comparison src/cs/services/mks/mks_functions.c @ 0:945cf7f506b2

src/cs: chipsetsw import from tcs211-fcmodem binary blobs and LCD demo files have been excluded, all line endings are LF only
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 25 Sep 2016 22:50:11 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:945cf7f506b2
1 /**
2 * @file mks_functions.c
3 *
4 * Implementation of MKS functions.
5 *
6 * @author Laurent Sollier (l-sollier@ti.com)
7 * @version 0.1
8 */
9
10 /*
11 * History:
12 *
13 * Date Author Modification
14 * ----------------------------------------
15 * 11/16/2001 L Sollier Create
16 *
17 *
18 * (C) Copyright 2001 by Texas Instruments Incorporated, All Rights Reserved
19 */
20
21 #include "mks/mks_i.h"
22 #include "mks/mks_api.h"
23 #include "mks/mks_env.h"
24
25 #include "kpd/kpd_api.h"
26
27 #include "rvm/rvm_use_id_list.h"
28 #include "rv/rv_general.h"
29
30 #include <string.h>
31
32
33 /* This value is set in the T_KEY_SEQUENCE_INFOS structure when post-sequence is on going */
34 #define POST_SEQUENCE_COMPLETED 0x10
35
36 /** This structure defines */
37 typedef struct { char name[KPD_MAX_CHAR_NAME+1];
38 T_KPD_VIRTUAL_KEY_ID sequence_key[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE];
39 UINT8 nb_key_of_sequence;
40 UINT8 completion_type;
41 UINT8 nb_key_for_post_sequence;
42 UINT8 nb_key_sent_for_post_sequence;
43 T_RV_RETURN return_path;
44 } T_KEY_SEQUENCE_INFOS;
45
46
47
48
49 /** Definition of the different magic key sequence.
50 * Note that the magic key sequence is defined by a KPD_KEY_NULL key Id.
51 */
52 static T_KEY_SEQUENCE_INFOS* key_sequence_table[MKS_NB_MAX_OF_KEY_SEQUENCE] = {0};
53
54 /* Subscriber Id for keypad driver */
55 static T_KPD_SUBSCRIBER subscriber_id;
56
57 /* Number of key sequence registered */
58 static UINT8 nb_key_sequence = 0;
59
60 /* Key pressed history */
61 static T_KPD_VIRTUAL_KEY_ID key_history[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE];
62
63
64 /** External declaration */
65 extern T_MKS_ENV_CTRL_BLK* mks_env_ctrl_blk;
66
67 /**
68 * @name Functions implementation
69 *
70 */
71 /*@{*/
72
73
74 /**
75 * function: mks_add_key_sequence_i
76 */
77 T_RV_RET mks_add_key_sequence_i(T_MKS_INFOS_KEY_SEQUENCE_MSG* infos_key_sequence_p)
78 {
79 UINT8 i;
80 T_RVF_MB_STATUS mb_status;
81 T_RV_RET ret = RV_OK;
82 T_MKS_INFOS_KEY_SEQUENCE* infos_p = &(infos_key_sequence_p->key_sequence_infos);
83
84 if (nb_key_sequence < MKS_NB_MAX_OF_KEY_SEQUENCE)
85 {
86 /* Reserve memory for message */
87 mb_status = rvf_get_buf (mks_env_ctrl_blk->prim_id, sizeof(T_KEY_SEQUENCE_INFOS), (void **) &key_sequence_table[nb_key_sequence]);
88
89 if (mb_status != RVF_RED) /* Memory allocation success */
90 {
91 /* Fill the structure */
92 for (i = 0; i < infos_p->nb_key_of_sequence; i++)
93 key_sequence_table[nb_key_sequence]->sequence_key[i] = infos_p->key_id[i];
94
95 key_sequence_table[nb_key_sequence]->nb_key_of_sequence = infos_p->nb_key_of_sequence;
96 key_sequence_table[nb_key_sequence]->completion_type = infos_p->completion_type;
97 key_sequence_table[nb_key_sequence]->return_path = infos_p->return_path;
98 key_sequence_table[nb_key_sequence]->nb_key_for_post_sequence = infos_p->nb_key_for_post_sequence;
99 infos_p->name[KPD_MAX_CHAR_NAME] = 0;
100 strcpy(key_sequence_table[nb_key_sequence]->name, infos_p->name);
101
102 key_sequence_table[nb_key_sequence]->nb_key_sent_for_post_sequence = 0;
103
104 /* Update number of key sequence */
105 nb_key_sequence++;
106
107 ret = RV_OK;
108 }
109 else
110 {
111 MKS_SEND_TRACE("MKS: Memory allocation error", RV_TRACE_LEVEL_ERROR);
112 ret = RV_MEMORY_ERR;
113 }
114 }
115 else
116 {
117 /* Maximum of magic key sequence registered*/
118 ret = RV_INTERNAL_ERR;
119 }
120
121 return ret;
122 }
123
124 /**
125 * function: mks_remove_key_sequence_i
126 *
127 */
128 T_RV_RET mks_remove_key_sequence_i(T_MKS_REMOVE_KEY_SEQUENCE_MSG* remove_key_sequence_p)
129 {
130 UINT8 i;
131
132 for (i = 0; i < nb_key_sequence; i++)
133 {
134 /* Compare name of the key sequence */
135 if ( !(strcmp(key_sequence_table[i]->name, remove_key_sequence_p->name)) )
136 {
137 /* Free memory used for the key sequence */
138 rvf_free_buf(key_sequence_table[i]);
139 nb_key_sequence--;
140
141 /* Sort out the table of key sequence */
142 key_sequence_table[i] = key_sequence_table[nb_key_sequence];
143 key_sequence_table[nb_key_sequence] = 0;
144 break;
145 }
146 }
147
148 return RV_OK;
149 }
150
151 /**
152 * function: mks_check_key_sequence
153 */
154 void mks_check_key_sequence(T_KPD_KEY_EVENT_MSG* key_event_p)
155 {
156 UINT8 i,j, nb_key_of_sequence;
157 BOOL key_sequence_completed = TRUE;
158
159 /* Stop timer */
160 rvf_stop_timer(RVF_TIMER_0);
161
162 /* Update key pressed history */
163 for (i = 0; i < MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE-1; i++)
164 key_history[i] = key_history[i+1];
165
166 key_history[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE-1] = key_event_p->key_info.virtual_key_id;
167
168 /* Check each key sequence */
169 for (i = 0; i < nb_key_sequence; i++)
170 {
171 if (!(key_sequence_table[i]->completion_type & POST_SEQUENCE_COMPLETED))
172 {
173 /* Verify if magic key sequence is completed */
174 nb_key_of_sequence = key_sequence_table[i]->nb_key_of_sequence;
175 for (j = 0; j < nb_key_of_sequence; j++)
176 {
177 if (key_sequence_table[i]->sequence_key[nb_key_of_sequence-j-1] != key_history[MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE-j-1])
178 {
179 key_sequence_completed = FALSE;
180 break;
181 }
182 }
183 if (key_sequence_completed == TRUE)
184 {
185 if (key_sequence_table[i]->completion_type == MKS_SEQUENCE_COMPLETED)
186 {
187 /* Process sequence completed */
188 mks_send_key_sequence_completed_msg(MKS_SEQUENCE_COMPLETED,
189 KPD_KEY_NULL,
190 key_sequence_table[i]->return_path,
191 key_sequence_table[i]->name);
192 }
193 else
194 {
195 /* Store info that post-sequence is on going */
196 key_sequence_table[i]->completion_type |= POST_SEQUENCE_COMPLETED;
197 }
198 }
199 else
200 key_sequence_completed = TRUE;
201 }
202 else
203 {
204 /* Notify that magic key sequence is completed */
205 mks_send_key_sequence_completed_msg(MKS_POST_SEQUENCE,
206 key_event_p->key_info.virtual_key_id,
207 key_sequence_table[i]->return_path,
208 key_sequence_table[i]->name);
209
210 key_sequence_table[i]->nb_key_sent_for_post_sequence++;
211
212 if (key_sequence_table[i]->nb_key_sent_for_post_sequence == key_sequence_table[i]->nb_key_for_post_sequence)
213 {
214 key_sequence_table[i]->nb_key_sent_for_post_sequence = 0;
215 key_sequence_table[i]->completion_type &= ~POST_SEQUENCE_COMPLETED;
216 }
217 }
218 }
219
220 rvf_start_timer(RVF_TIMER_0, RVF_MS_TO_TICKS(MKS_TIME_RESET_KEY_SEQUENCE), FALSE);
221 }
222
223
224
225 /**
226 * function: mks_send_key_sequence_completed_msg
227 */
228 void mks_send_key_sequence_completed_msg(UINT8 completion_level,
229 T_KPD_VIRTUAL_KEY_ID key_id,
230 T_RV_RETURN return_path,
231 char* name)
232 {
233 T_MKS_SEQUENCE_COMPLETED_MSG* msg_sequence_completed = 0;
234 T_RVF_MB_STATUS mb_status;
235
236 /* Reserve memory for message */
237 mb_status = rvf_get_buf (mks_env_ctrl_blk->prim_id, sizeof(T_MKS_SEQUENCE_COMPLETED_MSG), (void **) &msg_sequence_completed);
238
239 if (mb_status != RVF_RED) /* Memory allocation success */
240 {
241 /* Fill the message */
242 msg_sequence_completed->hdr.msg_id = MKS_SEQUENCE_COMPLETED_MSG;
243 strcpy(msg_sequence_completed->name, name);
244 msg_sequence_completed->completion_type = completion_level;
245 msg_sequence_completed->key_pressed = key_id;
246
247 /* Send message to the client */
248 if (return_path.callback_func != 0)
249 {
250 return_path.callback_func((void*) msg_sequence_completed);
251 rvf_free_buf(msg_sequence_completed);
252 }
253 else
254 {
255 rvf_send_msg(return_path.addr_id, msg_sequence_completed);
256 }
257 }
258 else
259 {
260 MKS_SEND_TRACE("MKS: Memory allocation error", RV_TRACE_LEVEL_ERROR);
261 }
262 }
263
264
265 /**
266 * function: mks_reset_sequence
267 */
268 void mks_reset_sequence(void)
269 {
270 UINT8 i;
271
272 for (i = 0; i < MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE; i++)
273 key_history[i] = KPD_KEY_NULL;
274 }
275
276
277 /**
278 * function: mks_initialize_swe
279 */
280 void mks_initialize_swe(void)
281 {
282 T_RV_RET ret;
283 T_KPD_VIRTUAL_KEY_TABLE notified_keys;
284 T_RV_RETURN return_path;
285 UINT8 i;
286
287 /* Initialize key pressed history structure */
288 for (i = 0; i < MKS_NB_MAX_OF_KEY_IN_KEY_SEQUENCE; i++)
289 key_history[i] = KPD_KEY_NULL;
290
291 /* Subscription to the keypad */
292 return_path.addr_id = mks_env_ctrl_blk->addr_id;
293 return_path.callback_func = 0;
294 notified_keys.nb_notified_keys = KPD_NB_PHYSICAL_KEYS;
295 ret = kpd_subscribe (&subscriber_id, KPD_DEFAULT_MODE, &notified_keys, return_path);
296
297 if (ret != RV_OK)
298 {
299 MKS_SEND_TRACE("MKS: Unable to subscribe to the keypad", RV_TRACE_LEVEL_DEBUG_HIGH);
300 }
301 }
302
303
304 /**
305 * function: mks_stop_swe
306 */
307 void mks_stop_swe(void)
308 {
309 T_RV_RET ret;
310
311 /* Unsubscribe to the keypad */
312 ret = kpd_unsubscribe(&subscriber_id);
313
314 if (ret != RV_OK)
315 {
316 MKS_SEND_TRACE("MKS: Unsubscription error", RV_TRACE_LEVEL_DEBUG_HIGH);
317 }
318 }
319
320
321 /*@}*/