p, 0, dat, rcvSize); | |
1087 | |
1088 #ifdef SIM_DEBUG_TRACE | |
1089 SIM_dbg_write_trace((SYS_UWORD8 *)"ACCMD", 5); | |
1090 SIM_dbg_write_trace(p->xbuf, 5); | |
1091 SIM_dbg_write_trace((SYS_UWORD8 *)"ACANS", 5); | |
1092 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1093 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1094 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1095 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1096 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1097 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1098 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1099 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1100 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1101 #endif | |
1102 | |
1103 return(res); | |
1104 } | |
1105 | |
1106 | |
1107 /* | |
1108 * SIM_ReadBinary | |
1109 * | |
1110 * Read data from the current EF | |
1111 */ | |
1112 SYS_UWORD16 SIM_ReadBinary(SYS_UWORD8 *dat, SYS_UWORD16 offset, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1113 { | |
1114 SIM_PORT *p; | |
1115 int res; | |
1116 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1117 | |
1118 p = &(Sim[0]); | |
1119 | |
1120 p->xbuf[0] = GSM_CLASS; | |
1121 p->xbuf[1] = SIM_READ_BINARY; | |
1122 p->xbuf[2] = offset >> 8; | |
1123 p->xbuf[3] = offset & 0xFF; | |
1124 p->xbuf[4] = (SYS_UWORD8)llen; | |
1125 | |
1126 res = SIM_Command(p, 0, dat, rcvSize); | |
1127 | |
1128 // if (SIM_flag) { | |
1129 // SIM_flag = 0; | |
1130 // dat[0] = 0x08; | |
1131 // } | |
1132 | |
1133 #ifdef SIM_DEBUG_TRACE | |
1134 SIM_dbg_write_trace((SYS_UWORD8 *)"ADCMD", 5); | |
1135 SIM_dbg_write_trace(p->xbuf, 5); | |
1136 SIM_dbg_write_trace((SYS_UWORD8 *)"ADANS", 5); | |
1137 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize>>8); | |
1138 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1139 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1140 SIM_dbg_write_trace(dat, *rcvSize); | |
1141 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1142 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1143 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1144 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1145 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1146 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1147 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1148 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1149 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1150 #endif | |
1151 | |
1152 return(res); | |
1153 | |
1154 } | |
1155 | |
1156 | |
1157 /* | |
1158 * SIM_VerifyChv | |
1159 * | |
1160 * Verify the specified CHV (chvType) | |
1161 */ | |
1162 SYS_UWORD16 SIM_VerifyCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 chvType, SYS_UWORD16 *rcvSize) | |
1163 { | |
1164 SIM_PORT *p; | |
1165 SYS_UWORD8 len; | |
1166 int i; | |
1167 int res; | |
1168 | |
1169 p = &(Sim[0]); | |
1170 len = 8; | |
1171 | |
1172 p->xbuf[0] = GSM_CLASS; | |
1173 p->xbuf[1] = SIM_VERIFY_CHV; | |
1174 p->xbuf[2] = 0; | |
1175 p->xbuf[3] = chvType; | |
1176 p->xbuf[4] = len; | |
1177 for (i=0;i<8;i++) | |
1178 { | |
1179 p->xbuf[5+i] = *(dat+i); | |
1180 } | |
1181 res = SIM_Command(p, 8, result, rcvSize); | |
1182 | |
1183 #ifdef SIM_DEBUG_TRACE | |
1184 SIM_dbg_write_trace((SYS_UWORD8 *)"AECMD", 5); | |
1185 SIM_dbg_write_trace(p->xbuf, len+5); | |
1186 SIM_dbg_write_trace((SYS_UWORD8 *)"AEANS", 5); | |
1187 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1188 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1189 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1190 SIM_dbg_write_trace(result, *rcvSize); | |
1191 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1192 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1193 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1194 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1195 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1196 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1197 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1198 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1199 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1200 #endif | |
1201 | |
1202 return(res); | |
1203 } | |
1204 | |
1205 | |
1206 /* | |
1207 * SIM_RunGSMAlgo | |
1208 * | |
1209 * Authentication procedure | |
1210 */ | |
1211 SYS_UWORD16 SIM_RunGSMAlgo(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
1212 { | |
1213 SIM_PORT *p; | |
1214 int len; | |
1215 int i; | |
1216 int res; | |
1217 | |
1218 p = &(Sim[0]); | |
1219 | |
1220 if(p->Freq_Algo) //13/4 Mhz mandatory ?? | |
1221 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKDIV; | |
1222 | |
1223 len = 16; | |
1224 | |
1225 p->xbuf[0] = GSM_CLASS; | |
1226 p->xbuf[1] = SIM_RUN_GSM_ALGO; | |
1227 p->xbuf[2] = 0; | |
1228 p->xbuf[3] = 0; | |
1229 p->xbuf[4] = len; | |
1230 | |
1231 for (i=0;i<len;i++) | |
1232 { | |
1233 p->xbuf[5+i] = *(dat+i); | |
1234 } | |
1235 res = SIM_Command(p, len, result, rcvSize); | |
1236 | |
1237 #ifdef SIM_DEBUG_TRACE | |
1238 SIM_dbg_write_trace((SYS_UWORD8 *)"AFCMD", 5); | |
1239 SIM_dbg_write_trace(p->xbuf, len+5); | |
1240 SIM_dbg_write_trace((SYS_UWORD8 *)"AFANS", 5); | |
1241 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1242 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1243 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1244 SIM_dbg_write_trace(result, *rcvSize); | |
1245 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1246 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1247 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1248 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1249 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1250 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1251 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1252 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1253 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1254 #endif | |
1255 | |
1256 if(p->Freq_Algo) | |
1257 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKDIV; | |
1258 | |
1259 | |
1260 return(res); | |
1261 } | |
1262 | |
1263 | |
1264 /* | |
1265 * SIM_GetResponse | |
1266 * | |
1267 * Get data from the card | |
1268 * | |
1269 * SYS_UWORD8 len : length of the data to get | |
1270 */ | |
1271 SYS_UWORD16 SIM_GetResponse(SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1272 { | |
1273 SIM_PORT *p; | |
1274 int res; | |
1275 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1276 | |
1277 p = &(Sim[0]); | |
1278 | |
1279 p->xbuf[0] = GSM_CLASS; | |
1280 p->xbuf[1] = SIM_GET_RESPONSE; | |
1281 p->xbuf[2] = 0; | |
1282 p->xbuf[3] = 0; | |
1283 p->xbuf[4] = (SYS_UWORD8)llen; | |
1284 | |
1285 res = SIM_Command(p, 0, dat, rcvSize); | |
1286 | |
1287 #ifdef SIM_DEBUG_TRACE | |
1288 SIM_dbg_write_trace((SYS_UWORD8 *)"AGCMD", 5); | |
1289 SIM_dbg_write_trace(p->xbuf, 5); | |
1290 SIM_dbg_write_trace((SYS_UWORD8 *)"AGANS", 5); | |
1291 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1292 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1293 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1294 SIM_dbg_write_trace(dat, *rcvSize); | |
1295 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1296 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1297 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1298 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1299 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1300 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1301 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1302 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1303 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1304 #endif | |
1305 | |
1306 return(res); | |
1307 } | |
1308 | |
1309 | |
1310 /* | |
1311 * SIM_ChangeCHV | |
1312 * | |
1313 * Change the specified CHV (chvType) | |
1314 */ | |
1315 SYS_UWORD16 SIM_ChangeCHV(SYS_UWORD8 *result,SYS_UWORD8 *oldChv, SYS_UWORD8 *newChv, SYS_UWORD8 chvType, SYS_UWORD16 *lP) | |
1316 { | |
1317 SIM_PORT *p; | |
1318 SYS_UWORD16 len; | |
1319 int i; | |
1320 SYS_UWORD16 res; | |
1321 | |
1322 p = &(Sim[0]); | |
1323 len = 16; | |
1324 | |
1325 p->xbuf[0] = GSM_CLASS; | |
1326 p->xbuf[1] = SIM_CHANGE_CHV; | |
1327 p->xbuf[2] = 0; | |
1328 p->xbuf[3] = chvType; | |
1329 p->xbuf[4] = (SYS_UWORD8)len; | |
1330 | |
1331 // Copy bytes to buffer | |
1332 for (i=0;i<8;i++) | |
1333 { | |
1334 p->xbuf[5+i] = *(oldChv+i); | |
1335 } | |
1336 for (i=0;i<8;i++) | |
1337 { | |
1338 p->xbuf[13+i] = *(newChv+i); | |
1339 } | |
1340 res = SIM_Command(p, len, result, lP); | |
1341 | |
1342 #ifdef SIM_DEBUG_TRACE | |
1343 SIM_dbg_write_trace((SYS_UWORD8 *)"AHCMD", 5); | |
1344 SIM_dbg_write_trace(p->xbuf, len+5); | |
1345 SIM_dbg_write_trace((SYS_UWORD8 *)"AHANS", 5); | |
1346 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
1347 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
1348 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1349 SIM_dbg_write_trace(result, *lP); | |
1350 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1351 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1352 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1353 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1354 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1355 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1356 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1357 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1358 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1359 #endif | |
1360 | |
1361 return(res); | |
1362 } | |
1363 | |
1364 | |
1365 /* | |
1366 * SIM_DisableCHV | |
1367 * | |
1368 * Disable CHV 1 | |
1369 */ | |
1370 SYS_UWORD16 SIM_DisableCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *lP) | |
1371 { | |
1372 SIM_PORT *p; | |
1373 int len; | |
1374 int i; | |
1375 int res; | |
1376 | |
1377 p = &(Sim[0]); | |
1378 | |
1379 len = 8; | |
1380 p->xbuf[0] = GSM_CLASS; | |
1381 p->xbuf[1] = SIM_DISABLE_CHV; | |
1382 p->xbuf[2] = 0; | |
1383 p->xbuf[3] = 1; | |
1384 p->xbuf[4] = 8; | |
1385 for (i=0;i<8;i++) | |
1386 { | |
1387 p->xbuf[5+i] = *(dat+i); | |
1388 } | |
1389 res = SIM_Command(p, len, result, lP); | |
1390 | |
1391 #ifdef SIM_DEBUG_TRACE | |
1392 SIM_dbg_write_trace((SYS_UWORD8 *)"AICMD", 5); | |
1393 SIM_dbg_write_trace(p->xbuf, 8+5); | |
1394 SIM_dbg_write_trace((SYS_UWORD8 *)"AIANS", 5); | |
1395 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
1396 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
1397 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1398 SIM_dbg_write_trace(result, *lP); | |
1399 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1400 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1401 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1402 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1403 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1404 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1405 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1406 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1407 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1408 #endif | |
1409 | |
1410 return(res); | |
1411 | |
1412 } | |
1413 | |
1414 | |
1415 /* | |
1416 * SIM_EnableCHV | |
1417 * | |
1418 * Enable CHV 1 | |
1419 */ | |
1420 SYS_UWORD16 SIM_EnableCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *lP) | |
1421 { | |
1422 SIM_PORT *p; | |
1423 int len; | |
1424 int i; | |
1425 int res; | |
1426 | |
1427 p = &(Sim[0]); | |
1428 | |
1429 len = 8; | |
1430 | |
1431 p->xbuf[0] = GSM_CLASS; | |
1432 p->xbuf[1] = SIM_ENABLE_CHV; | |
1433 p->xbuf[2] = 0; | |
1434 p->xbuf[3] = 1; | |
1435 p->xbuf[4] = (SYS_UWORD8)len; | |
1436 | |
1437 for (i=0;i<len;i++) | |
1438 { | |
1439 p->xbuf[5+i] = *(dat+i); | |
1440 } | |
1441 | |
1442 res = SIM_Command(p, len, result, lP); | |
1443 | |
1444 #ifdef SIM_DEBUG_TRACE | |
1445 SIM_dbg_write_trace((SYS_UWORD8 *)"AJCMD", 5); | |
1446 SIM_dbg_write_trace(p->xbuf, len+5); | |
1447 SIM_dbg_write_trace((SYS_UWORD8 *)"AJANS", 5); | |
1448 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
1449 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
1450 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1451 SIM_dbg_write_trace(result, *lP); | |
1452 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1453 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1454 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1455 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1456 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1457 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1458 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1459 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1460 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1461 #endif | |
1462 | |
1463 return(res); | |
1464 } | |
1465 | |
1466 | |
1467 | |
1468 /* | |
1469 * SIM_UnblockCHV | |
1470 * | |
1471 * Unblock the specified CHV (chvType) and store a new CHV | |
1472 */ | |
1473 SYS_UWORD16 SIM_UnblockCHV(SYS_UWORD8 *result, SYS_UWORD8 *unblockChv, SYS_UWORD8 *newChv, | |
1474 SYS_UWORD8 chvType, SYS_UWORD16 *lP) | |
1475 { | |
1476 SIM_PORT *p; | |
1477 int len; | |
1478 int i; | |
1479 int res; | |
1480 | |
1481 p = &(Sim[0]); | |
1482 len = 16; | |
1483 | |
1484 p->xbuf[0] = GSM_CLASS; | |
1485 p->xbuf[1] = SIM_UNBLOCK_CHV; | |
1486 p->xbuf[2] = 0; | |
1487 p->xbuf[3] = chvType; | |
1488 p->xbuf[4] = (SYS_UWORD8)len; | |
1489 for (i=0;i<8;i++) | |
1490 { | |
1491 p->xbuf[5+i] = *(unblockChv+i); | |
1492 } | |
1493 for (i=0;i<8;i++) | |
1494 { | |
1495 p->xbuf[13+i] = *(newChv+i); | |
1496 } | |
1497 | |
1498 res = SIM_Command(p, len, result, lP); | |
1499 | |
1500 #ifdef SIM_DEBUG_TRACE | |
1501 SIM_dbg_write_trace((SYS_UWORD8 *)"AKCMD", 5); | |
1502 SIM_dbg_write_trace(p->xbuf, len+5); | |
1503 SIM_dbg_write_trace((SYS_UWORD8 *)"AKANS", 5); | |
1504 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
1505 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
1506 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1507 SIM_dbg_write_trace(result, *lP); | |
1508 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1509 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1510 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1511 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1512 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1513 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1514 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1515 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1516 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1517 #endif | |
1518 | |
1519 return(res); | |
1520 } | |
1521 /* | |
1522 * SIM_Invalidate | |
1523 * | |
1524 * Invalidate the current EF | |
1525 */ | |
1526 SYS_UWORD16 SIM_Invalidate(SYS_UWORD8 *rP, SYS_UWORD16 *lP) | |
1527 { | |
1528 SIM_PORT *p; | |
1529 int i; | |
1530 int res; | |
1531 | |
1532 p = &(Sim[0]); | |
1533 | |
1534 p->xbuf[0] = GSM_CLASS; | |
1535 p->xbuf[1] = SIM_INVALIDATE; | |
1536 p->xbuf[2] = 0; | |
1537 p->xbuf[3] = 0; | |
1538 p->xbuf[4] = 0; | |
1539 | |
1540 res = SIM_Command(p, 0, rP, lP); | |
1541 | |
1542 #ifdef SIM_DEBUG_TRACE | |
1543 SIM_dbg_write_trace((SYS_UWORD8 *)"ALCMD", 5); | |
1544 SIM_dbg_write_trace(p->xbuf, 5); | |
1545 SIM_dbg_write_trace((SYS_UWORD8 *)"ALANS", 5); | |
1546 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
1547 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
1548 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1549 SIM_dbg_write_trace(rP, *lP); | |
1550 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1551 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1552 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1553 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1554 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1555 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1556 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1557 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1558 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1559 #endif | |
1560 | |
1561 return(res); | |
1562 } | |
1563 /* | |
1564 * SIM_Rehabilitate | |
1565 * | |
1566 * Rehabilitate the current EF | |
1567 */ | |
1568 SYS_UWORD16 SIM_Rehabilitate(SYS_UWORD8 *rP, SYS_UWORD16 *lP) | |
1569 { | |
1570 SIM_PORT *p; | |
1571 int len; | |
1572 int res; | |
1573 | |
1574 p = &(Sim[0]); | |
1575 | |
1576 p->xbuf[0] = GSM_CLASS; | |
1577 p->xbuf[1] = SIM_REHABILITATE; | |
1578 p->xbuf[2] = 0; | |
1579 p->xbuf[3] = 0; | |
1580 p->xbuf[4] = 0; | |
1581 | |
1582 res = SIM_Command(p, 0, rP, lP); | |
1583 | |
1584 #ifdef SIM_DEBUG_TRACE | |
1585 SIM_dbg_write_trace((SYS_UWORD8 *)"AMCMD", 5); | |
1586 SIM_dbg_write_trace(p->xbuf, 5); | |
1587 SIM_dbg_write_trace((SYS_UWORD8 *)"AMANS", 5); | |
1588 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
1589 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
1590 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1591 SIM_dbg_write_trace(rP, *lP); | |
1592 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1593 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1594 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1595 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1596 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1597 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1598 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1599 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1600 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1601 #endif | |
1602 | |
1603 return(res); | |
1604 | |
1605 } | |
1606 | |
1607 | |
1608 /* | |
1609 * SIM_UpdateBinary | |
1610 * | |
1611 * Store data in the current transparent EF | |
1612 */ | |
1613 SYS_UWORD16 SIM_UpdateBinary(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 offset, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1614 { | |
1615 SIM_PORT *p; | |
1616 int i; | |
1617 int res; | |
1618 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1619 | |
1620 p = &(Sim[0]); | |
1621 | |
1622 p->xbuf[0] = GSM_CLASS; | |
1623 p->xbuf[1] = SIM_UPDATE_BINARY; | |
1624 p->xbuf[2] = offset >> 8; | |
1625 p->xbuf[3] = offset & 0xFF; | |
1626 p->xbuf[4] = (SYS_UWORD8)llen; | |
1627 | |
1628 for (i=0;i<llen;i++) | |
1629 { | |
1630 p->xbuf[5+i] = *(dat+i); | |
1631 } | |
1632 res = SIM_Command(p, llen, result, rcvSize); | |
1633 | |
1634 #ifdef SIM_DEBUG_TRACE | |
1635 SIM_dbg_write_trace((SYS_UWORD8 *)"ANCMD", 5); | |
1636 SIM_dbg_write_trace(p->xbuf, llen+5); | |
1637 SIM_dbg_write_trace((SYS_UWORD8 *)"ANANS", 5); | |
1638 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1639 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1640 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1641 SIM_dbg_write_trace(result, *rcvSize); | |
1642 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1643 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1644 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1645 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1646 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1647 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1648 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1649 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1650 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1651 #endif | |
1652 | |
1653 return(res); | |
1654 | |
1655 } | |
1656 | |
1657 | |
1658 /* | |
1659 * SIM_ReadRecord | |
1660 * | |
1661 * Read a record (recNum) from the current linear fixed or cyclic EF | |
1662 */ | |
1663 SYS_UWORD16 SIM_ReadRecord(SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD8 recNum, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1664 { | |
1665 SIM_PORT *p; | |
1666 int res; | |
1667 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1668 | |
1669 p = &(Sim[0]); | |
1670 | |
1671 p->xbuf[0] = GSM_CLASS; | |
1672 p->xbuf[1] = SIM_READ_RECORD; | |
1673 p->xbuf[2] = recNum; | |
1674 p->xbuf[3] = mode; | |
1675 p->xbuf[4] = (SYS_UWORD8)llen; | |
1676 | |
1677 res = SIM_Command(p, 0, dat, rcvSize); | |
1678 | |
1679 #ifdef SIM_DEBUG_TRACE | |
1680 SIM_dbg_write_trace((SYS_UWORD8 *)"AOCMD", 5); | |
1681 SIM_dbg_write_trace(p->xbuf, llen+5); | |
1682 SIM_dbg_write_trace((SYS_UWORD8 *)"AOANS", 5); | |
1683 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1684 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1685 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1686 SIM_dbg_write_trace(dat, *rcvSize); | |
1687 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1688 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1689 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1690 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1691 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1692 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1693 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1694 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1695 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1696 #endif | |
1697 | |
1698 return(res); | |
1699 | |
1700 } | |
1701 | |
1702 #ifdef SIM_APDU_TEST | |
1703 SYS_UWORD8 snd[270]; | |
1704 SYS_UWORD8 rec[270]; | |
1705 SYS_UWORD8 logchan; | |
1706 SYS_UWORD16 recl; | |
1707 unsigned short resopen, resclose, rescmd; | |
1708 #endif | |
1709 | |
1710 #ifdef SIM_SAT_REFRESH_TEST | |
1711 SIM_CARD ptr; | |
1712 SYS_UWORD16 lrcvSize; | |
1713 SYS_UWORD8 ldat[20]; | |
1714 #endif | |
1715 | |
1716 /* | |
1717 * SIM_UpdateRecord | |
1718 * | |
1719 * Store a record (recNum) in the current linear fixed or cyclic EF | |
1720 */ | |
1721 SYS_UWORD16 SIM_UpdateRecord(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD8 recNum, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1722 { | |
1723 SIM_PORT *p; | |
1724 int i; | |
1725 int res; | |
1726 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1727 | |
1728 #ifdef SIM_SAT_REFRESH_TEST | |
1729 // do 1000 times the following sequence | |
1730 for (i=0;i<1000;i++) { | |
1731 SIM_PowerOff(); | |
1732 SIM_Restart(&ptr); | |
1733 SIM_Select((SYS_UWORD16)0x7f10, ldat, &lrcvSize); | |
1734 SIM_Select((SYS_UWORD16)0x6f3a, ldat, &lrcvSize); | |
1735 } | |
1736 #endif | |
1737 #ifdef SIM_APDU_TEST | |
1738 // send OPEN LOGICAL CHANNEL | |
1739 snd[0] = 0x00; | |
1740 snd[1] = 0x70; | |
1741 snd[2] = 0x00; | |
1742 snd[3] = 0x00; | |
1743 snd[4] = 0x01; | |
1744 resopen = SIM_XchTPDU(&snd[0], 5, &rec[0], 1, &recl); | |
1745 if (resopen == 0x9000) { | |
1746 logchan = rec[0]; | |
1747 | |
1748 // Select AID PKCS | |
1749 snd[0] = logchan; | |
1750 snd[1] = 0xA4; | |
1751 snd[2] = 0x04; | |
1752 snd[3] = 0x00; | |
1753 snd[4] = 0x0C; | |
1754 snd[5] = 0xA0; | |
1755 snd[6] = 0x00; | |
1756 snd[7] = 0x00; | |
1757 snd[8] = 0x00; | |
1758 snd[9] = 0x63; | |
1759 snd[10] = 0x50; | |
1760 snd[11] = 0x4B; | |
1761 snd[12] = 0x43; | |
1762 snd[13] = 0x53; | |
1763 snd[14] = 0x2D; | |
1764 snd[15] = 0x31; | |
1765 snd[16] = 0x35; | |
1766 rescmd = SIM_XchTPDU(&snd[0], 17, &rec[0], 0, &recl); | |
1767 | |
1768 // Select file EF odf | |
1769 snd[0] = 0x80 | logchan; | |
1770 snd[1] = 0xA4; | |
1771 snd[2] = 0x00; | |
1772 snd[3] = 0x00; | |
1773 snd[4] = 0x02; | |
1774 snd[5] = 0x50; | |
1775 snd[6] = 0x31; | |
1776 rescmd = SIM_XchTPDU(&snd[0], 7, &rec[0], 0, &recl); | |
1777 | |
1778 // get response EF odf | |
1779 snd[0] = logchan; | |
1780 snd[1] = 0xC0; | |
1781 snd[2] = 0x00; | |
1782 snd[3] = 0x00; | |
1783 snd[4] = rescmd; | |
1784 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
1785 | |
1786 // read binary EF odf | |
1787 snd[0] = 0x80 | logchan; | |
1788 snd[1] = 0xB0; | |
1789 snd[2] = 0x00; | |
1790 snd[3] = 0x00; | |
1791 snd[4] = rec[3]-16; | |
1792 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
1793 | |
1794 // Select file EF cdf | |
1795 snd[0] = 0x80 | logchan; | |
1796 snd[1] = 0xA4; | |
1797 snd[2] = 0x00; | |
1798 snd[3] = 0x00; | |
1799 snd[4] = 0x02; | |
1800 snd[5] = 0x51; | |
1801 snd[6] = 0x03; | |
1802 rescmd = SIM_XchTPDU(&snd[0], 7, &rec[0], 0, &recl); | |
1803 | |
1804 // get response EF odf | |
1805 snd[0] = logchan; | |
1806 snd[1] = 0xC0; | |
1807 snd[2] = 0x00; | |
1808 snd[3] = 0x00; | |
1809 snd[4] = rescmd; | |
1810 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
1811 | |
1812 // read binary EF cdf | |
1813 snd[0] = 0x80 | logchan; | |
1814 snd[1] = 0xB0; | |
1815 snd[2] = 0x00; | |
1816 snd[3] = 0x00; | |
1817 snd[4] = 0xff; | |
1818 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
1819 | |
1820 // read binary EF cdf | |
1821 snd[0] = 0x80 | logchan; | |
1822 snd[1] = 0xB0; | |
1823 snd[2] = 0x00; | |
1824 snd[3] = 0x00; | |
1825 snd[4] = 0x00; | |
1826 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], 256, &recl); | |
1827 | |
1828 | |
1829 } | |
1830 | |
1831 #endif | |
1832 | |
1833 | |
1834 p = &(Sim[0]); | |
1835 | |
1836 p->xbuf[0] = GSM_CLASS; | |
1837 p->xbuf[1] = SIM_UPDATE_RECORD; | |
1838 p->xbuf[2] = recNum; | |
1839 p->xbuf[3] = mode; | |
1840 p->xbuf[4] = (SYS_UWORD8)llen; | |
1841 | |
1842 for (i=0;i<llen;i++) | |
1843 { | |
1844 p->xbuf[5+i] = *(dat+i); | |
1845 } | |
1846 | |
1847 res = SIM_Command(p, llen, result, rcvSize); | |
1848 | |
1849 #ifdef SIM_DEBUG_TRACE | |
1850 SIM_dbg_write_trace((SYS_UWORD8 *)"APCMD", 5); | |
1851 SIM_dbg_write_trace(p->xbuf, llen+5); | |
1852 SIM_dbg_write_trace((SYS_UWORD8 *)"APANS", 5); | |
1853 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1854 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1855 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1856 SIM_dbg_write_trace(result, *rcvSize); | |
1857 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1858 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1859 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1860 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1861 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1862 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1863 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1864 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1865 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1866 #endif | |
1867 | |
1868 | |
1869 #ifdef SIM_APDU_TEST | |
1870 | |
1871 // send CLOSE LOGICAL CHANNEL | |
1872 snd[0] = 0x00; | |
1873 snd[1] = 0x70; | |
1874 snd[2] = 0x80; | |
1875 snd[3] = logchan; | |
1876 snd[4] = 0x00; | |
1877 resclose = SIM_XchTPDU(&snd[0], 5, &rec[0], 0, &recl); | |
1878 | |
1879 #endif | |
1880 | |
1881 return(res); | |
1882 } | |
1883 | |
1884 /* | |
1885 * SIM_Seek | |
1886 * | |
1887 * Search data in a linear fixed or cyclic EF. | |
1888 * return the first record number in which it found the data. | |
1889 */ | |
1890 SYS_UWORD16 SIM_Seek(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1891 { | |
1892 SIM_PORT *p; | |
1893 int i; | |
1894 int res; | |
1895 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1896 | |
1897 p = &(Sim[0]); | |
1898 | |
1899 p->xbuf[0] = GSM_CLASS; | |
1900 p->xbuf[1] = SIM_SEEK; | |
1901 p->xbuf[2] = 0; | |
1902 p->xbuf[3] = mode; | |
1903 p->xbuf[4] = (SYS_UWORD8)llen; | |
1904 | |
1905 for (i=0;i<llen;i++) | |
1906 { | |
1907 p->xbuf[5+i] = *(dat+i); | |
1908 } | |
1909 | |
1910 res = SIM_Command(p, llen, result, rcvSize); | |
1911 | |
1912 #ifdef SIM_DEBUG_TRACE | |
1913 SIM_dbg_write_trace((SYS_UWORD8 *)"AQCMD", 5); | |
1914 SIM_dbg_write_trace(p->xbuf, llen+5); | |
1915 SIM_dbg_write_trace((SYS_UWORD8 *)"AQANS", 5); | |
1916 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1917 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1918 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1919 SIM_dbg_write_trace(result, *rcvSize); | |
1920 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1921 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1922 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1923 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1924 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1925 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1926 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1927 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1928 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1929 #endif | |
1930 | |
1931 return(res); | |
1932 } | |
1933 | |
1934 /* | |
1935 * SIM_Increase | |
1936 * | |
1937 * Add value to a record of a cyclic EF | |
1938 */ | |
1939 SYS_UWORD16 SIM_Increase(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
1940 { | |
1941 SIM_PORT *p; | |
1942 int len; | |
1943 int i; | |
1944 int res; | |
1945 | |
1946 p = &(Sim[0]); | |
1947 | |
1948 len = 3; | |
1949 | |
1950 p->xbuf[0] = GSM_CLASS; | |
1951 p->xbuf[1] = SIM_INCREASE; | |
1952 p->xbuf[2] = 0; | |
1953 p->xbuf[3] = 0; | |
1954 p->xbuf[4] = 3; | |
1955 | |
1956 for (i=0;i<3;i++) | |
1957 { | |
1958 p->xbuf[5+i] = *(dat+i); | |
1959 } | |
1960 | |
1961 res = SIM_Command(p, len, result, rcvSize); | |
1962 | |
1963 #ifdef SIM_DEBUG_TRACE | |
1964 SIM_dbg_write_trace((SYS_UWORD8 *)"ARCMD", 5); | |
1965 SIM_dbg_write_trace(p->xbuf, 3+5); | |
1966 SIM_dbg_write_trace((SYS_UWORD8 *)"ARANS", 5); | |
1967 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
1968 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
1969 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1970 SIM_dbg_write_trace(result, *rcvSize); | |
1971 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
1972 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
1973 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1974 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
1975 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
1976 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
1977 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
1978 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
1979 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
1980 #endif | |
1981 | |
1982 return(res); | |
1983 } | |
1984 | |
1985 /* | |
1986 * SIM_TerminalProfile | |
1987 * | |
1988 * Used by ME to send its toolkit capabilities to SIM | |
1989 */ | |
1990 SYS_UWORD16 SIM_TerminalProfile(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
1991 { | |
1992 SIM_PORT *p; | |
1993 int i; | |
1994 int res; | |
1995 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
1996 | |
1997 p = &(Sim[0]); | |
1998 | |
1999 p->xbuf[0] = GSM_CLASS; | |
2000 p->xbuf[1] = SIM_TERMINAL_PROFILE; | |
2001 p->xbuf[2] = 0; | |
2002 p->xbuf[3] = 0; | |
2003 p->xbuf[4] = (SYS_UWORD8)llen; | |
2004 | |
2005 for (i=0;i<llen;i++) | |
2006 { | |
2007 p->xbuf[5+i] = *(dat+i); | |
2008 } | |
2009 | |
2010 res = SIM_Command(p, llen, result, rcvSize); | |
2011 | |
2012 #ifdef SIM_DEBUG_TRACE | |
2013 SIM_dbg_write_trace((SYS_UWORD8 *)"ASCMD", 5); | |
2014 SIM_dbg_write_trace(p->xbuf, llen+5); | |
2015 SIM_dbg_write_trace((SYS_UWORD8 *)"ASANS", 5); | |
2016 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
2017 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
2018 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2019 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
2020 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
2021 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
2022 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
2023 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
2024 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2025 #endif | |
2026 | |
2027 return(res); | |
2028 } | |
2029 | |
2030 | |
2031 /* | |
2032 * SIM_FETCH | |
2033 * | |
2034 * Used by ME to inquiry of what SIM toolkit need to do | |
2035 */ | |
2036 SYS_UWORD16 SIM_Fetch(SYS_UWORD8 *result, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
2037 { | |
2038 SIM_PORT *p; | |
2039 int i; | |
2040 int res; | |
2041 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
2042 | |
2043 p = &(Sim[0]); | |
2044 | |
2045 p->xbuf[0] = GSM_CLASS; | |
2046 p->xbuf[1] = SIM_FETCH; | |
2047 p->xbuf[2] = 0; | |
2048 p->xbuf[3] = 0; | |
2049 p->xbuf[4] = (SYS_UWORD8)llen; | |
2050 | |
2051 | |
2052 res = SIM_Command(p, 0, result, rcvSize); | |
2053 | |
2054 #ifdef SIM_DEBUG_TRACE | |
2055 SIM_dbg_write_trace((SYS_UWORD8 *)"ATCMD", 5); | |
2056 SIM_dbg_write_trace(p->xbuf, 5); | |
2057 SIM_dbg_write_trace((SYS_UWORD8 *)"ATANS", 5); | |
2058 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
2059 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
2060 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2061 SIM_dbg_write_trace(result, *rcvSize); | |
2062 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
2063 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
2064 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2065 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
2066 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
2067 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
2068 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
2069 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
2070 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2071 #endif | |
2072 | |
2073 return(res); | |
2074 } | |
2075 | |
2076 | |
2077 /* | |
2078 * SIM_TerminalResponse * | |
2079 * Used for ME to respond at a SIM toolkit command | |
2080 */ | |
2081 SYS_UWORD16 SIM_TerminalResponse(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
2082 { | |
2083 SIM_PORT *p; | |
2084 int i; | |
2085 int res; | |
2086 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
2087 | |
2088 p = &(Sim[0]); | |
2089 | |
2090 p->xbuf[0] = GSM_CLASS; | |
2091 p->xbuf[1] = SIM_TERMINAL_RESPONSE; | |
2092 p->xbuf[2] = 0; | |
2093 p->xbuf[3] = 0; | |
2094 p->xbuf[4] = (SYS_UWORD8)llen; | |
2095 | |
2096 for (i=0;i<llen;i++) | |
2097 { | |
2098 p->xbuf[5+i] = *(dat+i); | |
2099 } | |
2100 | |
2101 res = SIM_Command(p, llen, result, rcvSize); | |
2102 | |
2103 #ifdef SIM_DEBUG_TRACE | |
2104 SIM_dbg_write_trace((SYS_UWORD8 *)"AUCMD", 5); | |
2105 SIM_dbg_write_trace(p->xbuf, llen+5); | |
2106 SIM_dbg_write_trace((SYS_UWORD8 *)"AUANS", 5); | |
2107 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
2108 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
2109 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2110 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
2111 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
2112 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
2113 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
2114 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
2115 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2116 #endif | |
2117 | |
2118 return(res); | |
2119 } | |
2120 | |
2121 | |
2122 /* | |
2123 * SIM_Envelope | |
2124 * | |
2125 * Used by Network to tansfert data download to the SIM in a transparent way for user | |
2126 */ | |
2127 SYS_UWORD16 SIM_Envelope(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
2128 { | |
2129 SIM_PORT *p; | |
2130 int i; | |
2131 int res; | |
2132 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
2133 | |
2134 p = &(Sim[0]); | |
2135 | |
2136 p->xbuf[0] = GSM_CLASS; | |
2137 p->xbuf[1] = SIM_ENVELOPE; | |
2138 p->xbuf[2] = 0; | |
2139 p->xbuf[3] = 0; | |
2140 p->xbuf[4] = (SYS_UWORD8)llen; | |
2141 | |
2142 for (i=0;i<llen;i++) | |
2143 { | |
2144 p->xbuf[5+i] = *(dat+i); | |
2145 } | |
2146 | |
2147 res = SIM_Command(p, llen, result, rcvSize); | |
2148 | |
2149 #ifdef SIM_DEBUG_TRACE | |
2150 SIM_dbg_write_trace((SYS_UWORD8 *)"AVCMD", 5); | |
2151 SIM_dbg_write_trace(p->xbuf, llen+5); | |
2152 SIM_dbg_write_trace((SYS_UWORD8 *)"AVANS", 5); | |
2153 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
2154 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
2155 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2156 SIM_dbg_write_trace(result, *rcvSize); | |
2157 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
2158 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
2159 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2160 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
2161 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
2162 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
2163 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
2164 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
2165 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2166 #endif | |
2167 | |
2168 return(res); | |
2169 } | |
2170 | |
2171 | |
2172 | |
2173 | |
2174 | |
2175 | |
2176 | |
2177 | |
2178 | |
2179 /* | |
2180 * SIM_XchTPDU * | |
2181 * Used for ME to send generic command to WIM Card | |
2182 */ | |
2183 SYS_UWORD16 SIM_XchTPDU(SYS_UWORD8 *dat, SYS_UWORD16 trxLen, SYS_UWORD8 *result, | |
2184 SYS_UWORD16 rcvLen, SYS_UWORD16 *rcvSize) | |
2185 { | |
2186 SIM_PORT *p; | |
2187 int i; | |
2188 int res; | |
2189 | |
2190 p = &(Sim[0]); | |
2191 | |
2192 p->xbuf[0] = dat[0]; | |
2193 p->xbuf[1] = dat[1]; | |
2194 p->xbuf[2] = dat[2]; | |
2195 p->xbuf[3] = dat[3]; | |
2196 p->xbuf[4] = dat[4]; | |
2197 | |
2198 for (i=5;i<trxLen;i++) | |
2199 { | |
2200 p->xbuf[i] = dat[i]; | |
2201 } | |
2202 | |
2203 // enable the WIM behavior of the sim driver | |
2204 p->apdu_ans_length = rcvLen; | |
2205 | |
2206 res = SIM_Command(p, (trxLen - 5), result, rcvSize); | |
2207 | |
2208 // disable the WIM behavior of the sim driver | |
2209 p->apdu_ans_length = 0; | |
2210 | |
2211 #ifdef SIM_DEBUG_TRACE | |
2212 SIM_dbg_write_trace((SYS_UWORD8 *)"AWCMD", 5); | |
2213 SIM_dbg_write_trace(p->xbuf, trxLen); | |
2214 SIM_dbg_write_trace((SYS_UWORD8 *)"AWANS", 5); | |
2215 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
2216 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
2217 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2218 SIM_dbg_write_trace(result, *rcvSize); | |
2219 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
2220 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
2221 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2222 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
2223 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
2224 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
2225 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
2226 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
2227 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
2228 #endif | |
2229 | |
2230 return(res); | |
2231 } | |
2232 | |
2233 | |
2234 | |
2235 | |
2236 | |
2237 | |
2238 | |
2239 | |
2240 /* | |
2241 * Use to detect end of characters reception | |
2242 * input: p pointer on sim structure | |
2243 * n number of extra character to send | |
2244 * | |
2245 * output: return 0 if sucess | |
2246 * SIM_ERR_x in case of error | |
2247 * | |
2248 */ | |
2249 | |
2250 SYS_UWORD16 SIM_WaitReception(SIM_PORT *p) | |
2251 { | |
2252 SYS_UWORD16 returncode; | |
2253 | |
2254 | |
2255 //analyse the nature of the command to execute | |
2256 | |
2257 if ( | |
2258 (p->xbuf[1] == 0x12) || | |
2259 (p->xbuf[1] == 0xB2) || | |
2260 (p->xbuf[1] == 0xB0) || | |
2261 (p->xbuf[1] == 0xF2) || | |
2262 (p->xbuf[1] == 0xC0) || | |
2263 (p->apdu_ans_length != 0) | |
2264 ) | |
2265 //FETCH, READ_RECORD, READ_BINARY, STATUS, GET_RESPONSE commands == receive command | |
2266 { | |
2267 if (p->xbuf[4] == 0) //if P3 == 0 when sending receive command | |
2268 { | |
2269 p->expected_data = 256; | |
2270 } | |
2271 else | |
2272 { | |
2273 p->expected_data = p->xbuf[4]; | |
2274 } | |
2275 | |
2276 p->moderx = 1; //wait for procedure byte | |
2277 | |
2278 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
2279 { | |
2280 return returncode; | |
2281 } | |
2282 } | |
2283 else //direct command : INVALIDATE, REHABILITATE, SLEEP | |
2284 { | |
2285 p->moderx = 5; //mode reception of SW1/SW2 | |
2286 | |
2287 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
2288 { | |
2289 return returncode; | |
2290 } | |
2291 } | |
2292 return (0); | |
2293 } | |
2294 | |
2295 | |
2296 | |
2297 /* | |
2298 * Use to read file characteristics information | |
2299 * input: p pointer on sim structure | |
2300 * | |
2301 * output: return 0 if sucess | |
2302 * 1 in case of error | |
2303 * | |
2304 */ | |
2305 | |
2306 | |
2307 SYS_UWORD8 SIM_GetFileCharacteristics(SIM_PORT *p) | |
2308 { | |
2309 int res; | |
2310 SYS_UWORD8 ubuf[40]; | |
2311 SYS_UWORD16 sz; | |
2312 | |
2313 res = SIM_Select(DF_GSM, ubuf, &sz); | |
2314 if ((res & 0xFF00) != 0x9F00) | |
2315 { | |
2316 res = SIM_Select(DF_DCS1800, ubuf, &sz); | |
2317 if ((res & 0xFF00) != 0x9F00) | |
2318 { | |
2319 return (1); | |
2320 } | |
2321 } | |
2322 res = SIM_GetResponse( ubuf, res & 0x00FF , &sz); | |
2323 if (res != 0x9000) | |
2324 return (1); | |
2325 | |
2326 p->FileC = ubuf[13]; | |
2327 return (0); | |
2328 } | |
2329 | |
2330 /* | |
2331 * Use to determine value of b2 in file caracteristics contained in response | |
2332 * of SELECT Master File command | |
2333 * return 0 if no preferred speed during authentication | |
2334 * 1 if 13/4Mhz mandatory | |
2335 * | |
2336 * | |
2337 */ | |
2338 | |
2339 void SIM_Interpret_FileCharacteristics(SIM_PORT *p) | |
2340 { | |
2341 //interpret b2 bit for operating authentication speed | |
2342 if((p->conf1 & 0x0020) && (p->FileC & 0x02)) | |
2343 { | |
2344 p->Freq_Algo = 1; | |
2345 } | |
2346 | |
2347 //interpret Clock stop behavior | |
2348 // modified by J. Yp-Tcha to integrate all the behaviors required by ETSI. | |
2349 // 18/11/2002 : TI Chip always allowed low level, high level is hard dependant | |
2350 | |
2351 if ((p->FileC & SIM_CLK_STOP_MASK) == SIM_CLK_STOP_NOT_ALLWD) { | |
2352 /* Sim Clock Stop Not Allowed */ | |
2353 SIM_sleep_status = SIM_SLEEP_NOT_ALLOWED; | |
2354 /* There is not need to modifiy p->conf1 */ | |
2355 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
2356 } | |
2357 else { | |
2358 if ((p->FileC & SIM_CLK_STOP_MASK) == SIM_CLK_STOP_ALLWD) { | |
2359 /* Sim Clock Stop Allowed, no prefered level */ | |
2360 /* Default value for TI Chip shall always be Low Level */ | |
2361 SIM_sleep_status = SIM_SLEEP_DESACT; | |
2362 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKLEV; | |
2363 } | |
2364 else { | |
2365 /* Clock Stop is allowed, the level shall be checked */ | |
2366 if ((p->FileC & SIM_CLK_STOP_HIGH) == SIM_CLK_STOP_HIGH) { | |
2367 /* high level is mandatory */ | |
2368 /* OMEGA/NAUSICA can not handle sim stop clock at high level */ | |
2369 #ifndef ANALOG1 | |
2370 SIM_sleep_status = SIM_SLEEP_DESACT; | |
2371 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKLEV; | |
2372 #else | |
2373 /* Sim Clock Stop Not Allowed because the interface do not support this level */ | |
2374 SIM_sleep_status = SIM_SLEEP_NOT_ALLOWED; | |
2375 /* There is not need to modifiy p->conf1 */ | |
2376 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
2377 #endif | |
2378 } | |
2379 else { | |
2380 /* by default, Low Level is allowed */ | |
2381 SIM_sleep_status = SIM_SLEEP_DESACT; | |
2382 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKLEV; | |
2383 } | |
2384 } | |
2385 } | |
2386 if (SIM_sleep_status == SIM_SLEEP_NONE) | |
2387 { | |
2388 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
2389 } | |
2390 } | |
2391 | |
2392 /* | |
2393 * Use to evaluate need of sending PTS procedure regarding | |
2394 * the ATR. If default not used, PTS initiates F and D adequate values | |
2395 * for speed enhancement. | |
2396 * In case of 2 wrong PTS answer (speed enhanced), a third PTS with default value | |
2397 * is used. If the third PTS attempt failed, the ME reset the SIM and use default | |
2398 * value. | |
2399 * Return Value : SIM_ERR_READ, SIM_ERRCARDREJECT, SIM_ERR_WAIT | |
2400 * | |
2401 */ | |
2402 | |
2403 | |
2404 SYS_UWORD16 SIM_PTSprocedure(SIM_CARD *cP, SIM_PORT *p) | |
2405 { | |
2406 | |
2407 SYS_UWORD8 TA1; | |
2408 SYS_UWORD8 n; | |
2409 SYS_UWORD8 err; | |
2410 | |
2411 p->xbuf[0] = 0xFF; //character of PTS proc to send | |
2412 p->xbuf[1] = 0; | |
2413 p->xbuf[2] = 0xFF; | |
2414 p->xbuf[3] = 0x7B; | |
2415 | |
2416 //TA1,TB1,TC1,TD1 present in ATR ? | |
2417 | |
2418 n = 3; | |
2419 | |
2420 p->PTS_Try++; | |
2421 | |
2422 if (p->PTS_Try > 4) | |
2423 { | |
2424 return (SIM_ERR_CARDREJECT); | |
2425 } // at the fourth attempt, PTS procedure is unusefull. Use default value. | |
2426 //TA1 present? Test 27.11.2.6 | |
2427 else if ( p->PTS_Try == 4) | |
2428 { | |
2429 SIM_Calcetu (p); | |
2430 return (0); | |
2431 } | |
2432 | |
2433 if(cP->AtrData[1] & 0x10) | |
2434 { | |
2435 TA1 = cP->AtrData[2]; | |
2436 } | |
2437 else //if TA1 not present, return | |
2438 { | |
2439 SIM_Calcetu (p); | |
2440 return (0); | |
2441 } | |
2442 | |
2443 #if 0 // Dmitriy: removed by TI patch | |
2444 if (TA1 >= 0x94) //speed enhancement | |
2445 { | |
2446 // JYT 26/9/2003 to check correct behavior of the SIM Driver vs the PPS. | |
2447 //#ifdef NOTTOLOADBECAUSENOTTESTED | |
2448 // SIM_Calcetu (p); | |
2449 // return (0); //temporary disabling of speed enhancement feature | |
2450 | |
2451 if (p->PTS_Try <= 2) | |
2452 { | |
2453 n = 4; | |
2454 p->xbuf[1] = 0x10; | |
2455 p->xbuf[2] = 0x94; // if speed enhancement, then at least (and at most) F = 512 and D = 8 is supported | |
2456 } | |
2457 //#endif | |
2458 } | |
2459 #endif | |
2460 | |
2461 if ((TA1 == 0x11) || (TA1 == 0x01)) | |
2462 { | |
2463 SIM_Calcetu (p); | |
2464 return (0); | |
2465 } //if TA1 != 0x11 and 0x94, need to send PTS request | |
2466 //transmit request of speed enhancement : PTS | |
2467 SIM_WriteBuffer(p, 0, n); | |
2468 | |
2469 p->moderx = 0; //mode of normal reception | |
2470 p->expected_data = n; | |
2471 | |
2472 if (err = SIM_Waitforchars (p, p->etu9600)) | |
2473 { | |
2474 return (err); | |
2475 } | |
2476 //should received same chars as PTS request | |
2477 if ((p->rbuf[0] != p->xbuf[0]) || (p->rbuf[1] != p->xbuf[1]) || | |
2478 (p->rbuf[2] != p->xbuf[2])) | |
2479 { | |
2480 return(SIM_ERR_READ); | |
2481 } | |
2482 | |
2483 | |
2484 if (n == 4) | |
2485 { | |
2486 if (p->rbuf[3] != p->xbuf[3]) | |
2487 { | |
2488 return(SIM_ERR_READ); | |
2489 } | |
2490 | |
2491 //correct response from SIM : with speed enhanced | |
2492 p->c->conf1 = p->conf1 |= SIM_CONF1_ETU; //set F=512 D=8 | |
2493 } | |
2494 | |
2495 SIM_Calcetu (p); | |
2496 return (0); | |
2497 | |
2498 } | |
2499 | |
2500 /* | |
2501 * procedure of WARM reset consists on asserting | |
2502 * reset signal at 0 during at least 400 ETU | |
2503 * input p pointer of type SIM_PORT | |
2504 */ | |
2505 | |
2506 void SIM_WARMReset (SIM_PORT *p) | |
2507 { | |
2508 | |
2509 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SRSTLEV; | |
2510 ind_os_sleep (p->etu400); /// wait 400 ETU | |
2511 p->c->conf1 = p->conf1 |= SIM_CONF1_SRSTLEV; | |
2512 p->rx_index = 0; | |
2513 | |
2514 } | |
2515 | |
2516 | |
2517 /* | |
2518 * procedure use to get out sleepMode | |
2519 * input p pointer of type SIM_PORT | |
2520 */ | |
2521 | |
2522 void SIM_SleepMode_In (SYS_UWORD32 param) | |
2523 { | |
2524 if (SIM_sleep_status == SIM_SLEEP_DESACT) | |
2525 { | |
2526 (&(Sim[0]))->c->conf1 &= ~SIM_CONF1_SCLKEN; //disabled the clock for the SIM card | |
2527 SIM_sleep_status = SIM_SLEEP_ACT; | |
2528 } | |
2529 status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); | |
2530 } | |
2531 | |
2532 | |
2533 | |
2534 | |
2535 /* | |
2536 * procedure use to get out sleepMode | |
2537 * input p pointer of type SIM_PORT | |
2538 */ | |
2539 | |
2540 void SIM_SleepMode_Out (SIM_PORT *p) | |
2541 { | |
2542 if (SIM_sleep_status == SIM_SLEEP_ACT) | |
2543 { | |
2544 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKEN; | |
2545 // WCS patch for NU_Sleep(0) bug | |
2546 if (p->startclock > 0) | |
2547 ind_os_sleep (p->startclock); | |
2548 // End WCS patch | |
2549 SIM_sleep_status = SIM_SLEEP_DESACT; | |
2550 } | |
2551 } | |
2552 | |
2553 /* | |
2554 * procedure to parse ATR dynamically | |
2555 * input p pointer of type SIM_PORT | |
2556 * output return error code | |
2557 * SIM_ERR_WAIT, p->errorSIM | |
2558 * SIM_ERR_CARDREJECT, | |
2559 * | |
2560 * | |
2561 */ | |
2562 | |
2563 | |
2564 SYS_UWORD16 SIM_ATRdynamictreatement (SIM_PORT *p, SIM_CARD *cP) | |
2565 { | |
2566 | |
2567 volatile SYS_UWORD8 HistChar; | |
2568 volatile SYS_UWORD8 InterfChar; | |
2569 SYS_UWORD16 countT; | |
2570 SYS_UWORD16 mask; | |
2571 SYS_UWORD16 returncode; | |
2572 SYS_UWORD8 i; | |
2573 SYS_UWORD8 firstprotocol; | |
2574 SYS_UWORD8 Tx,T; | |
2575 SYS_UWORD8 TDi; | |
2576 SYS_UWORD8 position_of_TC1, position_of_TB1; | |
2577 SYS_UWORD8 another_protocol_present; | |
2578 SYS_UWORD16 wait80000clk; | |
2579 | |
2580 i = 0; | |
2581 //wait for TS and T0 | |
2582 p->moderx = 0; | |
2583 p->expected_data= 1; | |
2584 firstprotocol = 0; | |
2585 position_of_TC1 = 0; | |
2586 position_of_TB1 = 0; | |
2587 another_protocol_present = 0; | |
2588 wait80000clk = 6; // > 24 ms | |
2589 | |
2590 //wait for first character TS of ATR sequence. It should arrive before 80000sclk | |
2591 if (returncode = SIM_Waitforchars (p, wait80000clk)) | |
2592 { | |
2593 return returncode; | |
2594 } | |
2595 | |
2596 //wait for T0 | |
2597 p->expected_data++; | |
2598 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
2599 { | |
2600 return returncode; | |
2601 } | |
2602 | |
2603 ind_os_sleep(220); | |
2604 | |
2605 if (((p->rbuf[0] & 0xF0) == 0x30) && (p->rx_index != 0)) | |
2606 { | |
2607 cP->Inverse = 0; | |
2608 } | |
2609 /*-----------------------------------------------------------*/ | |
2610 /* Inverse convention card */ | |
2611 // If first byte is correct for inverse card, return success | |
2612 else if (((p->rbuf[0] & 0x0F) == 0x03) && (p->rx_index != 0)) | |
2613 { | |
2614 cP->Inverse = 1; | |
2615 } | |
2616 else | |
2617 { | |
2618 return (SIM_ERR_CARDREJECT); //Test 27.11.2.4.5 | |
2619 } | |
2620 | |
2621 countT = 0; | |
2622 mask = 0x10; | |
2623 InterfChar = 2; | |
2624 TDi = 1; | |
2625 | |
2626 | |
2627 Tx = SIM_Translate_atr_char (p->rbuf[1], cP); | |
2628 | |
2629 HistChar = Tx & 0x0F; //get K, number of transmitted historical character | |
2630 | |
2631 | |
2632 while (TDi != 0) | |
2633 { | |
2634 while (mask < 0x100) //monitors interface chars | |
2635 { | |
2636 if ((Tx & mask) == mask) //monitors if interface character TAx,TBx,TCx,TDc present | |
2637 { | |
2638 InterfChar++; | |
2639 } | |
2640 //wait for TC1 and save its position | |
2641 if ((firstprotocol == 0) && ((Tx & 0x40) == mask)) | |
2642 { | |
2643 position_of_TC1 = InterfChar - 1; | |
2644 } | |
2645 if ((firstprotocol == 0) && ((Tx & 0x20) == mask)) | |
2646 { | |
2647 position_of_TB1 = InterfChar - 1; | |
2648 } | |
2649 | |
2650 mask = mask << 1; | |
2651 } | |
2652 | |
2653 p->expected_data = InterfChar; //wait for TAi,TBi,TCi,TDi if present | |
2654 | |
2655 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
2656 { | |
2657 return returncode; | |
2658 } | |
2659 | |
2660 //need to monitor if TC1 present and if equal to 0 or 255 on first protocol | |
2661 if ((firstprotocol == 0) && (position_of_TC1 != 0)) | |
2662 { | |
2663 T = SIM_Translate_atr_char (p->rbuf[position_of_TC1], cP); | |
2664 | |
2665 if ((T != 0) && (T != 255)) //test 27.11.1.3 | |
2666 { //return Error in case of bad TC1 value | |
2667 return (SIM_ERR_CARDREJECT); | |
2668 } | |
2669 } | |
2670 //need to monitor if TB1 present and if differente from 0 on first protocol | |
2671 if ((firstprotocol == 0) && (position_of_TB1 != 0)) | |
2672 { | |
2673 T = SIM_Translate_atr_char (p->rbuf[position_of_TB1], cP); | |
2674 | |
2675 if (T != 0) //ITU | |
2676 { //return Error in case of bad TB1 value | |
2677 return (SIM_ERR_CARDREJECT); | |
2678 } | |
2679 } | |
2680 | |
2681 if ((Tx & 0x80) == 0x80) //TDi byte on first protocol must be 0 | |
2682 { //get new TD char | |
2683 Tx = SIM_Translate_atr_char (p->rbuf[InterfChar - 1], cP); | |
2684 | |
2685 if ((Tx & 0x0F) != 0) | |
2686 { | |
2687 if (firstprotocol == 0) //if first protocol received is not T=0, card is rejected | |
2688 { | |
2689 return (SIM_ERR_CARDREJECT); //protocol other than T=0 | |
2690 } | |
2691 else | |
2692 { //if an another protocol T != 0 present, need to wait for TCK char | |
2693 another_protocol_present = 1; | |
2694 } | |
2695 } | |
2696 mask = 0x10; | |
2697 firstprotocol++; //indicate another protocol T | |
2698 } | |
2699 else | |
2700 { | |
2701 TDi = 0; | |
2702 } | |
2703 } | |
2704 //add TCK if necessary | |
2705 p->expected_data = HistChar + InterfChar + another_protocol_present; | |
2706 | |
2707 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
2708 { | |
2709 return returncode; | |
2710 } | |
2711 | |
2712 cP->AtrSize = p->rx_index; | |
2713 | |
2714 if (cP->Inverse) //inverse card | |
2715 { | |
2716 // Copy ATR data | |
2717 for (i=0;i<cP->AtrSize;i++) | |
2718 { | |
2719 cP->AtrData[i] = SIM_ByteReverse(p->rbuf[i]); | |
2720 } | |
2721 p->c->conf1 = p->conf1 |= SIM_CONF1_CONV | SIM_CONF1_CHKPAR; | |
2722 } | |
2723 else //direct card | |
2724 { | |
2725 p->c->conf1 = p->conf1 |= SIM_CONF1_CHKPAR; //0x0409 | |
2726 // Copy ATR data | |
2727 for (i=0;i<cP->AtrSize;i++) | |
2728 { | |
2729 cP->AtrData[i] = p->rbuf[i]; | |
2730 } | |
2731 } | |
2732 | |
2733 return (0); | |
2734 } | |
2735 | |
2736 /* | |
2737 ** SIM_Translate_atr_char | |
2738 * | |
2739 * FILENAME: sim.c | |
2740 * | |
2741 * PARAMETERS: input char to translate | |
2742 * cP sim structure (indicates if inverse card present) | |
2743 * DESCRIPTION: return the correct value of input for inverse card | |
2744 * | |
2745 * RETURNS: character after parsing | |
2746 * stays the same if direct card | |
2747 */ | |
2748 | |
2749 SYS_UWORD8 SIM_Translate_atr_char (SYS_UWORD8 input, SIM_CARD *cP) | |
2750 { | |
2751 SYS_UWORD8 translated; | |
2752 | |
2753 if (cP->Inverse) | |
2754 { | |
2755 translated = SIM_ByteReverse(input); | |
2756 } | |
2757 else | |
2758 { | |
2759 translated = input; //get character next char T0 | |
2760 } | |
2761 return (translated); | |
2762 } | |
2763 | |
2764 | |
2765 | |
2766 /* | |
2767 * SIM_Waitforchars is used for waiting nbchar characters from SIM | |
2768 * input p sim port | |
2769 * max_wait max number of TDMA to wait between 2 characters | |
2770 * output | |
2771 * error code 0 if OK | |
2772 */ | |
2773 | |
2774 | |
2775 SYS_UWORD16 SIM_Waitforchars (SIM_PORT *p, SYS_UWORD16 max_wait) | |
2776 { | |
2777 volatile SYS_UWORD8 old_nb_char; | |
2778 volatile SYS_UWORD16 countT; | |
2779 | |
2780 if (p->moderx == 6) //use for reception of ACK when command need to transmit rest of data | |
2781 { | |
2782 p->ack = 0; | |
2783 countT = 0; | |
2784 | |
2785 while((p->ack == 0) && (p->moderx == 6)) | |
2786 { //if p->moderx change from 6 to 5, need to wait for SW1 and SW2 | |
2787 | |
2788 ind_os_sleep(1); | |
2789 countT++; //implementation of software Waiting time overflow | |
2790 | |
2791 if (p->null_received) //if NULL char received, wait for next procedure char | |
2792 { | |
2793 countT = 0; | |
2794 p->null_received = 0; | |
2795 } | |
2796 | |
2797 if (countT > max_wait) | |
2798 { | |
2799 return (SIM_ERR_WAIT); | |
2800 } | |
2801 if (p->errorSIM) | |
2802 { | |
2803 return(p->errorSIM); | |
2804 } | |
2805 } | |
2806 if (p->moderx == 6) //if transition to moderx = 5 in synchronous part | |
2807 { //need to quit for SW1/SW2 reception | |
2808 return (0); | |
2809 } | |
2810 } | |
2811 | |
2812 if ((p->moderx != 6) && (p->moderx != 5)) //treatement of mode 0, 1, 2, 3, 4 | |
2813 { | |
2814 countT = 0; | |
2815 old_nb_char = p->rx_index; | |
2816 //leave while if moderx == 5 | |
2817 while((p->rx_index < p->expected_data) && (p->moderx != 5)) | |
2818 { | |
2819 ind_os_sleep(1); | |
2820 countT++; //implementation of software Waiting time overflow | |
2821 | |
2822 if (p->null_received) //if NULL char received, wait for next procedure char | |
2823 { | |
2824 countT = 0; | |
2825 p->null_received = 0; | |
2826 } | |
2827 | |
2828 if (countT > max_wait) | |
2829 { | |
2830 return (SIM_ERR_WAIT); | |
2831 } | |
2832 if (p->errorSIM) | |
2833 { | |
2834 return(p->errorSIM); | |
2835 } | |
2836 if (p->rx_index > old_nb_char) | |
2837 { | |
2838 old_nb_char = p->rx_index; //if char received before max_wait TDMA, reset the counter | |
2839 countT = 0; | |
2840 } | |
2841 } //end while | |
2842 if (p->moderx == 0) | |
2843 { | |
2844 return (0); | |
2845 } | |
2846 } | |
2847 | |
2848 if (p->moderx == 5) //use for reception of SW1 SW2 | |
2849 { | |
2850 countT = 0; | |
2851 old_nb_char = p->SWcount; | |
2852 | |
2853 while(p->SWcount < 2) | |
2854 { //if p->moderx change from 6 to 5, need to wait for SW1 and SW2 | |
2855 | |
2856 ind_os_sleep(1); | |
2857 countT++; //implementation of software Waiting time overflow | |
2858 | |
2859 if (p->null_received) //if NULL char received, wait for next procedure char | |
2860 { | |
2861 countT = 0; | |
2862 p->null_received = 0; | |
2863 } | |
2864 | |
2865 if (countT > max_wait) | |
2866 { | |
2867 return (SIM_ERR_WAIT); | |
2868 } | |
2869 if (p->errorSIM) | |
2870 { | |
2871 return(p->errorSIM); | |
2872 } | |
2873 if (p->SWcount > old_nb_char) | |
2874 { | |
2875 old_nb_char = p->SWcount; //if char received before max_wait TDMA, reset the counter | |
2876 countT = 0; | |
2877 } | |
2878 } | |
2879 p->SWcount = 0; //reset SWcount buffer index when SW1 SW2 received | |
2880 return (0); | |
2881 } | |
2882 else //treatement of abnormal case of the asynchronous state machine | |
2883 { | |
2884 return (SIM_ERR_ABNORMAL_CASE1); | |
2885 } | |
2886 | |
2887 } | |
2888 | |
2889 | |
2890 | |
2891 /* | |
2892 * SIM_Calcetu is used for calculating 9600 etu and 400 etu depending on sim clock freq | |
2893 * and etu period | |
2894 * input p sim port | |
2895 */ | |
2896 | |
2897 void SIM_Calcetu (SIM_PORT *p) | |
2898 { | |
2899 if (p->conf1 & SIM_CONF1_SCLKDIV) //clock input is 13/8 Mhz | |
2900 { | |
2901 if (p->conf1 & SIM_CONF1_ETU) //etu period is 512/8*Tsclk | |
2902 { | |
2903 p->etu9600 = 319; // old = 88, increase of 363% | |
2904 p->etu400 = 6; | |
2905 p->stopclock = 18; | |
2906 p->startclock = 8; | |
2907 } | |
2908 else //etu period is 372/1*Tsclk | |
2909 { | |
2910 p->etu9600 = 1815; // old = 500, increase of 363% | |
2911 p->etu400 = 28; | |
2912 p->stopclock = 94; | |
2913 p->startclock = 38; | |
2914 } | |
2915 } | |
2916 else //clock input is 13/4 Mhz | |
2917 { | |
2918 if (p->conf1 & SIM_CONF1_ETU) //etu period is 512/8*Tsclk | |
2919 { | |
2920 p->etu9600 = 159; // old = 44, increase of 363% | |
2921 p->etu400 = 3; | |
2922 p->stopclock = 9; | |
2923 p->startclock = 4; | |
2924 } | |
2925 else //etu period is 372/1*Tsclk | |
2926 { | |
2927 p->etu9600 = 907; // old = 250, increase of 363% | |
2928 p->etu400 = 14; | |
2929 p->stopclock = 47; | |
2930 p->startclock = 19; | |
2931 } | |
2932 } | |
2933 } | |
2934 | |
2935 | |
2936 | |
2937 | |
2938 | |
2939 /* | |
2940 * Set the level shifter voltage for start up sequence | |
2941 * | |
2942 */ | |
2943 | |
2944 SYS_UWORD8 SIM_StartVolt (SYS_UWORD8 ResetFlag) | |
2945 { | |
2946 SYS_UWORD8 abbmask; | |
2947 | |
2948 #if(ANLG_FAM == 1) | |
2949 // we assume that in SIM_TYPE_5V there is nothing to do because it is the reset value | |
2950 #if ((SIM_TYPE == SIM_TYPE_3V) || (SIM_TYPE == SIM_TYPE_3_5V)) // { shut down VCC from ABB and prepare to start at 3V mode | |
2951 if (ResetFlag) { | |
2952 abbmask = MODE_INIT_OMEGA_3V; | |
2953 CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. | |
2954 } | |
2955 else { | |
2956 if (CurrentVolt == SIM_3V) | |
2957 abbmask = MODE_INIT_OMEGA_3V; | |
2958 else | |
2959 abbmask = MODE5V_OMEGA; | |
2960 } | |
2961 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & 0xC0) | abbmask); | |
2962 ind_os_sleep(1); //wait for charge pump regulation | |
2963 return(SIM_OK); | |
2964 #endif | |
2965 #endif | |
2966 | |
2967 #if(ANLG_FAM == 2) | |
2968 SYS_UWORD8 count = 0; | |
2969 // code for Iota | |
2970 // reset value for IOTA is for 1.8V, but specific procedure is needed | |
2971 #if ((SIM_TYPE == SIM_TYPE_1_8V) || (SIM_TYPE == SIM_TYPE_1_8_3V)) // shut down VCC from ABB and prepare to start at 1.8V mode | |
2972 if (ResetFlag) { | |
2973 abbmask = MODE_INIT_IOTA_1_8V; | |
2974 CurrentVolt = SIM_1_8V; // we assume the sim is 1.8v tech. from beginning. | |
2975 } | |
2976 else { | |
2977 if (CurrentVolt == SIM_1_8V) | |
2978 abbmask = MODE_INIT_IOTA_1_8V; | |
2979 else | |
2980 abbmask = MODE_INIT_IOTA_3V; | |
2981 } | |
2982 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); | |
2983 while(count++ < 5) | |
2984 { | |
2985 if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) // test RSIMRSU | |
2986 return(SIM_OK); | |
2987 ind_os_sleep(1); | |
2988 } | |
2989 // IOTA failure activation | |
2990 return(SIM_ERR_HARDWARE_FAIL); | |
2991 #endif | |
2992 // 3V only | |
2993 #if (SIM_TYPE == SIM_TYPE_3V) | |
2994 abbmask = MODE_INIT_IOTA_3V; | |
2995 CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. | |
2996 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); | |
2997 while(count++ < 5) | |
2998 { | |
2999 if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) // test RSIMRSU | |
3000 return(SIM_OK); | |
3001 ind_os_sleep(1); | |
3002 } | |
3003 // IOTA failure activation | |
3004 return(SIM_ERR_HARDWARE_FAIL); | |
3005 #endif | |
3006 #endif | |
3007 | |
3008 #if(ANLG_FAM == 3) | |
3009 SYS_UWORD8 count = 0; | |
3010 // code for Syren | |
3011 // reset value for SYREN is for 1.8V, but specific procedure is needed | |
3012 #if ((SIM_TYPE == SIM_TYPE_1_8V) || (SIM_TYPE == SIM_TYPE_1_8_3V)) // { shut down VCC from ABB and prepare to start at 1.8V mode | |
3013 if (ResetFlag) { | |
3014 abbmask = MODE_INIT_SYREN_1_8V; | |
3015 CurrentVolt = SIM_1_8V; // we assume the sim is 1.8v tech. from beginning. | |
3016 } | |
3017 else { | |
3018 if (CurrentVolt == SIM_1_8V) | |
3019 abbmask = MODE_INIT_SYREN_1_8V; | |
3020 else | |
3021 abbmask = MODE_INIT_SYREN_3V; | |
3022 } | |
3023 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); | |
3024 while(count++ < 5) | |
3025 { | |
3026 if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) // test RSIMRSU | |
3027 return(SIM_OK); | |
3028 ind_os_sleep(1); | |
3029 } | |
3030 // SYREN failure activation | |
3031 return(SIM_ERR_HARDWARE_FAIL); | |
3032 #endif | |
3033 | |
3034 // 3V only | |
3035 #if (SIM_TYPE == SIM_TYPE_3V) | |
3036 abbmask = MODE_INIT_SYREN_3V; | |
3037 CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. | |
3038 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); | |
3039 while(count++ < 5) | |
3040 { | |
3041 if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) // test RSIMRSU | |
3042 return(SIM_OK); | |
3043 ind_os_sleep(1); | |
3044 } | |
3045 // SYREN failure activation | |
3046 return(SIM_ERR_HARDWARE_FAIL); | |
3047 #endif | |
3048 #endif | |
3049 } | |
3050 | |
3051 | |
3052 /* | |
3053 * Set the level shifter to switch from 3V to 5V | |
3054 * | |
3055 */ | |
3056 | |
3057 | |
3058 SYS_UWORD8 SIM_SwitchVolt (SYS_UWORD8 ResetFlag) | |
3059 { | |
3060 SYS_UWORD8 count = 0; | |
3061 SYS_UWORD8 abbmask; | |
3062 | |
3063 SIM_PowerOff(); | |
3064 | |
3065 #if(ANLG_FAM == 1) | |
3066 #if (SIM_TYPE == SIM_TYPE_3_5V) // shut down VCC from ABB and prepare to start at 5V mode | |
3067 if (ResetFlag) { | |
3068 abbmask = MODE5V_OMEGA; | |
3069 CurrentVolt = SIM_5V; | |
3070 } | |
3071 else { | |
3072 if (CurrentVolt == SIM_3V) | |
3073 abbmask = MODE_INIT_OMEGA_3V; | |
3074 else | |
3075 abbmask = MODE5V_OMEGA; | |
3076 } | |
3077 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & 0xC0) | abbmask); | |
3078 return(SIM_OK); | |
3079 #endif | |
3080 #elif(ANLG_FAM == 2) | |
3081 #if (SIM_TYPE == SIM_TYPE_1_8_3V) // shut down VCC from ABB and prepare to start at 3V mode | |
3082 if (ResetFlag) { | |
3083 abbmask = MODE_INIT_IOTA_3V; | |
3084 CurrentVolt = SIM_3V; | |
3085 } | |
3086 else { | |
3087 if (CurrentVolt == SIM_1_8V) | |
3088 abbmask = MODE_INIT_IOTA_1_8V; | |
3089 else | |
3090 abbmask = MODE_INIT_IOTA_3V; | |
3091 } | |
3092 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); | |
3093 while(count++ < 5) | |
3094 { | |
3095 if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) | |
3096 return(SIM_OK); | |
3097 ind_os_sleep(1); | |
3098 } | |
3099 // IOTA failure activation | |
3100 return(SIM_ERR_HARDWARE_FAIL); | |
3101 #endif | |
3102 #elif(ANLG_FAM == 3) | |
3103 #if (SIM_TYPE == SIM_TYPE_1_8_3V) // shut down VCC from ABB and prepare to start at 3V mode | |
3104 if (ResetFlag) { | |
3105 abbmask = MODE_INIT_SYREN_3V; | |
3106 CurrentVolt = SIM_3V; | |
3107 } | |
3108 else { | |
3109 if (CurrentVolt == SIM_1_8V) | |
3110 abbmask = MODE_INIT_SYREN_1_8V; | |
3111 else | |
3112 abbmask = MODE_INIT_SYREN_3V; | |
3113 } | |
3114 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); | |
3115 while(count++ < 5) | |
3116 { | |
3117 if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) | |
3118 return(SIM_OK); | |
3119 ind_os_sleep(1); | |
3120 } | |
3121 // SYREN failure activation | |
3122 return(SIM_ERR_HARDWARE_FAIL); | |
3123 #endif | |
3124 #endif // ANLG_FAM == 1, 2, 3 | |
3125 | |
3126 } | |
3127 | |
3128 | |
3129 | |
3130 SYS_UWORD8 SIM_Memcpy(SYS_UWORD8 *Buff_target, SYS_UWORD8 Buff_source[], SYS_UWORD16 len) | |
3131 { | |
3132 SYS_UWORD16 i; //unsigned short type counter chosen for copy of 256 bytes | |
3133 | |
3134 for (i = 0; i < len; i++) | |
3135 { | |
3136 if (i == RSIMBUFSIZE) | |
3137 { | |
3138 return (SIM_ERR_BUFF_OVERFL); | |
3139 } | |
3140 else | |
3141 { | |
3142 (*(Buff_target+i)) = Buff_source[i]; | |
3143 } | |
3144 } | |
3145 return (0); | |
3146 } | |
3147 | |
3148 | |
3149 | |
3150 /* | |
3151 * SIM_SleepStatus | |
3152 * | |
3153 * Return SIM status for sleep manager | |
3154 * | |
3155 */ | |
3156 SYS_BOOL SIM_SleepStatus(void) | |
3157 { | |
3158 if ((SIM_sleep_status == SIM_SLEEP_ACT) || (SIM_sleep_status == SIM_SLEEP_NONE)) | |
3159 return(1); // SIM is ready for deep sleep | |
3160 else | |
3161 return(0); | |
3162 } | |
3163 | |
3164 | |
3165 | |
3166 | |
3167 /* | |
3168 * Special lock function to force SIM entity to use adequat SIM Driver | |
3169 */ | |
3170 void SIM_lock_cr17689(void) { | |
3171 } | |
3172 | |
3173 | |
3174 #ifdef SIM_DEBUG_TRACE | |
3175 void SIM_dbg_write_trace(SYS_UWORD8 *ptr, SYS_UWORD16 len) { | |
3176 SYS_UWORD16 i; | |
3177 for(i=0;i<len;i++) { | |
3178 if (SIM_dbg_cmd_cmpt == SIM_DBG_CMD) | |
3179 SIM_dbg_cmd_cmpt = 0; | |
3180 SIM_dbg_cmd[SIM_dbg_cmd_cmpt++] = ptr[i]; | |
3181 } | |
3182 } | |
3183 #endif | |
3184 | |
3185 | |
3186 | |
3187 |