FreeCalypso > hg > fc-magnetite
comparison src/cs/layer1/tm_cfile/l1tm_func.c @ 234:b870b6a44d31
l1audio and l1tm reconstructed source imported from tcs211-l1-reconst
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Mon, 20 Mar 2017 00:51:20 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
233:17d79c62e638 | 234:b870b6a44d31 |
---|---|
1 /************* Revision Controle System Header ************* | |
2 * GSM Layer 1 software | |
3 * L1TM_FUNC.C | |
4 * | |
5 * Filename l1tm_func.c | |
6 * Copyright 2003 (C) Texas Instruments | |
7 * | |
8 ************* Revision Controle System Header *************/ | |
9 | |
10 #include "l1_macro.h" | |
11 #include "l1_confg.h" | |
12 | |
13 #if TESTMODE | |
14 #define L1TM_FUNC_C | |
15 | |
16 #include <string.h> | |
17 #include <math.h> | |
18 #include "abb.h" | |
19 | |
20 #include "general.h" | |
21 | |
22 #include "l1_types.h" | |
23 #include "sys_types.h" | |
24 #include "l1_const.h" | |
25 #include "l1_time.h" | |
26 #include "l1_signa.h" | |
27 | |
28 #include "l1tm_defty.h" | |
29 | |
30 #if 0 //(CODE_VERSION != SIMULATION) // LoCosto-ism | |
31 #include "pld.h" | |
32 #endif | |
33 | |
34 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) || (TRACE_TYPE==7) || (TRACE_TYPE==0) | |
35 #include "rvt_gen.h" | |
36 extern T_RVT_USER_ID tm_trace_user_id; | |
37 #endif | |
38 | |
39 #if (AUDIO_TASK == 1) | |
40 #include "l1audio_const.h" | |
41 #include "l1audio_cust.h" | |
42 #include "l1audio_defty.h" | |
43 #endif | |
44 | |
45 #if (L1_GTT == 1) | |
46 #include "l1gtt_const.h" | |
47 #include "l1gtt_defty.h" | |
48 #endif | |
49 | |
50 #if (L1_MP3 == 1) | |
51 #include "l1mp3_defty.h" | |
52 #endif | |
53 | |
54 #if (L1_MIDI == 1) | |
55 #include "l1midi_defty.h" | |
56 #endif | |
57 | |
58 #include "l1_defty.h" | |
59 #include "cust_os.h" | |
60 #include "l1_msgty.h" | |
61 #include "l1_varex.h" | |
62 #include "l1_proto.h" | |
63 | |
64 #include "mem.h" | |
65 | |
66 #if (CODE_VERSION != SIMULATION) | |
67 | |
68 #if (RF_FAM == 61) | |
69 #include "tpudrv61.h" | |
70 #include "l1_rf61.h" | |
71 #include "l1tm_tpu61.h" | |
72 #if (DRP_FW_EXT==1) | |
73 #include "l1_drp_inc.h" | |
74 #else | |
75 #include "drp_drive.h" | |
76 #endif | |
77 #endif | |
78 | |
79 #if (RF_FAM == 60) | |
80 #include "tpudrv60.h" | |
81 #include "l1_rf60.h" | |
82 #include "l1tm_tpu60.h" | |
83 #include "drp_drive.h" | |
84 #endif | |
85 | |
86 #if (RF_FAM==43) | |
87 #include "tpudrv43.h" | |
88 #include "l1_rf43.h" | |
89 #include "l1tm_tpu43.h" | |
90 #endif | |
91 #if (RF_FAM == 35) | |
92 #include "tpudrv35.h" | |
93 #include "l1_rf35.h" | |
94 #include "l1tm_tpu35.h" | |
95 #endif | |
96 | |
97 #if (RF_FAM == 12) | |
98 #include "tpudrv12.h" | |
99 #include "l1_rf12.h" | |
100 #include "l1tm_tpu12.h" | |
101 #endif | |
102 | |
103 #if (RF_FAM == 10) | |
104 #include "tpudrv10.h" | |
105 #include "l1_rf10.h" | |
106 #include "l1tm_tpu10.h" | |
107 #endif | |
108 | |
109 #if (RF_FAM == 8) | |
110 #include "tpudrv8.h" | |
111 #include "l1_rf8.h" | |
112 #include "l1tm_tpu8.h" | |
113 #endif | |
114 | |
115 #if (RF_FAM == 2) | |
116 #include "tpudrv2.h" | |
117 #include "l1_rf2.h" | |
118 #include "l1tm_tpu2.h" | |
119 #endif | |
120 | |
121 #else | |
122 | |
123 #if (RF_FAM == 2) | |
124 #include "l1_rf2.h" | |
125 #endif | |
126 | |
127 #endif | |
128 | |
129 #include <assert.h> | |
130 #include <string.h> | |
131 | |
132 #include "l1tm_msgty.h" | |
133 #include "l1tm_signa.h" | |
134 #include "l1tm_varex.h" | |
135 #include "l1tm_ver.h" | |
136 | |
137 #if L1_GPRS | |
138 #include "l1p_cons.h" | |
139 #include "l1p_msgt.h" | |
140 #include "l1p_deft.h" | |
141 #include "l1p_vare.h" | |
142 #include "l1p_sign.h" | |
143 #endif | |
144 | |
145 #if ((L1_STEREOPATH == 1) && (OP_L1_STANDALONE == 1)) | |
146 #include "sys_dma.h" | |
147 #endif | |
148 | |
149 #if(L1_FF_MULTIBAND == 1) | |
150 extern UWORD8 tm_band; | |
151 #endif /*if (L1_FF_MULTIBAND == 1)*/ | |
152 | |
153 | |
154 // Prototypes from external functions | |
155 //------------------------------------ | |
156 UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq); | |
157 | |
158 void Cust_tm_rf_param_write (T_TM_RETURN *tm_return, WORD16 index, UWORD16 value); | |
159 void Cust_tm_rf_param_read (T_TM_RETURN *tm_return, WORD16 index); | |
160 void Cust_tm_rf_table_write (T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]); | |
161 void Cust_tm_rf_table_read (T_TM_RETURN *tm_return, WORD8 index); | |
162 void Cust_tm_rx_param_write (T_TM_RETURN *tm_return, WORD16 index, UWORD16 value); | |
163 void Cust_tm_rx_param_read (T_TM_RETURN *tm_return, WORD16 index); | |
164 void Cust_tm_tx_param_write (T_TM_RETURN *tm_return, WORD16 index, UWORD16 value, UWORD8 band); | |
165 void Cust_tm_tx_param_read (T_TM_RETURN *tm_return, WORD16 index, UWORD8 band); | |
166 void Cust_tm_tx_template_write (T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]); | |
167 void Cust_tm_tx_template_read (T_TM_RETURN *tm_return, WORD8 index); | |
168 void Cust_tm_special_param_write (T_TM_RETURN *tm_return, WORD16 index, UWORD16 value); | |
169 void Cust_tm_special_param_read (T_TM_RETURN *tm_return, WORD16 index); | |
170 void Cust_tm_special_table_write (T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]); | |
171 void Cust_tm_special_table_read (T_TM_RETURN *tm_return, WORD8 index); | |
172 void Cust_tm_special_enable (T_TM_RETURN *tm_return, WORD16 action); | |
173 | |
174 #if (CODE_VERSION != SIMULATION) | |
175 void Cust_tm_tpu_table_write (T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]); | |
176 void Cust_tm_tpu_table_read (T_TM_RETURN *tm_return, WORD8 index); | |
177 #endif | |
178 | |
179 //------------------------------------ | |
180 // Prototypes from external functions | |
181 //------------------------------------ | |
182 | |
183 void Cust_tm_init (void); | |
184 void l1tm_reset_rx_state (void); | |
185 void l1tm_reset_rx_stats (void); | |
186 | |
187 #if L1_GPRS | |
188 void l1pa_reset_cr_freq_list (void); | |
189 #endif | |
190 | |
191 //------------------------------------ | |
192 // Prototypes from internal functions | |
193 //------------------------------------ | |
194 | |
195 void l1tm_initialize_var(void); | |
196 UWORD16 l1tm_convert_arfcn2l1ch(UWORD16 arfcn, UWORD8 *error_flag); | |
197 void l1tm_stats_read(T_TM_RETURN *tm_return, WORD16 type, UWORD16 bitmask); | |
198 void tm_transmit(T_TM_RETURN *tm_ret); | |
199 void l1tm_PRBS1_generate(UWORD16 *TM_ul_data); | |
200 | |
201 #if ((L1_STEREOPATH == 1) && (OP_L1_STANDALONE == 1)) | |
202 void l1tm_stereopath_DMA_handler(SYS_UWORD16 dma_status); | |
203 void l1tm_stereopath_fill_buffer(void* buffer_address); | |
204 UWORD16 l1tm_stereopath_get_pattern(UWORD16 sampling_freq, UWORD16 sin_freq_left,UWORD16 sin_freq_right, UWORD8 data_type); | |
205 #endif | |
206 | |
207 /***********************************************************************/ | |
208 /* TESTMODE 3.X */ | |
209 /***********************************************************************/ | |
210 | |
211 static UWORD8 tx_param_band=0; // used in tx_param_write/read; default is GSM900 | |
212 | |
213 | |
214 | |
215 | |
216 // RF,(ANALOG)or other hardware dependent functions | |
217 // - work done by tmrf.c functions for each product. | |
218 | |
219 // TestMode functions that modify the state variables | |
220 // within the L1A - may need to allocate space | |
221 // dynamically if this is the first time calling | |
222 // these functions. | |
223 | |
224 // TestMode functions that start L1A state machines | |
225 // may need to send L1A primitives to change L1A state. | |
226 | |
227 void l1tm_rf_param_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
228 { | |
229 tm_return->index = prim->u.tm_params.index; | |
230 tm_return->size = 0; | |
231 | |
232 switch (prim->u.tm_params.index) | |
233 { | |
234 #if (FF_REPEATED_SACCH == 1) | |
235 // Repeated SACCH mode | |
236 case REPEATED_SACCH_ENA_FLAG: | |
237 { | |
238 l1_config.repeat_sacch_enable = prim->u.tm_params.value; | |
239 #if (ETM_PROTOCOL == 1) | |
240 tm_return->status = -ETM_OK; | |
241 #else | |
242 tm_return->status = E_OK; | |
243 #endif | |
244 break; | |
245 } | |
246 #endif /* FF_REPEATED_SACCH */ | |
247 | |
248 #if (FF_REPEATED_DL_FACCH == 1) | |
249 // Repeated FACCH mode | |
250 case REPEATED_FACCHDL_ENA_FLAG: | |
251 { | |
252 l1_config.repeat_facch_dl_enable = prim->u.tm_params.value; | |
253 #if (ETM_PROTOCOL == 1) | |
254 tm_return->status = -ETM_OK; | |
255 #else | |
256 tm_return->status = E_OK; | |
257 #endif/*(ETM_PROTOCOL == 1)*/ | |
258 | |
259 break; | |
260 } | |
261 #endif /* FF_REPEATED_DL_FACCH == 1 */ | |
262 case BCCH_ARFCN: | |
263 { | |
264 UWORD16 bcch_arfcn; | |
265 UWORD8 error_flag; | |
266 | |
267 bcch_arfcn = l1tm_convert_arfcn2l1ch(prim->u.tm_params.value, &error_flag); | |
268 | |
269 if (error_flag) | |
270 { | |
271 #if (ETM_PROTOCOL == 1) | |
272 tm_return->status = -ETM_INVAL; | |
273 #else | |
274 tm_return->status = E_INVAL; | |
275 #endif | |
276 } | |
277 else | |
278 { | |
279 l1_config.tmode.rf_params.bcch_arfcn = bcch_arfcn; | |
280 | |
281 // now change on the fly | |
282 // no reason to check dedicated_active flag... | |
283 // we just set these 2 globals for FB/SB/BCCH tests | |
284 l1a_l1s_com.nsync.list[0].radio_freq = l1_config.tmode.rf_params.bcch_arfcn; | |
285 l1a_l1s_com.Scell_info.radio_freq = l1_config.tmode.rf_params.bcch_arfcn; | |
286 #if (ETM_PROTOCOL == 1) | |
287 tm_return->status = -ETM_OK; | |
288 #else | |
289 tm_return->status = E_OK; | |
290 #endif | |
291 } | |
292 break; | |
293 } | |
294 case TCH_ARFCN: | |
295 { | |
296 T_CHN_SEL *chan_sel; | |
297 UWORD16 tch_arfcn; | |
298 UWORD8 error_flag; | |
299 | |
300 tch_arfcn = l1tm_convert_arfcn2l1ch(prim->u.tm_params.value, &error_flag); | |
301 | |
302 if (error_flag) | |
303 #if (ETM_PROTOCOL == 1) | |
304 tm_return->status = -ETM_INVAL; | |
305 #else | |
306 tm_return->status = E_INVAL; | |
307 #endif | |
308 else | |
309 { | |
310 l1_config.tmode.rf_params.tch_arfcn = tch_arfcn; | |
311 | |
312 // now change on the fly if necessary | |
313 if (l1_config.TestMode && l1tm.tmode_state.dedicated_active) | |
314 { | |
315 chan_sel = &(l1a_l1s_com.dedic_set.aset->achan_ptr->desc_ptr->chan_sel); | |
316 chan_sel->rf_channel.single_rf.radio_freq = l1_config.tmode.rf_params.tch_arfcn; | |
317 } | |
318 #if (ETM_PROTOCOL == 1) | |
319 tm_return->status = -ETM_OK; | |
320 #else | |
321 tm_return->status = E_OK; | |
322 #endif | |
323 } | |
324 break; | |
325 } | |
326 case MON_ARFCN: | |
327 { | |
328 UWORD16 mon_arfcn; | |
329 UWORD8 error_flag; | |
330 | |
331 mon_arfcn = l1tm_convert_arfcn2l1ch(prim->u.tm_params.value, &error_flag); | |
332 | |
333 if (error_flag) | |
334 #if (ETM_PROTOCOL == 1) | |
335 tm_return->status = -ETM_INVAL; | |
336 #else | |
337 tm_return->status = E_INVAL; | |
338 #endif | |
339 else | |
340 { | |
341 l1_config.tmode.rf_params.mon_arfcn = mon_arfcn; | |
342 #if (ETM_PROTOCOL == 1) | |
343 tm_return->status = -ETM_OK; | |
344 #else | |
345 tm_return->status = E_OK; | |
346 #endif | |
347 } | |
348 break; | |
349 } | |
350 #if L1_GPRS | |
351 case PDTCH_ARFCN: | |
352 { | |
353 UWORD16 pdtch_arfcn; | |
354 UWORD8 error_flag; | |
355 | |
356 pdtch_arfcn = l1tm_convert_arfcn2l1ch(prim->u.tm_params.value, &error_flag); | |
357 | |
358 if (error_flag) | |
359 #if (ETM_PROTOCOL == 1) | |
360 tm_return->status = -ETM_INVAL; | |
361 #else | |
362 tm_return->status = E_INVAL; | |
363 #endif | |
364 else | |
365 { | |
366 l1_config.tmode.rf_params.pdtch_arfcn = pdtch_arfcn; | |
367 #if (ETM_PROTOCOL == 1) | |
368 tm_return->status = -ETM_OK; | |
369 #else | |
370 tm_return->status = E_OK; | |
371 #endif | |
372 } | |
373 break; | |
374 } | |
375 #endif | |
376 case AFC_ENA_FLAG: | |
377 { | |
378 l1_config.afc_enable = prim->u.tm_params.value; | |
379 #if (ETM_PROTOCOL == 1) | |
380 tm_return->status = -ETM_OK; | |
381 #else | |
382 tm_return->status = E_OK; | |
383 #endif | |
384 break; | |
385 } | |
386 case AFC_DAC_VALUE: | |
387 { | |
388 WORD16 afc_value = prim->u.tm_params.value; | |
389 // 13-bit AFC DAC | |
390 #if(RF_FAM != 61) | |
391 if (afc_value<-4096 || afc_value>4095) | |
392 #else | |
393 if (afc_value<-8192 || afc_value>8191) | |
394 #endif | |
395 { | |
396 #if (ETM_PROTOCOL == 1) | |
397 tm_return->status = -ETM_INVAL; | |
398 #else | |
399 tm_return->status = E_INVAL; | |
400 #endif | |
401 break; | |
402 } | |
403 | |
404 if (!l1_config.afc_enable) | |
405 { | |
406 // write AFC value to AFC DAC ASAP!! AFC DAC will be updated by any RX | |
407 // or TX test. | |
408 l1s.afc = afc_value; | |
409 } | |
410 | |
411 #if (ETM_PROTOCOL == 1) | |
412 tm_return->status = -ETM_OK; | |
413 #else | |
414 tm_return->status = E_OK; | |
415 #endif | |
416 break; | |
417 } | |
418 #if L1_GPRS | |
419 case MULTISLOT_CLASS: | |
420 { | |
421 UWORD8 multislot_class; | |
422 | |
423 multislot_class = prim->u.tm_params.value; | |
424 | |
425 if ((multislot_class < 1) || (multislot_class > 12)) | |
426 #if (ETM_PROTOCOL == 1) | |
427 tm_return->status = -ETM_INVAL; | |
428 #else | |
429 tm_return->status = E_INVAL; | |
430 #endif | |
431 else | |
432 { | |
433 l1_config.tmode.rf_params.multislot_class = multislot_class; | |
434 #if (ETM_PROTOCOL == 1) | |
435 tm_return->status = -ETM_OK; | |
436 #else | |
437 tm_return->status = E_OK; | |
438 #endif | |
439 } | |
440 break; | |
441 } | |
442 #endif // end of L1_GPRS | |
443 default: | |
444 { | |
445 Cust_tm_rf_param_write(tm_return, | |
446 prim->u.tm_params.index, | |
447 prim->u.tm_params.value); | |
448 break; | |
449 } | |
450 } // end switch | |
451 } | |
452 | |
453 UWORD16 l1tm_convert_arfcn2l1ch(UWORD16 arfcn, UWORD8 *error_flag) | |
454 #if (L1_FF_MULTIBAND == 0) | |
455 { | |
456 /* Here, before we store the channel numbers to the l1_config structure, | |
457 we convert from ETSI to TI channel numbering system. The GGT | |
458 ALWAYS expects the ETSI numbering system as input and output. | |
459 | |
460 We need to do the OPPOSITE of what is done in convert_l1_arfcn() in | |
461 tpudrvX.c | |
462 | |
463 *************************************** | |
464 *** convert arfcn's from ETSI to TI *** | |
465 *************************************** | |
466 ** ** | |
467 ** ETSI TI ** | |
468 ** 0 GSM 174 ** | |
469 ** 1 - 124 GSM 1 - 124 ** | |
470 ** 975 - 1023 E-GSM 125 - 173 ** | |
471 ** 512 - 885 DCS 174 - 548 ** | |
472 ** ** | |
473 *************************************** */ | |
474 | |
475 *error_flag = 0; | |
476 | |
477 switch (l1_config.std.id) | |
478 { | |
479 case GSM: | |
480 case DCS1800: | |
481 case PCS1900: | |
482 case GSM850: | |
483 break; | |
484 | |
485 case DUAL: | |
486 if ((arfcn >= 512) && (arfcn <= 885)) arfcn -= 337; | |
487 else if (arfcn > 124) *error_flag = 1; // invalid arfcn | |
488 break; | |
489 | |
490 case DUALEXT: | |
491 if (arfcn == 0) arfcn = 174; | |
492 else if ((arfcn >= 975) && (arfcn <= 1023)) arfcn -= 850; | |
493 else if ((arfcn >= 512) && (arfcn <= 885)) arfcn -= 337; | |
494 else if ((arfcn >= 1) && (arfcn <= 124)); | |
495 else *error_flag = 1; // invalide arfcn | |
496 break; | |
497 | |
498 case DUAL_US: // GSM850:128-251 PCS1900:512-810 | |
499 if ((arfcn >= 128) && (arfcn <= 251)) arfcn -= 127; | |
500 else if ((arfcn >= 512) && (arfcn <= 810)) arfcn -= 387; | |
501 else *error_flag = 1; // invalid arfcn | |
502 break; | |
503 | |
504 default: | |
505 *error_flag = 1; // invalid std.id | |
506 break; | |
507 } // end switch | |
508 return arfcn; | |
509 } | |
510 #else // L1_FF_MULTIBAND = 1 below | |
511 | |
512 { | |
513 *error_flag=0; | |
514 if(tm_band == RF_PCS1900) | |
515 { | |
516 arfcn = arfcn + 512; | |
517 } | |
518 return(arfcn); | |
519 #if 0 | |
520 UWORD16 l1_radio_freq = 0; | |
521 UWORD8 effective_band_id = 0; | |
522 *error_flag = 1; | |
523 for (effective_band_id = 0; effective_band_id < RF_NB_SUBBANDS; effective_band_id ++) | |
524 { | |
525 if( multiband_conversion_data[effective_band_id].physical_band_id == tm_band) | |
526 { | |
527 if( (arfcn - multiband_conversion_data[effective_band_id].first_tpu_radio_freq) < multiband_conversion_data[effective_band_id].nbmax_carrier) | |
528 { | |
529 l1_radio_freq = arfcn - multiband_conversion_data[effective_band_id].first_tpu_radio_freq + multiband_conversion_data[effective_band_id].first_radio_freq; | |
530 *error_flag = 0; | |
531 return(l1_radio_freq); | |
532 } | |
533 } | |
534 } | |
535 return(l1_radio_freq); | |
536 #endif | |
537 | |
538 } | |
539 | |
540 #endif // #if (L1_FF_MULTIBAND == 0) else | |
541 | |
542 | |
543 void l1tm_rf_param_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
544 { | |
545 volatile UWORD16 value; | |
546 | |
547 tm_return->index = prim->u.tm_params.index; | |
548 | |
549 switch (prim->u.tm_params.index) | |
550 { | |
551 #if (FF_REPEATED_SACCH == 1 ) | |
552 /* Repeated SACCH mode */ | |
553 case REPEATED_SACCH_ENA_FLAG: | |
554 { | |
555 value = l1_config.repeat_sacch_enable; | |
556 break; | |
557 } | |
558 #endif /* FF_REPEATED_SACCH */ | |
559 | |
560 #if FF_REPEATED_DL_FACCH | |
561 // Repeated FACCH mode | |
562 case REPEATED_FACCHDL_ENA_FLAG: | |
563 { | |
564 value = l1_config.repeat_facch_dl_enable; | |
565 break; | |
566 } | |
567 #endif /* FF_REPEATED_DL_FACCH */ | |
568 | |
569 | |
570 case BCCH_ARFCN: | |
571 { | |
572 // return ETSI value for channel number | |
573 value = Convert_l1_radio_freq(l1_config.tmode.rf_params.bcch_arfcn); | |
574 break; | |
575 } | |
576 case TCH_ARFCN: | |
577 { | |
578 // return ETSI value for channel number | |
579 value = Convert_l1_radio_freq(l1_config.tmode.rf_params.tch_arfcn); | |
580 break; | |
581 } | |
582 case MON_ARFCN: | |
583 { | |
584 // return ETSI value for channel number | |
585 value = Convert_l1_radio_freq(l1_config.tmode.rf_params.mon_arfcn); | |
586 break; | |
587 } | |
588 #if L1_GPRS | |
589 case PDTCH_ARFCN: | |
590 { | |
591 // return ETSI value for channel number | |
592 value = Convert_l1_radio_freq(l1_config.tmode.rf_params.pdtch_arfcn); | |
593 break; | |
594 } | |
595 #endif | |
596 case AFC_ENA_FLAG: | |
597 { | |
598 value = l1_config.afc_enable; | |
599 break; | |
600 } | |
601 case AFC_DAC_VALUE: | |
602 { | |
603 value = l1s.afc; // returned as F13.3 | |
604 break; | |
605 } | |
606 #if L1_GPRS | |
607 case MULTISLOT_CLASS: | |
608 { | |
609 value = l1_config.tmode.rf_params.multislot_class; | |
610 break; | |
611 } | |
612 #endif | |
613 default: | |
614 { | |
615 Cust_tm_rf_param_read(tm_return, prim->u.tm_params.index); | |
616 return; | |
617 } | |
618 } // end switch | |
619 | |
620 memcpy(tm_return->result, (UWORD8 *)&value, 2); | |
621 tm_return->size = 2; | |
622 #if (ETM_PROTOCOL == 1) | |
623 tm_return->status = -ETM_OK; | |
624 #else | |
625 tm_return->status = E_OK; | |
626 #endif | |
627 } | |
628 | |
629 void l1tm_rf_table_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
630 { | |
631 Cust_tm_rf_table_write(tm_return, | |
632 prim->u.tm_table.index, | |
633 prim->str_len_in_bytes - 1, // subtract 8-bit index | |
634 prim->u.tm_table.table); | |
635 } | |
636 | |
637 void l1tm_rf_table_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
638 { | |
639 Cust_tm_rf_table_read(tm_return, prim->u.tm_table.index); | |
640 } | |
641 | |
642 void l1tm_rx_param_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
643 { | |
644 tm_return->index = prim->u.tm_params.index; | |
645 tm_return->size = 0; | |
646 | |
647 switch (prim->u.tm_params.index) | |
648 { | |
649 case RX_AGC_GAIN: | |
650 { | |
651 WORD8 gain = prim->u.tm_params.value; | |
652 | |
653 // It is up to the user to write a valid gain, | |
654 // one that falls within the range of gains in the current RF | |
655 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) | |
656 // corresponds to the lna_off bit | |
657 l1_config.tmode.rx_params.agc = gain & ~0x01; | |
658 l1_config.tmode.rx_params.lna_off = gain & 0x01; | |
659 #if (ETM_PROTOCOL == 1) | |
660 tm_return->status = -ETM_OK; | |
661 #else | |
662 tm_return->status = E_OK; | |
663 #endif | |
664 break; | |
665 } | |
666 case RX_TIMESLOT: | |
667 { | |
668 if (prim->u.tm_params.value > 7) | |
669 { | |
670 #if (ETM_PROTOCOL == 1) | |
671 tm_return->status = -ETM_INVAL; | |
672 #else | |
673 tm_return->status = E_INVAL; | |
674 #endif | |
675 break; | |
676 } | |
677 | |
678 l1_config.tmode.rx_params.slot_num = prim->u.tm_params.value; | |
679 if (l1_config.TestMode && l1tm.tmode_state.dedicated_active) | |
680 { | |
681 // currently CANNOT change RX slot on the fly! | |
682 } | |
683 | |
684 #if (ETM_PROTOCOL == 1) | |
685 tm_return->status = -ETM_OK; | |
686 #else | |
687 tm_return->status = E_OK; | |
688 #endif | |
689 break; | |
690 } | |
691 case RX_PM_ENABLE: | |
692 { | |
693 l1_config.tmode.rx_params.pm_enable = prim->u.tm_params.value; | |
694 | |
695 #if (ETM_PROTOCOL == 1) | |
696 tm_return->status = -ETM_OK; | |
697 #else | |
698 tm_return->status = E_OK; | |
699 #endif | |
700 break; | |
701 } | |
702 #if L1_GPRS | |
703 case RX_GPRS_SLOTS: | |
704 { | |
705 // At least one DL TS needs to be allocated | |
706 if (!prim->u.tm_params.value) | |
707 #if (ETM_PROTOCOL == 1) | |
708 tm_return->status = -ETM_INVAL; | |
709 #else | |
710 tm_return->status = E_INVAL; | |
711 #endif | |
712 else | |
713 { | |
714 l1_config.tmode.rx_params.timeslot_alloc = prim->u.tm_params.value; | |
715 #if (ETM_PROTOCOL == 1) | |
716 tm_return->status = -ETM_OK; | |
717 #else | |
718 tm_return->status = E_OK; | |
719 #endif | |
720 } | |
721 break; | |
722 } | |
723 case RX_GPRS_CODING: | |
724 { | |
725 UWORD8 coding_scheme; | |
726 | |
727 coding_scheme = prim->u.tm_params.value; | |
728 if ((coding_scheme < 1) || (coding_scheme > 6) || (coding_scheme == 3)) | |
729 #if (ETM_PROTOCOL == 1) | |
730 tm_return->status = -ETM_INVAL; | |
731 #else | |
732 tm_return->status = E_INVAL; | |
733 #endif | |
734 else | |
735 { | |
736 l1_config.tmode.rx_params.coding_scheme = prim->u.tm_params.value; | |
737 #if (ETM_PROTOCOL == 1) | |
738 tm_return->status = -ETM_OK; | |
739 #else | |
740 tm_return->status = E_OK; | |
741 #endif | |
742 } | |
743 break; | |
744 } | |
745 #endif | |
746 case RX_AGC_ENA_FLAG: | |
747 { | |
748 l1_config.agc_enable = prim->u.tm_params.value; | |
749 #if (ETM_PROTOCOL == 1) | |
750 tm_return->status = -ETM_OK; | |
751 #else | |
752 tm_return->status = E_OK; | |
753 #endif | |
754 break; | |
755 } | |
756 default: | |
757 { | |
758 Cust_tm_rx_param_write(tm_return, | |
759 prim->u.tm_params.index, | |
760 prim->u.tm_params.value); | |
761 break; | |
762 } | |
763 } // end switch | |
764 } | |
765 | |
766 void l1tm_rx_param_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
767 { | |
768 volatile UWORD16 value; | |
769 | |
770 tm_return->index = prim->u.tm_params.index; | |
771 | |
772 switch (prim->u.tm_params.index) | |
773 { | |
774 case RX_AGC_GAIN: | |
775 { | |
776 value = l1_config.tmode.rx_params.agc | l1_config.tmode.rx_params.lna_off; | |
777 break; | |
778 } | |
779 case RX_TIMESLOT: | |
780 { | |
781 value = l1_config.tmode.rx_params.slot_num; | |
782 break; | |
783 } | |
784 case RX_AGC_ENA_FLAG: | |
785 { | |
786 value = l1_config.agc_enable; | |
787 break; | |
788 } | |
789 case RX_PM_ENABLE: | |
790 { | |
791 value = l1_config.tmode.rx_params.pm_enable; | |
792 break; | |
793 } | |
794 #if L1_GPRS | |
795 case RX_GPRS_SLOTS: | |
796 { | |
797 value = l1_config.tmode.rx_params.timeslot_alloc; | |
798 break; | |
799 } | |
800 case RX_GPRS_CODING: | |
801 { | |
802 value = l1_config.tmode.rx_params.coding_scheme; | |
803 break; | |
804 } | |
805 #endif | |
806 default: | |
807 { | |
808 Cust_tm_rx_param_read(tm_return, prim->u.tm_params.index); | |
809 return; | |
810 } | |
811 } // end switch | |
812 | |
813 memcpy(tm_return->result, (UWORD8 *)&value, 2); | |
814 tm_return->size = 2; | |
815 #if (ETM_PROTOCOL == 1) | |
816 tm_return->status = -ETM_OK; | |
817 #else | |
818 tm_return->status = E_OK; | |
819 #endif | |
820 } | |
821 | |
822 void l1tm_tx_param_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
823 { | |
824 tm_return->index = prim->u.tm_params.index; | |
825 tm_return->size = 0; | |
826 | |
827 switch (prim->u.tm_params.index) | |
828 { | |
829 case TX_PWR_LEVEL: | |
830 { | |
831 UWORD8 temp_txpwr, temp_band; | |
832 | |
833 if (prim->u.tm_params.value < 100) // GSM900 | |
834 { | |
835 temp_txpwr = prim->u.tm_params.value; | |
836 temp_band = 0; | |
837 } | |
838 else if (prim->u.tm_params.value < 200) // DCS1800 | |
839 { | |
840 temp_txpwr = prim->u.tm_params.value - 100; | |
841 temp_band = 1; | |
842 } | |
843 else if (prim->u.tm_params.value < 300) // PCS1900 | |
844 { | |
845 temp_txpwr = prim->u.tm_params.value - 200; | |
846 temp_band = 2; | |
847 } | |
848 else // force invalid values to return -ETM_INVAL or E_INVAL | |
849 { | |
850 temp_txpwr = 50; | |
851 temp_band = 10; | |
852 } | |
853 | |
854 // Note that the pwr level is only checked for being within the range [0..31] | |
855 // because all pwr levels should be testable. | |
856 // For subfunctions [TX_APC_DAC..TX_DELAY_DOWN]: | |
857 // temp_txpwr + 0 ==> GSM900 | |
858 // temp_txpwr + 100 ==> DCS1800 | |
859 // temp_txpwr + 200 ==> PCS1900 | |
860 | |
861 // Changing tx pwr level on the fly while in continuous mode is not supported. | |
862 if (temp_txpwr > 31 || temp_band > 2 || | |
863 l1_config.tmode.rf_params.tmode_continuous == TM_CONTINUOUS) | |
864 { | |
865 #if (ETM_PROTOCOL == 1) | |
866 tm_return->status = -ETM_INVAL; | |
867 #else | |
868 tm_return->status = E_INVAL; | |
869 #endif | |
870 break; | |
871 } | |
872 | |
873 l1_config.tmode.tx_params.txpwr = temp_txpwr; | |
874 tx_param_band = temp_band; | |
875 | |
876 // if in TX mode, change txpwr on the fly | |
877 if ((l1_config.TestMode) && | |
878 (l1tm.tmode_state.dedicated_active) && | |
879 (l1_config.tmode.rf_params.down_up & TMODE_UPLINK)) | |
880 { | |
881 // this causes 'direct' changing of TXPWR, which is OK in TestMode | |
882 l1a_l1s_com.dedic_set.aset->new_target_txpwr = l1s.applied_txpwr = l1_config.tmode.tx_params.txpwr; | |
883 } | |
884 | |
885 #if (ETM_PROTOCOL == 1) | |
886 tm_return->status = -ETM_OK; | |
887 #else | |
888 tm_return->status = E_OK; | |
889 #endif | |
890 break; | |
891 } | |
892 case TX_TIMING_ADVANCE: | |
893 { | |
894 l1_config.tmode.tx_params.timing_advance = prim->u.tm_params.value; | |
895 | |
896 if (l1_config.TestMode && l1tm.tmode_state.dedicated_active) | |
897 { | |
898 // direct changing of Timing Advance | |
899 l1a_l1s_com.dedic_set.aset->new_timing_advance = l1_config.tmode.tx_params.timing_advance; | |
900 // new TA to take effect immediately | |
901 l1a_l1s_com.dedic_set.aset->timing_advance = l1a_l1s_com.dedic_set.aset->new_timing_advance; | |
902 } | |
903 #if (ETM_PROTOCOL == 1) | |
904 tm_return->status = -ETM_OK; | |
905 #else | |
906 tm_return->status = E_OK; | |
907 #endif | |
908 break; | |
909 } | |
910 case TX_PWR_SKIP: | |
911 { | |
912 l1_config.tmode.tx_params.txpwr_skip = prim->u.tm_params.value; | |
913 #if (ETM_PROTOCOL == 1) | |
914 tm_return->status = -ETM_OK; | |
915 #else | |
916 tm_return->status = E_OK; | |
917 #endif | |
918 break; | |
919 } | |
920 #if L1_GPRS | |
921 case TX_GPRS_POWER0: | |
922 case TX_GPRS_POWER1: | |
923 case TX_GPRS_POWER2: | |
924 case TX_GPRS_POWER3: | |
925 case TX_GPRS_POWER4: | |
926 case TX_GPRS_POWER5: | |
927 case TX_GPRS_POWER6: | |
928 case TX_GPRS_POWER7: | |
929 { | |
930 l1_config.tmode.tx_params.txpwr_gprs[prim->u.tm_params.index - TX_GPRS_POWER0] = prim->u.tm_params.value; | |
931 #if (ETM_PROTOCOL == 1) | |
932 tm_return->status = -ETM_OK; | |
933 #else | |
934 tm_return->status = E_OK; | |
935 #endif | |
936 break; | |
937 } | |
938 case TX_GPRS_SLOTS: | |
939 { | |
940 l1_config.tmode.tx_params.timeslot_alloc = prim->u.tm_params.value; | |
941 #if (ETM_PROTOCOL == 1) | |
942 tm_return->status = -ETM_OK; | |
943 #else | |
944 tm_return->status = E_OK; | |
945 #endif | |
946 break; | |
947 } | |
948 case TX_GPRS_CODING: | |
949 { | |
950 UWORD8 coding_scheme; | |
951 | |
952 coding_scheme = prim->u.tm_params.value; | |
953 if ((coding_scheme < 2) || (coding_scheme > 6) || (coding_scheme == 3)) | |
954 #if (ETM_PROTOCOL == 1) | |
955 tm_return->status = -ETM_INVAL; | |
956 #else | |
957 tm_return->status = E_INVAL; | |
958 #endif | |
959 else | |
960 { | |
961 l1_config.tmode.tx_params.coding_scheme = prim->u.tm_params.value; | |
962 #if (ETM_PROTOCOL == 1) | |
963 tm_return->status = -ETM_OK; | |
964 #else | |
965 tm_return->status = E_OK; | |
966 #endif | |
967 } | |
968 break; | |
969 } | |
970 #endif | |
971 default: | |
972 { | |
973 Cust_tm_tx_param_write(tm_return, | |
974 prim->u.tm_params.index, | |
975 prim->u.tm_params.value, | |
976 tx_param_band); | |
977 break; | |
978 } | |
979 } // end switch | |
980 } | |
981 | |
982 void l1tm_tx_param_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
983 { | |
984 tm_return->index = prim->u.tm_params.index; | |
985 | |
986 Cust_tm_tx_param_read(tm_return, | |
987 prim->u.tm_params.index, | |
988 tx_param_band); | |
989 } | |
990 | |
991 void l1tm_tx_template_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
992 { | |
993 Cust_tm_tx_template_write(tm_return, | |
994 prim->u.tm_table.index, | |
995 prim->str_len_in_bytes - 1, // subtract 8-bit index | |
996 prim->u.tm_table.table); | |
997 } | |
998 | |
999 void l1tm_tx_template_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1000 { | |
1001 Cust_tm_tx_template_read(tm_return, prim->u.tm_table.index); | |
1002 } | |
1003 | |
1004 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1005 void l1tm_mode_set(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1006 { | |
1007 switch (prim->u.tm_params.index) { | |
1008 case 0: | |
1009 l1_config.TestMode = 0; | |
1010 tm_return->status = E_OK; | |
1011 break; | |
1012 case 1: | |
1013 l1_config.TestMode = 1; | |
1014 l1_config.tx_pwr_code = 1; | |
1015 l1_config.pwr_mngt = 0; | |
1016 tm_return->status = E_OK; | |
1017 Cust_tm_init(); | |
1018 l1tm_initialize_var(); | |
1019 break; | |
1020 default: | |
1021 tm_return->status = E_INVAL; | |
1022 } | |
1023 tm_return->index = 0; | |
1024 tm_return->size = 0; | |
1025 } | |
1026 | |
1027 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1028 void l1tm_version_get(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1029 { | |
1030 UWORD16 revision; | |
1031 extern T_RF rf; | |
1032 | |
1033 tm_return->index = prim->u.tm_params.index; | |
1034 | |
1035 switch (prim->u.tm_params.index) { | |
1036 /* "meat" of this switch statement taken from LoCosto etm_tm3core.c */ | |
1037 case BBCHIP_MODULE_REV: | |
1038 revision = CHIPSET; | |
1039 break; | |
1040 case CHIPID_MODULE_REV: | |
1041 revision = *( (volatile UWORD16 *) (MEM_JTAGID_PART)); | |
1042 break; | |
1043 case CHIPVER_MODULE_REV: | |
1044 revision = *( (volatile UWORD16 *) (MEM_JTAGID_VER)); | |
1045 break; | |
1046 case DSPSW_MODULE_REV: | |
1047 revision = l1s.version.dsp_code_version; | |
1048 break; | |
1049 case ANALOGCHIP_MODULE_REV: | |
1050 revision = ((ANLG_PG << 7) | ANLG_FAM); | |
1051 break; | |
1052 case LAYER1_MODULE_REV: | |
1053 revision = l1s.version.mcu_tcs_official; | |
1054 break; | |
1055 case RFDRIVER_MODULE_REV: | |
1056 revision = rf.rf_revision; | |
1057 break; | |
1058 case TM_API_MODULE_REV: | |
1059 revision = TMAPIVERSION; | |
1060 break; | |
1061 case L1_TM_CORE_MODULE_REV: | |
1062 revision = l1s.version.mcu_tm_version; | |
1063 break; | |
1064 case DSP_MODULE_REV: | |
1065 revision = DSP; | |
1066 break; | |
1067 case RF_MODULE_REV: | |
1068 revision = ((RF_PA << 10) | (RF_PG << 7) | RF_FAM); | |
1069 break; | |
1070 default: | |
1071 tm_return->status = E_BADINDEX; | |
1072 tm_return->size = 0; | |
1073 return; | |
1074 } | |
1075 memcpy(tm_return->result, &revision, sizeof revision); | |
1076 tm_return->size = sizeof revision; | |
1077 tm_return->status = E_OK; | |
1078 } | |
1079 | |
1080 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1081 void l1tm_mem_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1082 { | |
1083 UWORD8 *mem_ptr; | |
1084 UWORD8 num_of_bytes; | |
1085 UWORD16 i; | |
1086 | |
1087 mem_ptr = (UWORD8 *) prim->u.mem_write.address; | |
1088 num_of_bytes = prim->str_len_in_bytes - 4; | |
1089 for (i = 0; i < num_of_bytes; i++) | |
1090 mem_ptr[i] = prim->u.mem_write.table[i]; | |
1091 tm_return->size = 0; | |
1092 tm_return->index = 0; | |
1093 tm_return->status = E_OK; | |
1094 } | |
1095 | |
1096 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1097 void l1tm_mem_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1098 { | |
1099 tm_return->index = 0; | |
1100 if (prim->u.mem_read.length > TM_PAYLOAD_UPLINK_SIZE_MAX - 4) { | |
1101 tm_return->size = 0; | |
1102 tm_return->status = E_BADSIZE; | |
1103 return; | |
1104 } | |
1105 memcpy(tm_return->result, &prim->u.mem_read.length, 4); | |
1106 memcpy(tm_return->result + 4, (UWORD8 *) prim->u.mem_read.src, | |
1107 prim->u.mem_read.length); | |
1108 tm_return->size = prim->u.mem_read.length + 4; | |
1109 tm_return->status = E_OK; | |
1110 } | |
1111 | |
1112 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1113 void l1tm_codec_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1114 { | |
1115 UWORD16 page, reg; | |
1116 | |
1117 page = (prim->u.tm_params.index >> 5) & 1; | |
1118 reg = prim->u.tm_params.index & 0x1F; | |
1119 if (!l1_config.TestMode) { | |
1120 tm_return->status = E_TESTMODE; | |
1121 goto out; | |
1122 } | |
1123 if (page >= 2 || reg >= 32) { | |
1124 tm_return->status = E_INVAL; | |
1125 goto out; | |
1126 } | |
1127 ABB_Write_Register_on_page(page + 1, reg << 1, | |
1128 prim->u.tm_params.value & 0x3FF); | |
1129 tm_return->status = E_OK; | |
1130 out: | |
1131 tm_return->index = 0; | |
1132 tm_return->size = 0; | |
1133 } | |
1134 | |
1135 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1136 void l1tm_codec_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1137 { | |
1138 UWORD16 page, reg; | |
1139 UWORD16 value; | |
1140 | |
1141 page = (prim->u.tm_params.index >> 5) & 1; | |
1142 reg = prim->u.tm_params.index & 0x1F; | |
1143 value = ABB_Read_Register_on_page(page + 1, reg << 1); | |
1144 memcpy(tm_return->result, &value, 2); | |
1145 tm_return->size = 2; | |
1146 tm_return->status = E_OK; | |
1147 tm_return->index = 0; | |
1148 } | |
1149 | |
1150 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1151 void l1tm_misc_param_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1152 { | |
1153 tm_return->index = prim->u.tm_params.index; | |
1154 tm_return->size = 0; | |
1155 switch (prim->u.tm_params.index) { | |
1156 case ADC_ENA_FLAG: | |
1157 l1_config.adc_enable = prim->u.tm_params.value; | |
1158 break; | |
1159 default: | |
1160 Cust_tm_misc_param_write(tm_return, prim->u.tm_params.index, | |
1161 prim->u.tm_params.value); | |
1162 return; | |
1163 } | |
1164 tm_return->status = E_OK; | |
1165 } | |
1166 | |
1167 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1168 void l1tm_misc_param_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1169 { | |
1170 UWORD16 value; | |
1171 | |
1172 tm_return->index = prim->u.tm_params.index; | |
1173 switch (prim->u.tm_params.index) { | |
1174 case ADC_ENA_FLAG: | |
1175 value = l1_config.adc_enable; | |
1176 break; | |
1177 case CURRENT_TM_MODE: | |
1178 value = l1_config.TestMode; | |
1179 break; | |
1180 default: | |
1181 Cust_tm_misc_param_read(tm_return, prim->u.tm_params.index); | |
1182 return; | |
1183 } | |
1184 memcpy(tm_return->result, &value, 2); | |
1185 tm_return->size = 2; | |
1186 tm_return->status = E_OK; | |
1187 } | |
1188 | |
1189 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1190 void l1tm_misc_enable(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1191 { | |
1192 Cust_tm_misc_enable(tm_return, prim->u.tm_params.index); | |
1193 } | |
1194 | |
1195 void l1tm_special_param_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1196 { | |
1197 Cust_tm_special_param_write(tm_return, | |
1198 prim->u.tm_params.index, | |
1199 prim->u.tm_params.value); | |
1200 } | |
1201 | |
1202 void l1tm_special_param_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1203 { | |
1204 Cust_tm_special_param_read(tm_return, prim->u.tm_params.index); | |
1205 } | |
1206 | |
1207 void l1tm_special_table_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1208 { | |
1209 Cust_tm_special_table_write(tm_return, | |
1210 prim->u.tm_table.index, | |
1211 prim->str_len_in_bytes - 1, | |
1212 prim->u.tm_table.table); | |
1213 } | |
1214 | |
1215 void l1tm_special_table_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1216 { | |
1217 Cust_tm_special_table_read(tm_return, prim->u.tm_table.index); | |
1218 } | |
1219 | |
1220 void l1tm_special_enable(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1221 { | |
1222 Cust_tm_special_enable(tm_return, prim->u.tm_params.index); | |
1223 } | |
1224 | |
1225 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1226 void l1tm_initialize(T_TM_RETURN *tm_return) | |
1227 { | |
1228 Cust_tm_init(); | |
1229 tm_return->status = E_OK; | |
1230 tm_return->size = 0; | |
1231 tm_return->index = 0; | |
1232 } | |
1233 | |
1234 /* TCS211 function missing in LoCosto, reconstructed from disassembly */ | |
1235 void l1tm_ffs(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1236 { | |
1237 tm_return->size = tm_ffs(tm_return->result, 32, prim->u.ffs.packet, | |
1238 prim->str_len_in_bytes); | |
1239 tm_return->status = E_OK; | |
1240 tm_return->index = 0; | |
1241 } | |
1242 | |
1243 /*-------------------------------------------------------*/ | |
1244 /* l1tm_initialize_var() */ | |
1245 /*-------------------------------------------------------*/ | |
1246 /* Parameters : */ | |
1247 /* ------------- */ | |
1248 /* Return : */ | |
1249 /* ------------- */ | |
1250 /* Description : */ | |
1251 /* ------------- */ | |
1252 /* This routine is used to switch to TestMode by re- */ | |
1253 /* initializing the l1a, l1s and l1a_l1s_com global */ | |
1254 /* structures. Re-initialization is kept at a minimum. */ | |
1255 /*-------------------------------------------------------*/ | |
1256 void l1tm_initialize_var(void) | |
1257 { | |
1258 UWORD32 i; | |
1259 UWORD8 task_id; | |
1260 | |
1261 | |
1262 // L1S tasks management... | |
1263 //----------------------------------------- | |
1264 for(task_id=0; task_id<NBR_DL_L1S_TASKS; task_id++) | |
1265 { | |
1266 l1s.task_status[task_id].new_status = NOT_PENDING; | |
1267 l1s.task_status[task_id].current_status = INACTIVE; | |
1268 } | |
1269 l1s.frame_count = 0; | |
1270 l1s.forbid_meas = 0; | |
1271 | |
1272 // MFTAB management variables... | |
1273 //----------------------------------------- | |
1274 l1s.afrm = 0; | |
1275 l1s_clear_mftab(l1s.mftab.frmlst); | |
1276 | |
1277 // Flag registers for RF task controle... | |
1278 //----------------------------------------- | |
1279 l1s.tpu_ctrl_reg = 0; | |
1280 l1s.dsp_ctrl_reg = 0; | |
1281 | |
1282 //++++++++++++++++++++++++++++++++++++++++++ | |
1283 // Reset "l1a" structure. | |
1284 //++++++++++++++++++++++++++++++++++++++++++ | |
1285 | |
1286 // Downlink tasks management... | |
1287 // Uplink tasks management... | |
1288 // Measurement tasks management... | |
1289 //----------------------------------------- | |
1290 for(i=0; i<NBR_L1A_PROCESSES; i++) | |
1291 { | |
1292 l1a.l1a_en_meas[i] = 0; | |
1293 l1a.state[i] = 0; // RESET state. | |
1294 } | |
1295 | |
1296 // Flag for forward/delete message management. | |
1297 //--------------------------------------------- | |
1298 l1a.l1_msg_forwarded = 0; | |
1299 | |
1300 | |
1301 //++++++++++++++++++++++++++++++++++++++++++ | |
1302 // Reset "l1a_l1s_com" structure. | |
1303 //++++++++++++++++++++++++++++++++++++++++++ | |
1304 | |
1305 l1a_l1s_com.l1a_activity_flag = TRUE; | |
1306 l1a_l1s_com.time_to_next_l1s_task = 0; | |
1307 | |
1308 | |
1309 // sleep management configuration | |
1310 //=============================== | |
1311 l1s.pw_mgr.mode_authorized = NO_SLEEP; | |
1312 | |
1313 // L1S scheduler... | |
1314 //==================== | |
1315 | |
1316 // L1S tasks management... | |
1317 //----------------------------------------- | |
1318 for(i=0; i<NBR_DL_L1S_TASKS; i++) | |
1319 { | |
1320 l1a_l1s_com.task_param[i] = SEMAPHORE_RESET; | |
1321 l1a_l1s_com.l1s_en_task[i] = TASK_DISABLED; | |
1322 } | |
1323 | |
1324 // Measurement tasks management... | |
1325 //----------------------------------------- | |
1326 l1a_l1s_com.meas_param = 0; | |
1327 l1a_l1s_com.l1s_en_meas = 0; | |
1328 | |
1329 #if L1_GPRS | |
1330 // Set DSP scheduler mode | |
1331 l1a_l1s_com.dsp_scheduler_mode = GSM_SCHEDULER; | |
1332 // Packet measurement: Reset of the frequency list. | |
1333 //------------------------------------------------- | |
1334 l1pa_reset_cr_freq_list(); | |
1335 // Initialize active list used in Neighbour Measurement Transfer Process | |
1336 l1pa_l1ps_com.cres_freq_list.alist = &(l1pa_l1ps_com.cres_freq_list.list[0]); | |
1337 | |
1338 l1pa_l1ps_com.transfer.semaphore = TRUE; | |
1339 l1pa_l1ps_com.transfer.aset = &(l1pa_l1ps_com.transfer.set[0]); | |
1340 l1pa_l1ps_com.transfer.fset[0] = &(l1pa_l1ps_com.transfer.set[1]); | |
1341 l1pa_l1ps_com.transfer.fset[1] = &(l1pa_l1ps_com.transfer.set[2]); | |
1342 | |
1343 for(i=0;i<3;i++) | |
1344 { | |
1345 l1pa_l1ps_com.transfer.set[i].SignalCode = 0; | |
1346 l1pa_l1ps_com.transfer.set[i].dl_tbf_synchro_timeslot = 0; | |
1347 l1pa_l1ps_com.transfer.set[i].dl_tbf_synchro_timeslot = 0; | |
1348 l1pa_l1ps_com.transfer.set[i].transfer_synchro_timeslot = 0; | |
1349 l1pa_l1ps_com.transfer.set[i].allocated_tbf = NO_TBF; | |
1350 l1pa_l1ps_com.transfer.set[i].assignment_command = NO_TBF; | |
1351 l1pa_l1ps_com.transfer.set[i].multislot_class = 0; | |
1352 | |
1353 l1pa_l1ps_com.transfer.set[i].packet_ta.ta = 255; | |
1354 l1pa_l1ps_com.transfer.set[i].packet_ta.ta_index = 255; | |
1355 l1pa_l1ps_com.transfer.set[i].packet_ta.ta_tn = 255; | |
1356 | |
1357 l1pa_l1ps_com.transfer.set[i].tsc = 0; | |
1358 | |
1359 l1pa_l1ps_com.transfer.set[i].freq_param.chan_sel.h = 0; | |
1360 l1pa_l1ps_com.transfer.set[i].freq_param.chan_sel. | |
1361 rf_channel.single_rf.radio_freq = 0; | |
1362 | |
1363 l1pa_l1ps_com.transfer.set[i].tbf_sti.present = FALSE; | |
1364 | |
1365 l1pa_l1ps_com.transfer.set[i].mac_mode = 0; | |
1366 | |
1367 l1pa_l1ps_com.transfer.set[i].ul_tbf_alloc->tfi = 255; | |
1368 l1pa_l1ps_com.transfer.set[i].dl_tbf_alloc.tfi = 255; | |
1369 | |
1370 l1pa_l1ps_com.transfer.set[i].dl_pwr_ctl.p0 = 255; | |
1371 l1pa_l1ps_com.transfer.set[i].dl_pwr_ctl.bts_pwr_ctl_mode = 0; | |
1372 l1pa_l1ps_com.transfer.set[i].dl_pwr_ctl.pr_mode = 0; | |
1373 } | |
1374 #endif | |
1375 | |
1376 // Init global test mode variables | |
1377 l1tm.tmode_state.dedicated_active = 0; | |
1378 #if L1_GPRS | |
1379 l1tm.tmode_state.packet_transfer_active = FALSE; | |
1380 #endif | |
1381 | |
1382 // PRBS seed initialization with a random pattern | |
1383 l1tm.tmode_prbs.prbs1_seed = 0x5613; | |
1384 } | |
1385 | |
1386 void l1tm_rf_enable(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1387 { | |
1388 unsigned SignalCode =0; | |
1389 unsigned size = 0; //omaps00090550 | |
1390 xSignalHeaderRec *msg; | |
1391 UWORD8 send_prim = FALSE; // Flag to send TestMode primitive... | |
1392 // Do not send primitive is the default; change it if necessary | |
1393 UWORD8 band; | |
1394 tm_return->index = 0; // don't include index in header | |
1395 #if (ETM_PROTOCOL == 1) | |
1396 tm_return->status = -ETM_OK; | |
1397 #else | |
1398 tm_return->status = E_OK; | |
1399 #endif | |
1400 | |
1401 // Function only valid in TEST mode | |
1402 if (l1_config.TestMode == 0) | |
1403 { | |
1404 #if (ETM_PROTOCOL == 1) | |
1405 tm_return->status = -ETM_L1TESTMODE; | |
1406 #else | |
1407 tm_return->status = E_TESTMODE; | |
1408 #endif | |
1409 } | |
1410 else | |
1411 { | |
1412 // Reset all statistics | |
1413 l1tm_reset_rx_stats(); | |
1414 | |
1415 // Reset receive state counters, unless already in dedicated mode | |
1416 if (!l1tm.tmode_state.dedicated_active) | |
1417 l1tm_reset_rx_state(); | |
1418 | |
1419 // Reset monitor task | |
1420 l1_config.tmode.rf_params.mon_report = 0; | |
1421 l1_config.tmode.rf_params.mon_tasks = 0; | |
1422 | |
1423 switch (prim->u.tm_params.index) | |
1424 { | |
1425 // Stop all RX and TX operations | |
1426 case STOP_ALL: | |
1427 { | |
1428 SignalCode = TMODE_STOP_RX_TX; | |
1429 size = sizeof(T_TMODE_STOP_RX_TX); | |
1430 l1tm.tmode_state.dedicated_active = 0; | |
1431 #if (RF_FAM == 61) | |
1432 // Reset the APC back to Automatic Mode | |
1433 l1ddsp_apc_set_automatic_mode(); | |
1434 #endif | |
1435 | |
1436 #if (RF_FAM == 35) | |
1437 pll_tuning.enable=0; | |
1438 #endif | |
1439 // Reset down_up flag only if not in continuous mode. If in continuous mode, down_up | |
1440 // will be reset after the proper TPU scenario is loaded. | |
1441 if (l1_config.tmode.rf_params.tmode_continuous != TM_CONTINUOUS) | |
1442 l1_config.tmode.rf_params.down_up = 0; | |
1443 send_prim = TRUE; | |
1444 break; | |
1445 } | |
1446 // RX with or without network synchronization first | |
1447 case RX_TCH: | |
1448 { | |
1449 // if already in UL-only | |
1450 if (l1tm.tmode_state.dedicated_active && | |
1451 l1_config.tmode.rf_params.down_up == TMODE_UPLINK) | |
1452 { | |
1453 // cannot start to RX while already TXing | |
1454 #if (ETM_PROTOCOL == 1) | |
1455 tm_return->status = -ETM_AGAIN; | |
1456 #else | |
1457 tm_return->status = E_AGAIN; | |
1458 #endif | |
1459 } | |
1460 else | |
1461 { | |
1462 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK; | |
1463 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1464 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1465 send_prim = TRUE; | |
1466 } | |
1467 break; | |
1468 } | |
1469 // TX NB's or AB's on TCH with or without network synch. first | |
1470 case TX_TCH: | |
1471 { | |
1472 // Normal burst TX | |
1473 if (l1_config.tmode.tx_params.burst_type == 0) | |
1474 { | |
1475 // if already in DL-only, add UL | |
1476 if (l1tm.tmode_state.dedicated_active && | |
1477 l1_config.tmode.rf_params.down_up == TMODE_DOWNLINK) | |
1478 { | |
1479 l1_config.tmode.rf_params.down_up = (TMODE_DOWNLINK | TMODE_UPLINK); | |
1480 } | |
1481 else | |
1482 { | |
1483 l1_config.tmode.rf_params.down_up = TMODE_UPLINK; | |
1484 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1485 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1486 send_prim = TRUE; | |
1487 } | |
1488 } | |
1489 // AB TX | |
1490 else if (l1_config.tmode.tx_params.burst_type == 1) | |
1491 { | |
1492 // cannot start RACH while already in dedicated mode | |
1493 if (l1tm.tmode_state.dedicated_active) | |
1494 { | |
1495 #if (ETM_PROTOCOL == 1) | |
1496 tm_return->status = -ETM_AGAIN; | |
1497 #else | |
1498 tm_return->status = E_AGAIN; | |
1499 #endif | |
1500 } | |
1501 else | |
1502 { | |
1503 SignalCode = TMODE_RA_START; | |
1504 size = sizeof(TMODE_RA_START); | |
1505 send_prim = TRUE; | |
1506 } | |
1507 } | |
1508 break; | |
1509 } | |
1510 // RX & TX on TCH with or without network synch. first | |
1511 case RX_TX_TCH: | |
1512 { | |
1513 // if NB TX | |
1514 if (l1_config.tmode.tx_params.burst_type == 0) | |
1515 { | |
1516 // if already in DL-only, add UL | |
1517 if (l1tm.tmode_state.dedicated_active && | |
1518 l1_config.tmode.rf_params.down_up == TMODE_DOWNLINK) | |
1519 { | |
1520 l1_config.tmode.rf_params.down_up = (TMODE_DOWNLINK | TMODE_UPLINK); | |
1521 } | |
1522 // else if already in UL-only | |
1523 else if (l1tm.tmode_state.dedicated_active && | |
1524 l1_config.tmode.rf_params.down_up == TMODE_UPLINK) | |
1525 { | |
1526 // cannot start to RX while already TXing | |
1527 #if (ETM_PROTOCOL == 1) | |
1528 tm_return->status = -ETM_AGAIN; | |
1529 #else | |
1530 tm_return->status = E_AGAIN; | |
1531 #endif | |
1532 } | |
1533 else | |
1534 { | |
1535 l1_config.tmode.rf_params.down_up = (TMODE_DOWNLINK | TMODE_UPLINK); | |
1536 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1537 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1538 send_prim = TRUE; | |
1539 } | |
1540 } | |
1541 // else if AB TX | |
1542 else if (l1_config.tmode.tx_params.burst_type == 1) | |
1543 { | |
1544 // Cannot TX RACH and RX simultaneously | |
1545 #if (ETM_PROTOCOL == 1) | |
1546 tm_return->status = -ETM_AGAIN; | |
1547 #else | |
1548 tm_return->status = E_AGAIN; | |
1549 #endif | |
1550 } | |
1551 break; | |
1552 } | |
1553 // Continuous (all timeslots) reception on TCH | |
1554 case RX_TCH_CONT: | |
1555 { | |
1556 // if already in UL, DL or UL+DL | |
1557 if (l1tm.tmode_state.dedicated_active && | |
1558 l1_config.tmode.rf_params.down_up != 0) | |
1559 { | |
1560 // cannot start to continously RX while already TXing or RXing | |
1561 #if (ETM_PROTOCOL == 1) | |
1562 tm_return->status = -ETM_AGAIN; | |
1563 #else | |
1564 tm_return->status = E_AGAIN; | |
1565 #endif | |
1566 } | |
1567 else | |
1568 { | |
1569 l1_config.tmode.rf_params.tmode_continuous = TM_START_RX_CONTINUOUS; | |
1570 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK; | |
1571 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1572 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1573 send_prim = TRUE; | |
1574 } | |
1575 break; | |
1576 } | |
1577 // continuous (all timeslots) transmission | |
1578 case TX_TCH_CONT: | |
1579 { | |
1580 // PCS 1900 not supported yet. | |
1581 #if (L1_FF_MULTIBAND == 0) | |
1582 band = ((l1_config.tmode.rf_params.tch_arfcn >= 512) && | |
1583 (l1_config.tmode.rf_params.tch_arfcn <= 885)); | |
1584 #else | |
1585 band = ( ((l1_config.tmode.rf_params.tch_arfcn >= 512) && | |
1586 (l1_config.tmode.rf_params.tch_arfcn <= 885)) || | |
1587 ((l1_config.tmode.rf_params.tch_arfcn >= 1024) && | |
1588 (l1_config.tmode.rf_params.tch_arfcn <= 1322)) ); | |
1589 #endif | |
1590 | |
1591 // if already in UL, DL or UL+DL | |
1592 if ((l1tm.tmode_state.dedicated_active && l1_config.tmode.rf_params.down_up != 0) || | |
1593 (band == 0 && (l1_config.tmode.tx_params.txpwr < (5 + l1_config.tmode.tx_params.txpwr_skip))) || | |
1594 (band == 1 && (l1_config.tmode.tx_params.txpwr < (0 + l1_config.tmode.tx_params.txpwr_skip)))) | |
1595 { | |
1596 // cannot start to continously TX while already TXing or RXing | |
1597 // or while adc reading are enabled | |
1598 #if (ETM_PROTOCOL == 1) | |
1599 tm_return->status = -ETM_INVAL; | |
1600 #else | |
1601 tm_return->status = E_INVAL; | |
1602 #endif | |
1603 } | |
1604 else | |
1605 { | |
1606 #if (RF_FAM == 61) | |
1607 // Set APC in Manual Mode | |
1608 l1ddsp_apc_set_manual_mode(); | |
1609 #endif | |
1610 l1_config.tmode.rf_params.tmode_continuous = TM_START_TX_CONTINUOUS; | |
1611 l1_config.tmode.rf_params.down_up = TMODE_UPLINK; | |
1612 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1613 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1614 send_prim = TRUE; | |
1615 } | |
1616 break; | |
1617 } | |
1618 // Continuous BCCH | |
1619 case BCCH_LOOP: | |
1620 { | |
1621 SignalCode = TMODE_SCELL_NBCCH_REQ; | |
1622 size = sizeof(TMODE_SCELL_NBCCH_REQ); | |
1623 send_prim = TRUE; | |
1624 break; | |
1625 } | |
1626 // Continuous SB | |
1627 case SB_LOOP: | |
1628 { | |
1629 SignalCode = TMODE_SB_REQ; | |
1630 size = sizeof(T_TMODE_SB_REQ); | |
1631 send_prim = TRUE; | |
1632 break; | |
1633 } | |
1634 // Continuous FB1 | |
1635 case FB1_LOOP: | |
1636 { | |
1637 SignalCode = TMODE_FB1_REQ; | |
1638 size = sizeof(T_TMODE_FB1_REQ); | |
1639 send_prim = TRUE; | |
1640 break; | |
1641 } | |
1642 // Continuous FB0 | |
1643 case FB0_LOOP: | |
1644 { | |
1645 SignalCode = TMODE_FB0_REQ; | |
1646 size = sizeof(T_TMODE_FB0_REQ); | |
1647 send_prim = TRUE; | |
1648 break; | |
1649 } | |
1650 // TX + RX + MON on TCH | |
1651 case RX_TX_MON_TCH: // Stats collected from TCH Channel. | |
1652 case RX_TX_MON: // Stats collected from MON Channel (except rxlev). | |
1653 { | |
1654 // Normal burst uplink | |
1655 if (l1_config.tmode.tx_params.burst_type == 0) | |
1656 { | |
1657 // If already in dedicated mode, return error | |
1658 if (l1tm.tmode_state.dedicated_active) | |
1659 { | |
1660 #if (ETM_PROTOCOL == 1) | |
1661 tm_return->status = -ETM_AGAIN; | |
1662 #else | |
1663 tm_return->status = E_AGAIN; | |
1664 #endif | |
1665 } | |
1666 else | |
1667 { | |
1668 l1_config.tmode.rf_params.down_up = (TMODE_DOWNLINK | TMODE_UPLINK); | |
1669 l1_config.tmode.rf_params.mon_report = ((prim->u.tm_params.index & 0x08) >> 3); | |
1670 l1_config.tmode.rf_params.mon_tasks = 1; // enable MON tasks | |
1671 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1672 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1673 send_prim = TRUE; | |
1674 } | |
1675 } | |
1676 // else if Access burst uplink | |
1677 else if (l1_config.tmode.tx_params.burst_type == 1) | |
1678 { | |
1679 // Cannot TX RACH and RX simultaneously | |
1680 #if (ETM_PROTOCOL == 1) | |
1681 tm_return->status = -ETM_AGAIN; | |
1682 #else | |
1683 tm_return->status = E_AGAIN; | |
1684 #endif | |
1685 } | |
1686 break; | |
1687 } | |
1688 case SINGLE_PM: | |
1689 { | |
1690 SignalCode = TMODE_RXLEV_REQ; | |
1691 size = sizeof(T_TMODE_RXLEV_REQ); | |
1692 send_prim = TRUE; | |
1693 break; | |
1694 } | |
1695 #if L1_GPRS | |
1696 // RX & TX on PDTCH with or without network synch. first | |
1697 case RX_TX_PDTCH: | |
1698 { | |
1699 UWORD8 bit_map = 0x80; | |
1700 | |
1701 // set uplink + downlink | |
1702 if (l1_config.tmode.tx_params.timeslot_alloc) | |
1703 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK | TMODE_UPLINK; | |
1704 else | |
1705 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK; | |
1706 | |
1707 while (bit_map) | |
1708 { | |
1709 if (bit_map & l1_config.tmode.stats_config.stat_gprs_slots) | |
1710 l1tm.tmode_stats.nb_dl_pdtch_slots ++; | |
1711 | |
1712 bit_map>>=1; | |
1713 } | |
1714 | |
1715 SignalCode = TMODE_PDTCH_ASSIGN_REQ; | |
1716 size = sizeof(T_TMODE_PDTCH_ASSIGN_REQ); | |
1717 send_prim = TRUE; | |
1718 break; | |
1719 } | |
1720 #endif | |
1721 #if L1_GPRS | |
1722 // RX & TX on PDTCH, FB on monitor arfcn | |
1723 case RX_TX_PDTCH_MON: | |
1724 { | |
1725 // set uplink + downlink | |
1726 if (l1_config.tmode.tx_params.timeslot_alloc) | |
1727 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK | TMODE_UPLINK; | |
1728 else | |
1729 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK; | |
1730 | |
1731 l1_config.tmode.rf_params.mon_report = 1; // collect stats from MON channel | |
1732 l1_config.tmode.rf_params.mon_tasks = 1; // enable MON tasks | |
1733 | |
1734 SignalCode = TMODE_PDTCH_ASSIGN_REQ; | |
1735 size = sizeof(T_TMODE_PDTCH_ASSIGN_REQ); | |
1736 send_prim = TRUE; | |
1737 break; | |
1738 } | |
1739 #endif | |
1740 #if (RF_FAM == 35) | |
1741 case RX_PLL_TUNING: | |
1742 { | |
1743 // if already in UL-only | |
1744 if (l1tm.tmode_state.dedicated_active && | |
1745 l1_config.tmode.rf_params.down_up == TMODE_UPLINK) | |
1746 { | |
1747 // cannot start to RX while already TXing | |
1748 #if (ETM_PROTOCOL == 1) | |
1749 tm_return->status = -ETM_AGAIN; | |
1750 #else | |
1751 tm_return->status = E_AGAIN; | |
1752 #endif | |
1753 } | |
1754 else | |
1755 { | |
1756 pll_tuning.data[5] = 0; | |
1757 pll_tuning.index = 0; | |
1758 | |
1759 pll_tuning.enable = 1; | |
1760 | |
1761 l1_config.tmode.rf_params.down_up = TMODE_DOWNLINK; | |
1762 SignalCode = TMODE_IMMED_ASSIGN_REQ; | |
1763 size = sizeof(T_TMODE_IMMED_ASSIGN_REQ); | |
1764 send_prim = TRUE; | |
1765 } | |
1766 break; | |
1767 } | |
1768 #endif | |
1769 default: | |
1770 { | |
1771 #if (ETM_PROTOCOL == 1) | |
1772 tm_return->status = -ETM_INVAL; | |
1773 #else | |
1774 tm_return->status = E_BADINDEX; | |
1775 #endif | |
1776 break; | |
1777 } | |
1778 } //end switch | |
1779 } // end of else | |
1780 | |
1781 if (send_prim == TRUE) | |
1782 { | |
1783 // Allocate result message. | |
1784 msg = os_alloc_sig(size); | |
1785 DEBUGMSG(status,NU_ALLOC_ERR) | |
1786 msg->SignalCode = SignalCode; | |
1787 os_send_sig(msg, L1C1_QUEUE); | |
1788 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
1789 } | |
1790 | |
1791 // always return a 0 in the result[], even if error | |
1792 tm_return->result[0] = 0; | |
1793 tm_return->size = 1; | |
1794 } | |
1795 | |
1796 | |
1797 void l1tm_stats_config_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1798 { | |
1799 tm_return->index = prim->u.tm_params.index; | |
1800 tm_return->size = 0; | |
1801 | |
1802 switch (prim->u.tm_params.index) | |
1803 { | |
1804 case LOOPS: | |
1805 { | |
1806 l1_config.tmode.stats_config.num_loops = prim->u.tm_params.value; | |
1807 #if (ETM_PROTOCOL == 1) | |
1808 tm_return->status = -ETM_OK; | |
1809 #else | |
1810 tm_return->status = E_OK; | |
1811 #endif | |
1812 break; | |
1813 } | |
1814 case AUTO_RESULT_LOOPS: | |
1815 { | |
1816 l1_config.tmode.stats_config.auto_result_loops = prim->u.tm_params.value; | |
1817 #if (ETM_PROTOCOL == 1) | |
1818 tm_return->status = -ETM_OK; | |
1819 #else | |
1820 tm_return->status = E_OK; | |
1821 #endif | |
1822 break; | |
1823 } | |
1824 case AUTO_RESET_LOOPS: | |
1825 { | |
1826 l1_config.tmode.stats_config.auto_reset_loops = prim->u.tm_params.value; | |
1827 #if (ETM_PROTOCOL == 1) | |
1828 tm_return->status = -ETM_OK; | |
1829 #else | |
1830 tm_return->status = E_OK; | |
1831 #endif | |
1832 break; | |
1833 } | |
1834 case STAT_TYPE: | |
1835 { | |
1836 l1_config.tmode.stats_config.stat_type = prim->u.tm_params.value; | |
1837 #if (ETM_PROTOCOL == 1) | |
1838 tm_return->status = -ETM_OK; | |
1839 #else | |
1840 tm_return->status = E_OK; | |
1841 #endif | |
1842 break; | |
1843 } | |
1844 case STAT_BITMASK: | |
1845 { | |
1846 l1_config.tmode.stats_config.stat_bitmask = prim->u.tm_params.value; | |
1847 #if (ETM_PROTOCOL == 1) | |
1848 tm_return->status = -ETM_OK; | |
1849 #else | |
1850 tm_return->status = E_OK; | |
1851 #endif | |
1852 break; | |
1853 } | |
1854 #if L1_GPRS | |
1855 case STAT_GPRS_SLOTS: | |
1856 { | |
1857 UWORD8 allocation, value; | |
1858 | |
1859 value = prim->u.tm_params.value; | |
1860 | |
1861 // Check for mismatch between DL TS allocation and stats bitmap | |
1862 allocation = value ^ l1_config.tmode.rx_params.timeslot_alloc; | |
1863 | |
1864 if (value & allocation) | |
1865 #if (ETM_PROTOCOL == 1) | |
1866 tm_return->status = -ETM_INVAL; | |
1867 #else | |
1868 tm_return->status = E_INVAL; | |
1869 #endif | |
1870 else | |
1871 { | |
1872 l1_config.tmode.stats_config.stat_gprs_slots = value; | |
1873 #if (ETM_PROTOCOL == 1) | |
1874 tm_return->status = -ETM_OK; | |
1875 #else | |
1876 tm_return->status = E_OK; | |
1877 #endif | |
1878 } | |
1879 break; | |
1880 } | |
1881 #endif | |
1882 default: | |
1883 { | |
1884 #if (ETM_PROTOCOL == 1) | |
1885 tm_return->status = -ETM_INVAL; | |
1886 #else | |
1887 tm_return->status = E_BADINDEX; | |
1888 #endif | |
1889 break; | |
1890 } | |
1891 } // end switch | |
1892 } | |
1893 | |
1894 void l1tm_stats_config_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1895 { | |
1896 volatile UWORD16 value; | |
1897 | |
1898 tm_return->index = prim->u.tm_params.index; | |
1899 | |
1900 switch (prim->u.tm_params.index) | |
1901 { | |
1902 case LOOPS: | |
1903 { | |
1904 value = l1_config.tmode.stats_config.num_loops; | |
1905 break; | |
1906 } | |
1907 case AUTO_RESULT_LOOPS: | |
1908 { | |
1909 value = l1_config.tmode.stats_config.auto_result_loops; | |
1910 break; | |
1911 } | |
1912 case AUTO_RESET_LOOPS: | |
1913 { | |
1914 value = l1_config.tmode.stats_config.auto_reset_loops; | |
1915 break; | |
1916 } | |
1917 case STAT_TYPE: | |
1918 { | |
1919 value = l1_config.tmode.stats_config.stat_type; | |
1920 break; | |
1921 } | |
1922 case STAT_BITMASK: | |
1923 { | |
1924 value = l1_config.tmode.stats_config.stat_bitmask; | |
1925 break; | |
1926 } | |
1927 #if L1_GPRS | |
1928 case STAT_GPRS_SLOTS: | |
1929 { | |
1930 value = l1_config.tmode.stats_config.stat_gprs_slots; | |
1931 break; | |
1932 } | |
1933 #endif | |
1934 default: | |
1935 { | |
1936 #if (ETM_PROTOCOL == 1) | |
1937 tm_return->status = -ETM_INVAL; | |
1938 #else | |
1939 tm_return->status = E_BADINDEX; | |
1940 #endif | |
1941 tm_return->size = 0; | |
1942 return; | |
1943 } | |
1944 } // end switch | |
1945 | |
1946 memcpy(tm_return->result, (UWORD8 *) &value, 2); | |
1947 tm_return->size = 2; | |
1948 #if (ETM_PROTOCOL == 1) | |
1949 tm_return->status = -ETM_OK; | |
1950 #else | |
1951 tm_return->status = E_OK; | |
1952 #endif | |
1953 } | |
1954 | |
1955 void l1tm_statistics(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
1956 { | |
1957 l1tm_stats_read(tm_return, | |
1958 prim->u.tm_params.index, | |
1959 prim->u.tm_params.value); | |
1960 } | |
1961 | |
1962 #if L1_GPRS | |
1963 void l1tm_rlc_uplink(UWORD8 tx, API *ul_data) | |
1964 { | |
1965 // Cast the ul_data_buffer | |
1966 typedef struct | |
1967 { | |
1968 API a_ul_data[4][29]; | |
1969 } | |
1970 T_A_UL_DATA; | |
1971 | |
1972 T_A_UL_DATA *ptr = (T_A_UL_DATA*) ul_data; | |
1973 UWORD8 i,j; | |
1974 | |
1975 for (j=0; j<tx; j++) | |
1976 { | |
1977 ptr->a_ul_data[j][0] = l1_config.tmode.tx_params.coding_scheme; | |
1978 | |
1979 for (i=0;i<l1_config.tmode.tx_params.rlc_buffer_size;i++) | |
1980 ptr->a_ul_data[j][i+1] = l1_config.tmode.tx_params.rlc_buffer[i]; | |
1981 } | |
1982 } | |
1983 #endif | |
1984 | |
1985 void l1tm_stats_read(T_TM_RETURN *tm_return, WORD16 type, UWORD16 bitmask) | |
1986 { | |
1987 extern T_L1A_L1S_COM l1a_l1s_com; | |
1988 extern T_L1S_GLOBAL l1s; | |
1989 volatile UWORD32 utemp = bitmask, temp_U32; | |
1990 volatile WORD32 temp = type; | |
1991 volatile WORD32 value_signed_int; | |
1992 volatile UWORD32 value_unsigned_int; | |
1993 volatile UWORD16 value_unsigned_short; | |
1994 UWORD8 j, offset=0; // offset is index of tm_return->result[] | |
1995 UWORD16 rssi, len; | |
1996 WORD32 count; | |
1997 WORD32 runs = l1tm.tmode_stats.loop_count; | |
1998 | |
1999 /* | |
2000 * FreeCalypso TCS211 reconstruction: the following automatic var | |
2001 * is for the BLER code we have conditioned out below. | |
2002 */ | |
2003 #if 0 //L1_GPRS | |
2004 volatile UWORD16 value_array_unsigned_short[4]; | |
2005 #endif | |
2006 | |
2007 // Put type and bitmask in the front of tm_return->result[]. | |
2008 // Use volatile vars for proper operation of memcpy(). | |
2009 memcpy(&tm_return->result[offset], (UWORD8 *) &temp, 2); | |
2010 offset+=2; | |
2011 memcpy(&tm_return->result[offset], (UWORD8 *) &utemp, 2); | |
2012 offset+=2; | |
2013 | |
2014 switch (type) | |
2015 { | |
2016 // Accumulated receive burst stats | |
2017 case ACCUMULATED_RX_STATS: | |
2018 { | |
2019 // all stats saved when collected from TCH | |
2020 if (l1tm.tmode_state.dedicated_active && (l1_config.tmode.rf_params.mon_report == 0)) | |
2021 count = l1tm.tmode_stats.loop_count; | |
2022 #if L1_GPRS | |
2023 else if (l1tm.tmode_state.packet_transfer_active && (l1_config.tmode.rf_params.mon_report == 0)) | |
2024 { | |
2025 // loop_count contains the number of blocks | |
2026 // Stats (PM, TOA, SNR, ANGLE) are accumulated over all frames and all time slots | |
2027 count = l1tm.tmode_stats.loop_count * l1tm.tmode_stats.nb_dl_pdtch_slots * 4; | |
2028 | |
2029 // the count of runs vs. successes is accumulated over all time slots per block | |
2030 runs = l1tm.tmode_stats.loop_count * l1tm.tmode_stats.nb_dl_pdtch_slots; | |
2031 } | |
2032 #endif | |
2033 else count = l1tm.tmode_stats.flag_count; // only PASS stats saved | |
2034 | |
2035 if (bitmask & RSSI) // rxlev: RSSI SF12.4 eventually (currently F7.1) | |
2036 { | |
2037 len = sizeof(l1tm.tmode_stats.rssi_fifo) / sizeof(l1tm.tmode_stats.rssi_fifo[0]); | |
2038 rssi = 0; | |
2039 for (j=0; j<len; j++) | |
2040 rssi += l1tm.tmode_stats.rssi_fifo[j]; | |
2041 rssi /= len; // F7.1 | |
2042 memcpy(&tm_return->result[offset], (UWORD8 *) &rssi, 2); | |
2043 offset+=2; | |
2044 } | |
2045 // pm: DSP MEAN power measurement UF10.6 | |
2046 if (bitmask & DSP_PM) | |
2047 { | |
2048 if (count) | |
2049 value_unsigned_short = l1tm.tmode_stats.pm_sum / count; | |
2050 else value_unsigned_short = 0; | |
2051 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_short, 2); | |
2052 offset+=2; | |
2053 } | |
2054 // angle mean | |
2055 if (bitmask & ANGLE_MEAN) | |
2056 { | |
2057 if (count) // non-zero | |
2058 value_signed_int = l1tm.tmode_stats.angle_sum / count; | |
2059 else value_signed_int = 0; | |
2060 memcpy(&tm_return->result[offset], (UWORD8 *) &value_signed_int, 4); | |
2061 offset+=4; | |
2062 } | |
2063 // angle variance | |
2064 if (bitmask & ANGLE_VAR) | |
2065 { | |
2066 // VAR[X] = E[X^2] - (E[X])^2 | |
2067 if (count) // non-zero | |
2068 { | |
2069 temp_U32 = l1tm.tmode_stats.angle_sum / count; | |
2070 value_unsigned_int = l1tm.tmode_stats.angle_sq_sum / count - (temp_U32)*(temp_U32); | |
2071 } | |
2072 else value_unsigned_int = 0; | |
2073 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2074 offset+=4; | |
2075 } | |
2076 // angle minimum | |
2077 if (bitmask & ANGLE_MIN) | |
2078 { | |
2079 value_signed_int = l1tm.tmode_stats.angle_min; | |
2080 memcpy(&tm_return->result[offset], (UWORD8 *) &value_signed_int, 4); | |
2081 offset+=4; | |
2082 } | |
2083 // angle maximum | |
2084 if (bitmask & ANGLE_MAX) | |
2085 { | |
2086 value_signed_int = l1tm.tmode_stats.angle_max; | |
2087 memcpy(&tm_return->result[offset], (UWORD8 *) &value_signed_int, 4); | |
2088 offset+=4; | |
2089 } | |
2090 // SNR mean | |
2091 if (bitmask & SNR_MEAN) | |
2092 { | |
2093 if (count) // non-zero | |
2094 value_unsigned_int = l1tm.tmode_stats.snr_sum / count; | |
2095 else value_unsigned_int = 0; | |
2096 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2097 offset+=4; | |
2098 } | |
2099 // SNR variance | |
2100 if (bitmask & SNR_VAR) | |
2101 { | |
2102 if (count) // non-zero | |
2103 { | |
2104 temp_U32 = l1tm.tmode_stats.snr_sum / count; | |
2105 value_unsigned_int = l1tm.tmode_stats.snr_sq_sum / count - | |
2106 temp_U32 * temp_U32; | |
2107 } | |
2108 else | |
2109 value_unsigned_int = 0; | |
2110 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2111 offset+=4; | |
2112 } | |
2113 // TOA mean | |
2114 if (bitmask & TOA_MEAN) | |
2115 { | |
2116 if (count) // non-zero | |
2117 value_unsigned_int = l1tm.tmode_stats.toa_sum / count; | |
2118 else value_unsigned_int = 0; | |
2119 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2120 offset+=4; | |
2121 } | |
2122 // TOA variance | |
2123 if (bitmask & TOA_VAR) | |
2124 { | |
2125 if (count) // non-zero | |
2126 { | |
2127 temp_U32 = l1tm.tmode_stats.toa_sum / count; | |
2128 value_unsigned_int = l1tm.tmode_stats.toa_sq_sum / count - | |
2129 temp_U32 * temp_U32; | |
2130 } | |
2131 else value_unsigned_int = 0; | |
2132 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2133 offset+=4; | |
2134 } | |
2135 // Frame # mod 26*51 | |
2136 if (bitmask & FRAME_NUMBER) | |
2137 { | |
2138 value_unsigned_int = l1s.actual_time.fn; | |
2139 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2140 offset+=4; | |
2141 } | |
2142 // Tot # of runs executed so far | |
2143 if (bitmask & RUNS) | |
2144 { | |
2145 memcpy(&tm_return->result[offset], (UWORD8 *) &runs, 4); | |
2146 offset+=4; | |
2147 } | |
2148 // Tot # of successes so far | |
2149 if (bitmask & SUCCESSES) | |
2150 { | |
2151 memcpy(&tm_return->result[offset], (UWORD8 *) &l1tm.tmode_stats.flag_count, 4); | |
2152 offset+=4; | |
2153 } | |
2154 // BSIC | |
2155 if (bitmask & BSIC) | |
2156 { | |
2157 value_unsigned_short = l1tm.tmode_stats.bsic; | |
2158 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_short, 2); | |
2159 offset+=2; | |
2160 } | |
2161 | |
2162 /* | |
2163 * FreeCalypso TCS211 reconstruction: suspected LoCosto-ism, | |
2164 * removing in order to pass compilation. | |
2165 */ | |
2166 #if 0 //L1_GPRS | |
2167 if (bitmask & BLER) | |
2168 { | |
2169 UWORD8 j; | |
2170 if (count) // non-zero | |
2171 { | |
2172 float bler, remain_part; | |
2173 UWORD8 int_part, bitmap_remain; | |
2174 int i; | |
2175 | |
2176 //compute bler for each block | |
2177 for (j=0; j<4; j++) | |
2178 { | |
2179 bler = ((float) (l1tm.tmode_stats.bler_crc[j] * 100)) / ((float) l1tm.tmode_stats.bler_total_blocks); | |
2180 | |
2181 //conversion from floating to fixed format | |
2182 int_part = (UWORD8) bler; | |
2183 remain_part = bler - (float) int_part; | |
2184 bitmap_remain = 0; | |
2185 | |
2186 i=5; | |
2187 while (i >= 0) | |
2188 { | |
2189 bitmap_remain |= (UWORD8) (remain_part *2) << i; | |
2190 if (((UWORD8) (remain_part *2)) >= 1) | |
2191 remain_part = (remain_part * 2) - 1; | |
2192 else | |
2193 remain_part = (remain_part * 2); | |
2194 i--; | |
2195 } | |
2196 | |
2197 // Reporting the percentage of blocks in error (F10.6) | |
2198 value_array_unsigned_short[j] = bitmap_remain | (int_part << 6); | |
2199 } | |
2200 } | |
2201 // Reporting a BLER of 100, if no computation has been done | |
2202 else | |
2203 { | |
2204 for (j=0; j<4; j++) | |
2205 value_array_unsigned_short[j] = 100 << 6; | |
2206 } | |
2207 memcpy(&tm_return->result[offset], (UWORD8 *) &value_array_unsigned_short[0], 8); | |
2208 offset+=8; | |
2209 } | |
2210 #endif | |
2211 | |
2212 | |
2213 #if (ETM_PROTOCOL == 1) | |
2214 tm_return->status = -ETM_OK; | |
2215 #else | |
2216 tm_return->status = E_OK; | |
2217 #endif | |
2218 break; | |
2219 } | |
2220 // Most recent receive burst stats | |
2221 case MOST_RECENT_RX_STATS: | |
2222 { | |
2223 // rxlev: RSSI SF12.4 eventually (F7.1 currently) | |
2224 if (bitmask & RSSI) | |
2225 { | |
2226 value_unsigned_short = l1tm.tmode_stats.rssi_recent; | |
2227 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_short, 2); | |
2228 offset+=2; | |
2229 } | |
2230 // pm: most recent DSP power measurement UF10.6 | |
2231 if (bitmask & DSP_PM) | |
2232 { | |
2233 memcpy(&tm_return->result[offset], &l1tm.tmode_stats.pm_recent, 2); | |
2234 offset+=2; | |
2235 } | |
2236 // most recent ANGLE value | |
2237 if (bitmask & ANGLE_MEAN) | |
2238 { | |
2239 value_signed_int = l1tm.tmode_stats.angle_recent; | |
2240 memcpy(&tm_return->result[offset], (UWORD8 *) &value_signed_int, 4); | |
2241 offset+=4; | |
2242 } | |
2243 // doesn't make sense. | |
2244 if (bitmask & ANGLE_VAR) | |
2245 { | |
2246 } | |
2247 // doesn't make sense. | |
2248 if (bitmask & ANGLE_MIN) | |
2249 { | |
2250 } | |
2251 // doesn't make sense. | |
2252 if (bitmask & ANGLE_MAX) | |
2253 { | |
2254 } | |
2255 // most recent SNR value | |
2256 if (bitmask & SNR_MEAN) | |
2257 { | |
2258 value_unsigned_int = l1tm.tmode_stats.snr_recent; | |
2259 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2260 offset+=4; | |
2261 } | |
2262 // doesn't make sense. | |
2263 if (bitmask & SNR_VAR) | |
2264 { | |
2265 } | |
2266 // most recent TOA value | |
2267 if (bitmask & TOA_MEAN) | |
2268 { | |
2269 value_unsigned_int = l1tm.tmode_stats.toa_recent; | |
2270 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2271 offset+=4; | |
2272 } | |
2273 // doesn't make sense. | |
2274 if (bitmask & TOA_VAR) | |
2275 { | |
2276 } | |
2277 // Frame # mod 26*51 | |
2278 if (bitmask & FRAME_NUMBER) | |
2279 { | |
2280 value_unsigned_int = l1s.actual_time.fn; | |
2281 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_int, 4); | |
2282 offset+=4; | |
2283 } | |
2284 // must be '1' | |
2285 if (bitmask & RUNS) | |
2286 { | |
2287 } | |
2288 // most recent Success flag | |
2289 if (bitmask & SUCCESSES) | |
2290 { | |
2291 memcpy(&tm_return->result[offset], (UWORD8 *)&l1tm.tmode_stats.flag_recent, 4); | |
2292 offset+=4; | |
2293 } | |
2294 // BSIC | |
2295 if (bitmask & BSIC) | |
2296 { | |
2297 value_unsigned_short = l1tm.tmode_stats.bsic; | |
2298 memcpy(&tm_return->result[offset], (UWORD8 *) &value_unsigned_short, 2); | |
2299 offset+=2; | |
2300 } | |
2301 #if (ETM_PROTOCOL == 1) | |
2302 tm_return->status = -ETM_OK; | |
2303 #else | |
2304 tm_return->status = E_OK; | |
2305 #endif | |
2306 break; | |
2307 } | |
2308 default: | |
2309 { | |
2310 #if (ETM_PROTOCOL == 1) | |
2311 tm_return->status = -ETM_INVAL; | |
2312 #else | |
2313 tm_return->status = E_BADINDEX; | |
2314 #endif | |
2315 break; | |
2316 } | |
2317 } // end switch | |
2318 | |
2319 tm_return->size = offset; | |
2320 tm_return->index = 0; // don't include index in header | |
2321 } | |
2322 | |
2323 /*-------------------------------------------------------*/ | |
2324 /* l1tm_fill_burst() */ | |
2325 /*-------------------------------------------------------*/ | |
2326 /* */ | |
2327 /* Description: Prepare bursts for transmission in case */ | |
2328 /* ------------ of UL test */ | |
2329 /* */ | |
2330 /* Simulation of IQ Swap does the following mapping: */ | |
2331 /* */ | |
2332 /* 00 -> 01 */ | |
2333 /* 01 -> 00 */ | |
2334 /* 10 -> 11 */ | |
2335 /* 11 -> 10 */ | |
2336 /* */ | |
2337 /*-------------------------------------------------------*/ | |
2338 #if (L1_FF_MULTIBAND == 1) | |
2339 extern const WORD8 rf_subband2band[]; | |
2340 #endif | |
2341 void l1tm_fill_burst (UWORD16 pattern, UWORD16 *TM_ul_data) | |
2342 { | |
2343 UWORD32 i; | |
2344 UWORD8 swap_iq, swap_flag; | |
2345 UWORD16 gb_front, gb_end, tb_front, tb_end, even_bits, odd_bits; | |
2346 #if (L1_FF_MULTIBAND == 1) | |
2347 UWORD8 physical_band_id; | |
2348 #endif | |
2349 UWORD8 tsc_bits_in_first_word; | |
2350 UWORD16 tsc_front_mask,tsc_end_mask; | |
2351 extern T_RF rf; | |
2352 | |
2353 // training sequences list...... | |
2354 UWORD32 tsc[8]= | |
2355 { | |
2356 0x00970897, | |
2357 0x00B778B7, | |
2358 0x010EE90E, | |
2359 0x011ED11E, | |
2360 0x006B906B, | |
2361 0x013AC13A, | |
2362 0x029F629F, | |
2363 0x03BC4BBC | |
2364 }; | |
2365 #if (L1_FF_MULTIBAND == 0) | |
2366 | |
2367 if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) && | |
2368 (l1_config.tmode.rf_params.tch_arfcn >= l1_config.std.first_radio_freq_band2)) | |
2369 { | |
2370 swap_iq = l1_config.std.swap_iq_band2; | |
2371 } | |
2372 else | |
2373 { | |
2374 swap_iq = l1_config.std.swap_iq_band1; | |
2375 } | |
2376 | |
2377 #else // L1_FF_MULTIBAND = 1 below | |
2378 | |
2379 physical_band_id = | |
2380 rf_subband2band[rf_convert_rffreq_to_l1subband(l1_config.tmode.rf_params.tch_arfcn)]; | |
2381 | |
2382 swap_iq = rf_band[physical_band_id].swap_iq; | |
2383 | |
2384 #endif // #if (L1_FF_MULTIBAND == 0) else | |
2385 | |
2386 // Swap IQ definitions... | |
2387 // 0=No Swap, 1=Swap RX only, 2=Swap TX only, 3=Swap RX and TX | |
2388 if (swap_iq & 0x2) | |
2389 { | |
2390 swap_flag = 1; | |
2391 } | |
2392 else | |
2393 { | |
2394 swap_flag = 0; | |
2395 } | |
2396 | |
2397 //=========================================== | |
2398 // define uplink patterns | |
2399 //=========================================== | |
2400 if (pattern == 0) // 0's | |
2401 pattern = 0x0000; | |
2402 else if (pattern == 1) // 1's | |
2403 pattern = 0xffff; | |
2404 else if (pattern == 2) // 01's | |
2405 pattern = 0x5555; | |
2406 | |
2407 // first replicate pattern through all buffer | |
2408 if ((pattern == 3) || (pattern == 4)) | |
2409 { | |
2410 // fill the uplink burst with PRBS1 | |
2411 l1tm_PRBS1_generate(TM_ul_data); | |
2412 } | |
2413 else if ((pattern != 12) && (pattern != 13)) | |
2414 { | |
2415 for (i=0;i<=15;i++) | |
2416 TM_ul_data[i] = (pattern << 6); | |
2417 } | |
2418 | |
2419 //=========================================== | |
2420 // create front-end guard and tail bits masks | |
2421 //=========================================== | |
2422 // guard bits mask | |
2423 gb_front = 0xFFC0 << (10 - rf.tx.guard_bits); // max. of 10, min. of 2 guard bits allowed | |
2424 | |
2425 // check if guard bits > 7 | |
2426 if (rf.tx.guard_bits > 7) | |
2427 { | |
2428 // tail bits mask | |
2429 tb_front = ~((UWORD16)(0xE000 << (10 - rf.tx.guard_bits))) & 0xFFC0; // tail bits placed in TM_ul_data[1] //oamps00090550 | |
2430 // add tail bits to uplink data | |
2431 TM_ul_data[1] = TM_ul_data[1] & tb_front; | |
2432 // add guard bits to uplink data | |
2433 TM_ul_data[0] = gb_front; | |
2434 } | |
2435 else | |
2436 { | |
2437 // tail bits mask | |
2438 tb_front = ~((UWORD16)(0xE000 >> rf.tx.guard_bits) )& 0xFFC0; // 3 tail bits | |
2439 // add tail bits to uplink data | |
2440 TM_ul_data[0] = (TM_ul_data[0] | gb_front) & tb_front; | |
2441 } | |
2442 | |
2443 //=========================================== | |
2444 // create back-end guard and tail bits masks | |
2445 //=========================================== | |
2446 // guard bits mask | |
2447 gb_end = (0xFFC0 >> (10 - (12 - rf.tx.guard_bits))) & 0xFFC0; // max. of 10, min. of 2 guard bits allowed | |
2448 | |
2449 // check if guard bits < 5 | |
2450 if (rf.tx.guard_bits < 5) | |
2451 { | |
2452 //tail bits mask | |
2453 tb_end = ~(UWORD16)((0x01C0 >> (rf.tx.guard_bits - 2))) & 0xFFC0; // tail bits placed in TM_ul_data[14] | |
2454 // add tail bits to uplink data | |
2455 TM_ul_data[14] = TM_ul_data[14] & tb_end; | |
2456 // add guard bits to uplink data | |
2457 TM_ul_data[15] = gb_end; | |
2458 } | |
2459 else | |
2460 { | |
2461 // tail bits mask | |
2462 tb_end = ~(UWORD16)((0x01C0 << (12 - rf.tx.guard_bits))) & 0xFFC0; // 3 tail bits | |
2463 // add tail bits to uplink data | |
2464 TM_ul_data[15] = (TM_ul_data[15] | gb_end) & tb_end; | |
2465 } | |
2466 | |
2467 //=========================================== | |
2468 // Insert the training sequence pattern .The location of TSC bits will | |
2469 // vary according to the value of guard bits used. | |
2470 //=========================================== | |
2471 if ((pattern == 13)||(pattern==3)) | |
2472 { | |
2473 // TM_ul_data[6] = (TM_ul_data[6] & 0xFE00) | ( (UWORD8) ((tsc[l1_config.tmode.tx_params.tsc]>>24) << 6 ) ); // tsc bits 1-2 | |
2474 // TM_ul_data[7] = (TM_ul_data[7] & 0x0000) | ( (UWORD8) ((tsc[l1_config.tmode.tx_params.tsc]>>14) << 6 ) ); // tsc bits 3-12 | |
2475 // TM_ul_data[8] = (TM_ul_data[8] & 0x0000) | ( (UWORD8) ((tsc[l1_config.tmode.tx_params.tsc]>>4 ) << 6 ) ); // tsc bits 13-22 | |
2476 // TM_ul_data[9] = (TM_ul_data[9] & 0x07C0) | ( (UWORD8) ((tsc[l1_config.tmode.tx_params.tsc]>>0 ) << 12) ); // tsc bits 23-26 | |
2477 | |
2478 if (rf.tx.guard_bits <4) // TSC will be in [6],[7],[8] | |
2479 { | |
2480 tsc_bits_in_first_word = 9-rf.tx.guard_bits; // 7 bits when guard is 2, 6 bit when guard is 3 | |
2481 tsc_front_mask = ((0xFFC0) << tsc_bits_in_first_word); // insert zeros from right | |
2482 //tsc_bits_in_last_word = 26 -10 -tsc_bits_in_first_word = (16-tsc_bits_in_first_word) | |
2483 tsc_end_mask = (((0xFFC0) >> (16-tsc_bits_in_first_word)) & 0xFFC0); //insert zeros from left | |
2484 | |
2485 TM_ul_data[6] = (TM_ul_data[6] & tsc_front_mask) | |
2486 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]>>(26-tsc_bits_in_first_word)) << 6 )) & (~tsc_front_mask) ); | |
2487 TM_ul_data[7] = (TM_ul_data[7] & 0x0000) | |
2488 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]<<(tsc_bits_in_first_word+6))>>16)) & (0xFFC0)); //next 10 bits of TSC | |
2489 TM_ul_data[8] = (TM_ul_data[8] & tsc_end_mask) | |
2490 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc] << (tsc_bits_in_first_word+6+10))>>16) )& (~tsc_end_mask)); | |
2491 } | |
2492 else if ((rf.tx.guard_bits >=4) && (rf.tx.guard_bits <9) )// TSC will be in [6],[7],[8],[9] | |
2493 { | |
2494 tsc_bits_in_first_word = 9-rf.tx.guard_bits; // 5 bits when guard is 4, 1 bit when guard is 8 | |
2495 tsc_front_mask = ((0xFFC0) << tsc_bits_in_first_word); // insert zeros from right | |
2496 //tsc_bits_in_last_word = 26 -10 -10 -tsc_bits_in_first_word = (6-tsc_bits_in_first_word) | |
2497 tsc_end_mask = (((0xFFC0) >> (6-tsc_bits_in_first_word)) & 0xFFC0); //insert zeros from left | |
2498 | |
2499 TM_ul_data[6] = (TM_ul_data[6] & tsc_front_mask) | |
2500 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]>>(26-tsc_bits_in_first_word)) << 6 )) & (~tsc_front_mask) ); | |
2501 TM_ul_data[7] = (TM_ul_data[7] & 0x0000) | |
2502 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]<<(tsc_bits_in_first_word+6))>>16)) & (0xFFC0) ); //next 10 bits of TSC | |
2503 TM_ul_data[8] = (TM_ul_data[8] & 0x0000) | |
2504 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]<<(tsc_bits_in_first_word+6+10))>>16)) & (0xFFC0) ); //next 10 bits of TSC | |
2505 TM_ul_data[9] = (TM_ul_data[9] & tsc_end_mask) | |
2506 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc] << (tsc_bits_in_first_word+6+10+10))>>16) ) & (~tsc_end_mask)); | |
2507 } | |
2508 else //(rf.tx.guard_bits>=9) : TSC will be in [7],[8],[9], | |
2509 { | |
2510 tsc_bits_in_first_word = 19-rf.tx.guard_bits; // 10 bits when guard is 9, 9 bits when guard is 10 | |
2511 tsc_front_mask = ((0xFFC0) << tsc_bits_in_first_word); // insert zeros from right | |
2512 //tsc_bits_in_last_word = 26 -10 -tsc_bits_in_first_word = (16-tsc_bits_in_first_word) | |
2513 tsc_end_mask = (((0xFFC0) >> (16-tsc_bits_in_first_word)) & 0xFFC0); //insert zeros from left | |
2514 | |
2515 TM_ul_data[7] = (TM_ul_data[7] & tsc_front_mask) | |
2516 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]>>(26-tsc_bits_in_first_word)) << 6 )) & (~tsc_front_mask) ); | |
2517 TM_ul_data[8] = (TM_ul_data[8] & 0x0000) | |
2518 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc]<<(tsc_bits_in_first_word+6))>>16)) & (0xFFC0) ); //next 10 bits of TSC | |
2519 TM_ul_data[9] = (TM_ul_data[9] & tsc_end_mask) | |
2520 | ( ((UWORD16) ((tsc[l1_config.tmode.tx_params.tsc] << (tsc_bits_in_first_word+6+10))>>16)) & (~tsc_end_mask)); | |
2521 } | |
2522 } | |
2523 | |
2524 // swap uplink data if IQ swap | |
2525 if(swap_flag) | |
2526 { | |
2527 for (i=0;i<=15;i++) | |
2528 { | |
2529 even_bits = TM_ul_data[i] & 0xAA80; // keep bits in even positions | |
2530 odd_bits = ~(TM_ul_data[i]) & 0x5540; // keep and complement bits in odd positions | |
2531 TM_ul_data[i] = even_bits | odd_bits; // swapped uplink data | |
2532 } | |
2533 } | |
2534 } | |
2535 | |
2536 | |
2537 | |
2538 void l1a_tmode_send_ul_msg(T_TM_RETURN *tm_ret) | |
2539 { | |
2540 tm_transmit(tm_ret); | |
2541 } | |
2542 | |
2543 /******************************************************************************* | |
2544 * | |
2545 * void tm_receive(void *inbuf, int size) | |
2546 * | |
2547 * Purpose : Parses TestMode data and copies it directly into TESTMODE_PRIM. | |
2548 * It forwards primitive to L1, except in the case of tm_init() which | |
2549 * gets executed in the CST. | |
2550 * | |
2551 * Arguments: In : command | |
2552 * Out: | |
2553 * | |
2554 * Returns : void | |
2555 * | |
2556 ******************************************************************************/ | |
2557 | |
2558 void tm_receive(UWORD8 *inbuf, UWORD16 size) | |
2559 { | |
2560 UWORD8 cksum, cid, error = 0; | |
2561 BOOL msg_used=FALSE; | |
2562 | |
2563 #if (ETM_PROTOCOL == 1) | |
2564 UWORD8 mid = 0; | |
2565 #endif | |
2566 | |
2567 UWORD8 *pmsg; | |
2568 xSignalHeaderRec *msg; | |
2569 | |
2570 msg = os_alloc_sig(sizeof(T_TESTMODE_PRIM)); | |
2571 msg->SignalCode = TESTMODE_PRIM; | |
2572 | |
2573 // pmsg will be used to fill up the TestMode primitive with th | |
2574 // data, in consecutive order according to the definition of T_TESTMODE_PRIM. | |
2575 pmsg = (UWORD8 *)((T_TESTMODE_PRIM *)(msg->SigP)); | |
2576 | |
2577 #if (ETM_PROTOCOL == 1) // Use of ETM protocol | |
2578 #if (OP_L1_STANDALONE == 1) | |
2579 // Check MID | |
2580 *pmsg++ = mid = *inbuf++; | |
2581 if ((mid != ETM_RF) && (mid != ETM_CORE)) // check if coming from ETM RF or ETM CORE DLL | |
2582 error = -ETM_PACKET; | |
2583 #elif (OP_L1_STANDALONE == 0) | |
2584 *pmsg++ = mid = ETM_RF; | |
2585 #endif | |
2586 | |
2587 // Copy CID/FID | |
2588 *pmsg++ = cid = *inbuf++; | |
2589 #if (OP_L1_STANDALONE == 1) | |
2590 // Copy data payload size (size minus MID byte and checksum byte) | |
2591 size -= 2; | |
2592 #endif | |
2593 *pmsg++ = --size; // Size of TM payload -1 for cid/fid | |
2594 | |
2595 // Validate data payload size: check if longer than size of testmode | |
2596 // primitive minus cid, str_len_in_bytes, and two holes FIXME: This is a | |
2597 // really bad way of doing it! | |
2598 if (size > sizeof(T_TESTMODE_PRIM) - 4) | |
2599 error = -ETM_PACKET; | |
2600 | |
2601 // The CID have been received. The data that follows are part of a | |
2602 // unique struct within the union of T_TESTMODE_PRIM, so we now | |
2603 // need to align at a 32-bit word boundary. | |
2604 *pmsg++ = 0; | |
2605 | |
2606 // In a SSA integration the cksum is done in the etm_receive function | |
2607 #if (OP_L1_STANDALONE == 1) | |
2608 if (!error) | |
2609 { | |
2610 cksum = mid; | |
2611 cksum ^= cid; | |
2612 | |
2613 while (size--) | |
2614 { | |
2615 cksum ^= *inbuf; | |
2616 *pmsg++ = *inbuf++; | |
2617 } | |
2618 if (cksum != *inbuf) | |
2619 error = -ETM_PACKET; | |
2620 } | |
2621 #elif (OP_L1_STANDALONE == 0) | |
2622 // Copy payload without cid/fid | |
2623 while (size--) | |
2624 { | |
2625 *pmsg++ = *inbuf++; | |
2626 } | |
2627 #endif | |
2628 | |
2629 // At this point, all the data have been parsed and copied into | |
2630 // the TestMode primitive. Now we send the primitive to L1. | |
2631 if (!error) | |
2632 { | |
2633 os_send_sig(msg, L1C1_QUEUE); | |
2634 msg_used=TRUE; | |
2635 } | |
2636 else | |
2637 { | |
2638 UWORD8 mymsg[4]; | |
2639 | |
2640 // on error, return short error message; cid, error, checksum | |
2641 mymsg[0] = mid; | |
2642 mymsg[1] = cid; // the payload fid | |
2643 mymsg[2] = error; // status | |
2644 mymsg[3] = cid ^ error; // checksum | |
2645 | |
2646 #if (TRACE_TYPE==0) || (TRACE_TYPE==1) || (TRACE_TYPE==4) || (TRACE_TYPE==7) | |
2647 rvt_send_trace_cpy((T_RVT_BUFFER) mymsg, | |
2648 tm_trace_user_id, | |
2649 4, | |
2650 RVT_BINARY_FORMAT); | |
2651 #endif | |
2652 } | |
2653 | |
2654 #else // end of (ETM_PROTOCOL ==1) | |
2655 | |
2656 // Copy CID | |
2657 *pmsg++ = cid = *inbuf++; | |
2658 // Copy data payload size (size minus CID byte and checksum byte) | |
2659 size -= 2; | |
2660 *pmsg++ = size; | |
2661 | |
2662 // Validate data payload size: check if longer than size of testmode | |
2663 // primitive minus cid, str_len_in_bytes, and two holes FIXME: This is a | |
2664 // really bad way of doing it! | |
2665 if (size > sizeof(T_TESTMODE_PRIM) - 4) | |
2666 error = E_PACKET; | |
2667 | |
2668 // The CID have been received. The data that follows are part of a | |
2669 // unique struct within the union of T_TESTMODE_PRIM, so we now | |
2670 // need to align at a 32-bit word boundary. | |
2671 pmsg += 2; | |
2672 | |
2673 if (!error) | |
2674 { | |
2675 cksum = cid; | |
2676 while (size--) | |
2677 { | |
2678 cksum ^= *inbuf; | |
2679 *pmsg++ = *inbuf++; | |
2680 } | |
2681 if (cksum != *inbuf) | |
2682 error = E_CHECKSUM; | |
2683 } | |
2684 | |
2685 // At this point, all the data have been parsed and copied into | |
2686 // the TestMode primitive. Now we send the primitive to L1. | |
2687 if (!error) | |
2688 { | |
2689 os_send_sig(msg, L1C1_QUEUE); | |
2690 msg_used=TRUE; | |
2691 } | |
2692 else | |
2693 { | |
2694 UWORD8 mymsg[3]; | |
2695 // on error, return short error message; error, cid/fid, checksum | |
2696 mymsg[0] = cid; | |
2697 mymsg[1] = error; | |
2698 mymsg[2] = cid ^ error; // checksum | |
2699 | |
2700 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) || (TRACE_TYPE==7) || (TRACE_TYPE==0) | |
2701 rvt_send_trace_cpy((T_RVT_BUFFER) mymsg, tm_trace_user_id,3, RVT_BINARY_FORMAT); | |
2702 #endif | |
2703 } | |
2704 | |
2705 #endif // end of (ETM_PROTOCOL ==0) | |
2706 | |
2707 // if the message allocated is not sent to L1A, it has to be deallocated | |
2708 if(msg_used==FALSE) | |
2709 os_free_sig(msg); | |
2710 } | |
2711 | |
2712 void tm_transmit(T_TM_RETURN *tm_ret) | |
2713 { | |
2714 UWORD8 size, cksum; | |
2715 UWORD8 *pbuf, *ptmret; | |
2716 UWORD8 buf[TM_PAYLOAD_UPLINK_SIZE_MAX + TM_UPLINK_PACKET_OVERHEAD]; | |
2717 | |
2718 pbuf = &buf[0]; | |
2719 | |
2720 // move the header | |
2721 #if (ETM_PROTOCOL == 1) | |
2722 *pbuf++ = tm_ret->mid; | |
2723 cksum = tm_ret->mid; | |
2724 *pbuf++ = tm_ret->status; | |
2725 cksum ^= tm_ret->status; | |
2726 *pbuf++ = tm_ret->cid; | |
2727 cksum ^= tm_ret->cid; | |
2728 | |
2729 // Include index if not equal to zero, and if not an error | |
2730 // Exception: in TX_TEMPLATE_READ we always include the index. | |
2731 if ((tm_ret->status == -ETM_OK) && | |
2732 (tm_ret->index || tm_ret->cid == TX_TEMPLATE_READ)){ | |
2733 *pbuf++ = tm_ret->index; | |
2734 cksum ^= tm_ret->index; | |
2735 } | |
2736 | |
2737 #else | |
2738 *pbuf++ = tm_ret->cid; | |
2739 *pbuf++ = tm_ret->status; | |
2740 cksum = tm_ret->cid ^ tm_ret->status; | |
2741 | |
2742 // Include index if not equal to zero, and if not an error | |
2743 // Exception: in TX_TEMPLATE_READ we always include the index. | |
2744 if ((tm_ret->status == E_OK) && | |
2745 (tm_ret->index || tm_ret->cid == TX_TEMPLATE_READ)){ | |
2746 *pbuf++ = tm_ret->index; | |
2747 cksum ^= tm_ret->index; | |
2748 } | |
2749 #endif | |
2750 | |
2751 ptmret = (UWORD8 *) &tm_ret->result[0]; | |
2752 size = tm_ret->size; | |
2753 while (size--) { | |
2754 *pbuf++ = *ptmret; | |
2755 cksum ^= *ptmret++; | |
2756 } | |
2757 | |
2758 // move the checksum and append it to buf | |
2759 *pbuf++ = cksum; | |
2760 | |
2761 #if (TRACE_TYPE==1) || (TRACE_TYPE==4) || (TRACE_TYPE==7) || (TRACE_TYPE==0) | |
2762 rvt_send_trace_cpy(buf, tm_trace_user_id, pbuf - buf, RVT_BINARY_FORMAT); | |
2763 #endif | |
2764 } | |
2765 | |
2766 | |
2767 #if ((L1_STEREOPATH == 1) && (CODE_VERSION == NOT_SIMULATION) && (OP_L1_STANDALONE == 1)) | |
2768 /******************************************************************************* | |
2769 * | |
2770 * UWORD16 l1tm_stereopath_get_pattern(UWORD16 sampling_freq, UWORD16 sin_freq_left,UWORD16 sin_freq_right, UWORD8 data_type) | |
2771 * | |
2772 * Purpose : this function is use to get a complete period of a sinusoide depending on | |
2773 * the sinusoide freq (L+R), the sampling freq and the type of samples (S8,S16,S32) | |
2774 * | |
2775 * Arguments: sampling_freq : sampling frequency | |
2776 * sin_freq_left : frequency of the left channel sinusoide | |
2777 * sin_freq_right : frequency of the right channel sinusoide | |
2778 * data_type : type of samples | |
2779 * | |
2780 * Returns : number of elements in the pattern | |
2781 * | |
2782 ******************************************************************************/ | |
2783 | |
2784 UWORD16 l1tm_stereopath_get_pattern(UWORD16 sampling_freq, UWORD16 sin_freq_left,UWORD16 sin_freq_right, UWORD8 data_type) | |
2785 { | |
2786 float max_sin_period; | |
2787 float my_time; | |
2788 UWORD16 i; | |
2789 | |
2790 // get the lowest frequency to get the biggest period | |
2791 if (sin_freq_left > sin_freq_right) | |
2792 { | |
2793 max_sin_period = 1 / (float) sin_freq_right; | |
2794 } | |
2795 else | |
2796 { | |
2797 max_sin_period = 1 / (float) sin_freq_left; | |
2798 } | |
2799 | |
2800 my_time = 0; | |
2801 i = 0; | |
2802 | |
2803 if (data_type == AUDIO_SP_DATA_S8) | |
2804 { | |
2805 WORD8* my_ptr; | |
2806 | |
2807 // cast the steropath_pattern to a pointer on 8 bits samples | |
2808 my_ptr = (WORD8*) l1tm.stereopath.stereopath_pattern; | |
2809 | |
2810 // fill the pattern while the biggest period is not reached | |
2811 while (my_time < max_sin_period) | |
2812 { | |
2813 my_ptr[i++] = 0x7F * sin(2*3.1416*my_time*sin_freq_left); | |
2814 my_ptr[i++] = 0x7F * sin(2*3.1416*my_time*sin_freq_right); | |
2815 | |
2816 my_time = i/2/((float) sampling_freq); | |
2817 } | |
2818 } | |
2819 else // S16 | |
2820 { | |
2821 WORD16* my_ptr; | |
2822 | |
2823 // cast the steropath_pattern to a pointer on 16 bits samples | |
2824 my_ptr = (WORD16*) l1tm.stereopath.stereopath_pattern; | |
2825 | |
2826 // fill the pattern while the biggest period is not reached | |
2827 while (my_time < max_sin_period) | |
2828 { | |
2829 my_ptr[i++] = 0x7FFF * sin(2*3.1416*my_time*sin_freq_left); | |
2830 my_ptr[i++] = 0x7FFF * sin(2*3.1416*my_time*sin_freq_right); | |
2831 | |
2832 my_time = i/2/((float) sampling_freq); | |
2833 } | |
2834 | |
2835 } | |
2836 | |
2837 return (i); | |
2838 | |
2839 } | |
2840 | |
2841 /******************************************************************************* | |
2842 * | |
2843 * void l1tm_stereopath_fill_buffer(void* buffer_address) | |
2844 * | |
2845 * Purpose : this function is use to fill a buffer with a predefined pattern | |
2846 * | |
2847 * Arguments: buffer_address : address of the buffer to fill | |
2848 * | |
2849 * Returns : none | |
2850 * | |
2851 ******************************************************************************/ | |
2852 | |
2853 void l1tm_stereopath_fill_buffer(void* buffer_address) | |
2854 { | |
2855 static UWORD16 my_counter = 0; | |
2856 UWORD16 copied_samples; | |
2857 | |
2858 UWORD16 i; | |
2859 | |
2860 | |
2861 if (l1a_l1s_com.stereopath_drv_task.parameters.data_type == AUDIO_SP_DATA_S8) | |
2862 { | |
2863 WORD8* start_address; | |
2864 WORD8* my_ptr; | |
2865 | |
2866 // l1tm.stereopath.stereopath_buffer_number is a variable used to know which half of the buffer we have to fill | |
2867 if (l1tm.stereopath.stereopath_buffer_number == 0) | |
2868 { | |
2869 // first half | |
2870 start_address = (WORD8*) buffer_address; | |
2871 l1tm.stereopath.stereopath_buffer_number = 1; | |
2872 } | |
2873 else | |
2874 { | |
2875 // second half, add the frame number to get the half buffer address | |
2876 start_address = ((WORD8*) buffer_address) + l1a_l1s_com.stereopath_drv_task.parameters.frame_number; | |
2877 l1tm.stereopath.stereopath_buffer_number = 0; | |
2878 } | |
2879 | |
2880 // copied_samples is the number of samples copied to the half buffer | |
2881 copied_samples = 0; | |
2882 // cast the steropath_pattern to a pointer on 8 bits samples | |
2883 my_ptr = (WORD8*) l1tm.stereopath.stereopath_pattern; | |
2884 | |
2885 if (l1a_l1s_com.stereopath_drv_task.parameters.frame_number > l1tm.stereopath.stereopath_nb_samples) | |
2886 { | |
2887 // size of the half buffer to fill is bigger than the predefined pattern | |
2888 // start to fill the buffer with the end of the not complete previous pattern (from current_sample to the last one) | |
2889 memcpy(start_address,my_ptr+l1tm.stereopath.stereopath_current_sample,l1tm.stereopath.stereopath_nb_samples-l1tm.stereopath.stereopath_current_sample); | |
2890 copied_samples = l1tm.stereopath.stereopath_nb_samples-l1tm.stereopath.stereopath_current_sample; | |
2891 | |
2892 // while there is still enough place in the buffer to copy a complete pattern ... | |
2893 while (copied_samples<l1a_l1s_com.stereopath_drv_task.parameters.frame_number-l1tm.stereopath.stereopath_nb_samples) | |
2894 { | |
2895 // ... copy a complete pattern | |
2896 memcpy(start_address+copied_samples,my_ptr,l1tm.stereopath.stereopath_nb_samples); | |
2897 copied_samples += l1tm.stereopath.stereopath_nb_samples; | |
2898 } | |
2899 | |
2900 // fill the rest of the buffer with a part of the pattern | |
2901 memcpy(start_address+copied_samples,my_ptr,l1a_l1s_com.stereopath_drv_task.parameters.frame_number-copied_samples); | |
2902 // save the last pattern sample copied in the buffer for next time (to get a continuous sound) | |
2903 l1tm.stereopath.stereopath_current_sample = l1a_l1s_com.stereopath_drv_task.parameters.frame_number-copied_samples; | |
2904 | |
2905 } | |
2906 else | |
2907 { | |
2908 // size of the half buffer to fill is smaller than the predefined pattern | |
2909 // fill the buffer with a part of the pattern | |
2910 memcpy(start_address,my_ptr+l1tm.stereopath.stereopath_current_sample,l1a_l1s_com.stereopath_drv_task.parameters.frame_number); | |
2911 // save the last pattern sample copied in the buffer for next time (to get a continuous sound) | |
2912 l1tm.stereopath.stereopath_current_sample += l1a_l1s_com.stereopath_drv_task.parameters.frame_number; | |
2913 | |
2914 if (l1tm.stereopath.stereopath_current_sample > l1tm.stereopath.stereopath_nb_samples) | |
2915 { | |
2916 l1tm.stereopath.stereopath_current_sample -= l1tm.stereopath.stereopath_nb_samples; | |
2917 } | |
2918 } | |
2919 } | |
2920 else // S16 | |
2921 { | |
2922 WORD16* start_address; | |
2923 WORD16* my_ptr; | |
2924 | |
2925 // l1tm.stereopath.stereopath_buffer_number is a variable used to know which half of the buffer we have to fill | |
2926 if (l1tm.stereopath.stereopath_buffer_number == 0) | |
2927 { | |
2928 // first half | |
2929 start_address = (WORD16*) buffer_address; | |
2930 l1tm.stereopath.stereopath_buffer_number = 1; | |
2931 } | |
2932 else | |
2933 { | |
2934 // second half, add the frame number to get the half buffer address | |
2935 start_address = ((WORD16*) buffer_address) + l1a_l1s_com.stereopath_drv_task.parameters.frame_number; | |
2936 l1tm.stereopath.stereopath_buffer_number = 0; | |
2937 } | |
2938 | |
2939 // copied_samples is the number of samples copied to the half buffer | |
2940 copied_samples = 0; | |
2941 // cast the steropath_pattern to a pointer on 16 bits samples | |
2942 my_ptr = (WORD16*) l1tm.stereopath.stereopath_pattern; | |
2943 | |
2944 if (l1a_l1s_com.stereopath_drv_task.parameters.frame_number > l1tm.stereopath.stereopath_nb_samples) | |
2945 { | |
2946 // size of the half buffer to fill is bigger than the predefined pattern | |
2947 // start to fill the buffer with the end of the not complete previous pattern (from current_sample to the last one) | |
2948 memcpy(start_address, my_ptr+l1tm.stereopath.stereopath_current_sample,(l1tm.stereopath.stereopath_nb_samples-l1tm.stereopath.stereopath_current_sample)*2); | |
2949 copied_samples = l1tm.stereopath.stereopath_nb_samples-l1tm.stereopath.stereopath_current_sample; | |
2950 | |
2951 // while there is still enough place in the buffer to copy a complete pattern ... | |
2952 while (copied_samples<l1a_l1s_com.stereopath_drv_task.parameters.frame_number-l1tm.stereopath.stereopath_nb_samples) | |
2953 { | |
2954 // ... copy a complete pattern | |
2955 memcpy(start_address+copied_samples,my_ptr,l1tm.stereopath.stereopath_nb_samples*2); | |
2956 copied_samples += l1tm.stereopath.stereopath_nb_samples; | |
2957 } | |
2958 | |
2959 // fill the rest of the buffer with a part of the pattern | |
2960 memcpy(start_address+copied_samples,my_ptr,(l1a_l1s_com.stereopath_drv_task.parameters.frame_number-copied_samples)*2); | |
2961 // save the last pattern sample copied in the buffer for next time (to get a continuous sound) | |
2962 l1tm.stereopath.stereopath_current_sample = l1a_l1s_com.stereopath_drv_task.parameters.frame_number-copied_samples; | |
2963 | |
2964 } | |
2965 else | |
2966 { | |
2967 // size of the half buffer to fill is smaller than the predefined pattern | |
2968 // fill the buffer with a part of the pattern | |
2969 memcpy(start_address,my_ptr+l1tm.stereopath.stereopath_current_sample,l1a_l1s_com.stereopath_drv_task.parameters.frame_number); | |
2970 l1tm.stereopath.stereopath_current_sample += l1a_l1s_com.stereopath_drv_task.parameters.frame_number; | |
2971 | |
2972 // save the last pattern sample copied in the buffer for next time (to get a continuous sound) | |
2973 if (l1tm.stereopath.stereopath_current_sample > l1tm.stereopath.stereopath_nb_samples) | |
2974 { | |
2975 l1tm.stereopath.stereopath_current_sample -= l1tm.stereopath.stereopath_nb_samples; | |
2976 } | |
2977 | |
2978 } | |
2979 } | |
2980 } | |
2981 | |
2982 /******************************************************************************* | |
2983 * | |
2984 * void l1tm_stereopath_DMA_handler(SYS_UWORD16 dma_status) | |
2985 * | |
2986 * Purpose : this function is the stereopath DMA interrupt handler | |
2987 * | |
2988 * Arguments: dma_status : type of interrupt | |
2989 * | |
2990 * Returns : none | |
2991 * | |
2992 ******************************************************************************/ | |
2993 void l1tm_stereopath_DMA_handler(SYS_UWORD16 dma_status) | |
2994 { | |
2995 // stereopath DMA handler, check which type of interrupt it is | |
2996 if (F_DMA_COMPARE_CHANNEL_IT_STATUS_BLOCK(dma_status)) | |
2997 { | |
2998 l1tm.stereopath.stereopath_block++; | |
2999 // Block --> fill a new buffer | |
3000 l1tm_stereopath_fill_buffer((void*) l1a_l1s_com.stereopath_drv_task.parameters.source_buffer_address); | |
3001 } | |
3002 if (F_DMA_COMPARE_CHANNEL_IT_STATUS_HALF_BLOCK(dma_status)) | |
3003 { | |
3004 l1tm.stereopath.stereopath_half_block++; | |
3005 // Half Block --> fill a new buffer | |
3006 l1tm_stereopath_fill_buffer((void*) l1a_l1s_com.stereopath_drv_task.parameters.source_buffer_address); | |
3007 } | |
3008 if (F_DMA_COMPARE_CHANNEL_IT_STATUS_TIME_OUT_SRC(dma_status)) | |
3009 l1tm.stereopath.stereopath_source_timeout++; | |
3010 if (F_DMA_COMPARE_CHANNEL_IT_STATUS_TIME_OUT_DST(dma_status)) | |
3011 l1tm.stereopath.stereopath_dest_timeout++; | |
3012 if (F_DMA_COMPARE_CHANNEL_IT_STATUS_DROP(dma_status)) | |
3013 l1tm.stereopath.stereopath_drop++; | |
3014 if (F_DMA_COMPARE_CHANNEL_IT_STATUS_FRAME(dma_status)) | |
3015 l1tm.stereopath.stereopath_frame++; | |
3016 } | |
3017 #endif | |
3018 | |
3019 | |
3020 | |
3021 #if (CODE_VERSION != SIMULATION) | |
3022 void l1tm_tpu_table_write(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
3023 { | |
3024 Cust_tm_tpu_table_write(tm_return, | |
3025 prim->u.tm_table.index, | |
3026 prim->str_len_in_bytes - 1, // subtract 8-bit index | |
3027 prim->u.tm_table.table); | |
3028 } | |
3029 | |
3030 void l1tm_tpu_table_read(T_TESTMODE_PRIM *prim, T_TM_RETURN *tm_return) | |
3031 { | |
3032 Cust_tm_tpu_table_read(tm_return, prim->u.tm_table.index); | |
3033 } | |
3034 #endif // (CODE_VERSION != SIMULATION) | |
3035 | |
3036 | |
3037 /*------------------------------------------------------------------*/ | |
3038 /* l1tm_PRBS1_generate() */ | |
3039 /*------------------------------------------------------------------*/ | |
3040 /* */ | |
3041 /* Parameters : UWORD16 *TM_ul_data */ | |
3042 /* ------------- */ | |
3043 /* point to the uplink burts table to be filled */ | |
3044 /* with the PRBS 1 of bits */ | |
3045 /* */ | |
3046 /* Return : Void */ | |
3047 /* ------------- */ | |
3048 /* */ | |
3049 /* Description : */ | |
3050 /* ------------- */ | |
3051 /* This algorithm generates a Pseudo Random Bit Sequence */ | |
3052 /* using a method called method "Primitive Polynomial Modulo 2" */ | |
3053 /* For a sequence length of (2^15-1) we a polynomial of order 15 */ | |
3054 /* is used, the coefficients are [ 15, 1, 0 ] */ | |
3055 /* The basic idea is to generate the new bit by XORing all the */ | |
3056 /* coefficients of the polynomial except coeff 0 */ | |
3057 /* i.e newbit = ( B15 XOR B1 ) */ | |
3058 /* The following notation must be used for the bit numbering: */ | |
3059 /* _______________________________________________________ */ | |
3060 /*|B16|B15|B14|B13|B12|B11|B10|B9|B8|B7|B6|B5|B4|B3|B2|B1| */ | |
3061 /*------------------------------------------------------------------*/ | |
3062 /* */ | |
3063 /* each word of the uplink buffer needs to be filled by new 10 bits */ | |
3064 /*------------------------------------------------------------------*/ | |
3065 void l1tm_PRBS1_generate(UWORD16 *TM_ul_data) | |
3066 { | |
3067 #define B15_MASK 0x4000 | |
3068 #define B1_MASK 0x0001 | |
3069 #define MASK_16BITS 0xFFFF | |
3070 | |
3071 UWORD16 newbit =0x0000; | |
3072 UWORD8 index ,word; | |
3073 | |
3074 //generate 16 words to fill Uplink table | |
3075 for (word=0;word<16;word++) | |
3076 { | |
3077 // generate new 10 bits from the sequence | |
3078 for (index =0; index< 10;index++) | |
3079 { | |
3080 // generate new bit , using the "Primitive Polynomial Modulo 2 " method with coeff. ( 15, 1, 0 ) | |
3081 //XOR bit 15 with bit 1. | |
3082 newbit = (((l1tm.tmode_prbs.prbs1_seed& B15_MASK)>>14)^(l1tm.tmode_prbs.prbs1_seed & B1_MASK)); | |
3083 // insert new bit in the sequence. | |
3084 l1tm.tmode_prbs.prbs1_seed = (l1tm.tmode_prbs.prbs1_seed << 1) | newbit; | |
3085 } | |
3086 TM_ul_data[word]=(UWORD16)((l1tm.tmode_prbs.prbs1_seed&MASK_16BITS)<<6); | |
3087 } | |
3088 } | |
3089 | |
3090 #endif // TESTMODE | |
3091 | |
3092 |