FreeCalypso > hg > fc-magnetite
diff src/cs/layer1/cfile/l1_ctl.c @ 69:50a15a54801e
src/cs/layer1: import from tcs211-l1-reconst project
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sat, 01 Oct 2016 23:45:38 +0000 |
parents | |
children | af1bacf61dc6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/cs/layer1/cfile/l1_ctl.c Sat Oct 01 23:45:38 2016 +0000 @@ -0,0 +1,3266 @@ +/************* Revision Controle System Header ************* + * GSM Layer 1 software + * L1_CTL.C + * + * Filename l1_ctl.c + * Copyright 2003 (C) Texas Instruments + * + ************* Revision Controle System Header *************/ + +#define L1_CTL_C + +#include "l1_macro.h" +#include "l1_confg.h" + +#if (CODE_VERSION == SIMULATION) + #include <string.h> + #include "l1_types.h" + #include "sys_types.h" + #include "l1_const.h" + #include "l1_time.h" + #include "l1_signa.h" + + #if TESTMODE + #include "l1tm_defty.h" + #endif + #if (AUDIO_TASK == 1) + #include "l1audio_const.h" + #include "l1audio_cust.h" + #include "l1audio_signa.h" + #include "l1audio_defty.h" + #include "l1audio_msgty.h" + #endif + #if (L1_GTT == 1) + #include "l1gtt_const.h" + #include "l1gtt_defty.h" + #endif + #if (L1_MP3 == 1) + #include "l1mp3_defty.h" + #endif + #if (L1_MIDI == 1) + #include "l1midi_defty.h" + #endif +//ADDED FOR AAC + #if (L1_AAC == 1) + #include "l1aac_defty.h" + #endif + #include "l1_defty.h" + #include "cust_os.h" + #include "l1_msgty.h" + #include "l1_varex.h" + #include "l1_proto.h" + #include "l1_mftab.h" + #include "l1_tabs.h" + #include "l1_ver.h" + #if L2_L3_SIMUL + #include "hw_debug.h" + #endif + + #if TESTMODE + #include "l1tm_msgty.h" + #include "l1tm_varex.h" + #endif + + #include "l1_ctl.h" + + #ifdef _INLINE + #define INLINE static inline // Inline functions when -v option is set + #else // when the compiler is ivoked. + #define INLINE + #endif +#else + #include <string.h> + #include "l1_types.h" + #include "sys_types.h" + #include "l1_const.h" + #include "l1_time.h" + #include "l1_signa.h" + + #if (RF_FAM == 61) + #include "tpudrv61.h" + #endif + + #if TESTMODE + #include "l1tm_defty.h" + #endif + #if (AUDIO_TASK == 1) + #include "l1audio_const.h" + #include "l1audio_cust.h" + #include "l1audio_defty.h" + #endif + #if (L1_GTT == 1) + #include "l1gtt_const.h" + #include "l1gtt_defty.h" + #endif + #if (L1_MP3 == 1) + #include "l1mp3_defty.h" + #endif + #if (L1_MIDI == 1) + #include "l1midi_defty.h" + #endif +//ADDED FOR AAC + #if (L1_AAC == 1) + #include "l1aac_defty.h" + #endif + #include "l1_defty.h" + #include "cust_os.h" + #include "l1_msgty.h" + #include "l1_varex.h" + #include "l1_proto.h" + #include "l1_tabs.h" + #include "l1_ctl.h" + #if L2_L3_SIMUL + #include "hw_debug.h" + #endif + + #if TESTMODE + #include "l1tm_msgty.h" + #include "l1tm_varex.h" + #endif + #ifdef _INLINE + #define INLINE static inline // Inline functions when -v option is set + #else // when the compiler is ivoked. + #define INLINE + #endif +#endif + +#if(RF_FAM == 61) + #include "l1_rf61.h" +#endif + +#if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) + #include "l1_trace.h" +#endif + +extern SYS_UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq); +#if(RF_FAM == 61) +extern WORD16 drp_gain_correction(UWORD16 arfcn, UWORD8 lna_off, UWORD16 agc); +#endif + +#define LNA_OFF 1 +#define LNA_ON 0 + + + + +/************************************/ +/* Automatic frequency compensation */ +/************************************/ + +/* + * FreeCalypso TCS211 reconstruction: the following 3 functions + * have been added in the LoCosto version of this module. + * We have conditioned them out in order to match the original + * TCS211 object; their uses have been conditioned out as well. + * + * These functions will need to re-enabled when their uses are + * re-enabled. + */ + +#if 0 + +#define L1_WORD16_POS_MAX (32767) +#define L1_WORD16_NEG_MAX (-32768) +#define L1_WORD32_POS_MAX ((unsigned long)(1<<31)-1) +#define L1_WORD32_NEG_MAX (-(unsigned long)(1<<31)) + +INLINE WORD16 Add_Sat_sign_16b(WORD16 val1, WORD16 val2) +{ + WORD32 temp; + WORD16 result; + + temp = (WORD32)((WORD32)val1 + (WORD32)val2); + if(temp > L1_WORD16_POS_MAX) + { + temp = L1_WORD16_POS_MAX; + } + if(temp < L1_WORD16_NEG_MAX) + { + temp = L1_WORD16_NEG_MAX; + } + result = (WORD16)((temp)&(0x0000FFFF)); + return(result); +} + +INLINE WORD32 Add_Sat_sign_32b(WORD32 val1, WORD32 val2) +{ + WORD32 temp_high_high; + UWORD32 temp_low_low; + UWORD16 carry; + WORD32 result; + WORD16 high_val1, high_val2; + UWORD16 low_val1, low_val2; + + high_val1 = (WORD16)(val1>>16); + high_val2 = (WORD16)(val2>>16); + low_val1 = (UWORD16)(val1&0x0000FFFF); + low_val2 = (UWORD16)(val2&0x0000FFFF); + + temp_high_high = (WORD32)high_val1 + (WORD32)high_val2; + temp_low_low = (UWORD32)low_val1 + (UWORD32)low_val2; + carry = (UWORD16)(temp_low_low >> 16); + temp_high_high = temp_high_high + (UWORD32)(carry); + + + result = val1 + val2; + if(temp_high_high > L1_WORD16_POS_MAX) + { + result = L1_WORD32_POS_MAX; + } + if(temp_high_high < L1_WORD16_NEG_MAX) + { + result = L1_WORD32_NEG_MAX; + } + + return(result); +} + +INLINE WORD32 Sat_Mult_20sign_16unsign(WORD32 val1, UWORD32 val2) +{ + WORD32 result; + + result = val1 * val2; + if(val1>0) /* val2 is > 0*/ + { + if(result < 0) /* overflow */ + { + result = L1_WORD32_POS_MAX; + } + } + if(val1<0) /* val2 is > 0*/ + { + if(result > 0) /* overflow */ + { + result = L1_WORD32_NEG_MAX; + } + } + return(result); +} +#endif + +INLINE WORD32 Add_40b( WORD32 guard1guard2, WORD32 lvar1, WORD32 lvar2, WORD16 *guardout ) +{ + WORD32 result, temp, carry, Lvar1, Lvar2; + WORD16 guard1,guard2; + + guard1=(WORD16) ((WORD32) guard1guard2>>16); + guard2=(WORD16) guard1guard2; + + /* lvar1 and lvar2 are both 48 bits variables */ + /* We 1st add the low parts of lvar1 and lvar2 and we give */ + /* a 32 bits result and a carry if needed */ + Lvar1 = (UWORD16)lvar1; + Lvar2 = (UWORD16)lvar2; + + temp = Lvar1 + Lvar2; + + carry = temp >> 16; + + result = temp & 0x0000ffffL; + + /* We now add the two high parts of var1 and var2 (scaled */ + /* to a 16 bits format) and carry (if any) and we give a */ + /* 48 bits results. */ + Lvar1 = (UWORD32)lvar1 >> 16; + Lvar2 = (UWORD32)lvar2 >> 16; + + temp = Lvar1 + Lvar2 + carry; + + carry = (UWORD32)temp >> 16; + + temp = (UWORD32)temp << 16; + + result = result | temp; + + temp = guard1 + guard2 + carry; + + *guardout = (WORD16)temp; + + return( result ); +} + + +INLINE WORD32 Mult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) +{ + WORD32 mult,guard1guard2; + WORD32 aux1; + UWORD32 aux2; + WORD16 neg_flag=0; + WORD32 var1_low_nosign,var2_nosign; + + if (var2<0) + { + var2=-var2; + neg_flag=1; + } + + /*aux1 = AccHigh(var1)*var2 */ + aux1 = (WORD32)(var1>>16) * (WORD32)var2; + /* 16 bits * 16 bits -> 32 bits result */ + + /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ + /* Performs the sign suppression of the words */ + var1_low_nosign = (UWORD16)var1; + var2_nosign = (UWORD16) var2; + + aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; + + /*Shift aux1=F48 of 16 bit left */ + guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ + /*guard2=0x0000 */ + aux1=aux1<<16; + + + /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ + /* aux1 and aux2 are both 48 bits variables */ + /* We first add the low pats of aux1 and aux2 and we give*/ + /* a 32 bits result and a carry if needed */ + mult=Add_40b(guard1guard2,aux1,aux2,guardout ); + + if (neg_flag) + { + mult=-mult; + if (*guardout!=0) + *guardout=-(*guardout)-1; + else + *guardout=-1; + } + + return(mult); +} + + +/***********************************************************************/ +/* This function allows to multiply a WORD32 and a WORD16, both POSITIVE, */ +/* variables. Result is WORD32. */ +/***********************************************************************/ +INLINE WORD32 UMult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) +{ + WORD32 mult,guard1guard2; + UWORD32 aux1,aux2; + WORD32 var1_high_nosign,var1_low_nosign,var2_nosign; + + + /*aux1 = AccHigh(var1)*var2 (unsigned multiplication) */ + /* Performs the sign suppression of the words */ + var1_high_nosign = (UWORD32)var1>>16; + var2_nosign = (UWORD16) var2; + + aux1 = (UWORD32)var1_high_nosign * (UWORD32)var2_nosign; + + /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ + /* Performs the sign suppression of the words */ + var1_low_nosign = (WORD32)((UWORD16)var1); + + aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; + + /*Shift aux1=F48 of 16 bit left */ + guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ + /*guard2=0x0000 */ + aux1=aux1<<16; + + + /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ + mult=Add_40b(guard1guard2,aux1,aux2,guardout); + + return(mult); +} + + +/*-------------------------------------------------------*/ +/* l1ctl_afc() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +#if (VCXO_ALGO == 0) +WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq) +#else +WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq, UWORD32 l1_mode) +#endif +{ + /*************************/ + /* Variables declaration */ + /*************************/ + WORD16 i=0; + UWORD32 denom; /* F12.20 */ + WORD32 var_32,num,Phi_32=0,var1,var2,guard1guard2; + static UWORD32 P=C_cov_start; /* F12.20 */ + static WORD32 Psi=0; /* F13.19 */ + static WORD16 Psi_quant[C_N_del+1]; /* F13.3 */ + WORD16 var_16; + WORD16 Phi=0; /* F1.15 */ + WORD16 quotient,guard1,guard2,guardout; + UWORD32 LGuard; + WORD16 denomH,denomH_3msb; + UWORD32 K=0; /* algo 1 */ + + static WORD16 old_Psi_quant[C_N_del+1]; + static WORD32 old_Psi=0; + +#if (VCXO_ALGO == 1) + static WORD32 psi_past[C_N_del+1]; /* F13.19 */ + static WORD16 psi_quant; /* F13.3 */ + static WORD16 quant_avg; + static UWORD32 M_Count; + static WORD32 psi_avg[C_PSI_AVG_SIZE_D+1]; // Data history array + static WORD16 B_Count; // Counter for consecutive SNR below C_thr_snr + #if 0 /* LoCosto added var */ + UWORD16 L = 10433; // Gain algo2 + #endif + static UWORD16 first_avg; + static UWORD16 good_snr; + + /* to be able to keep in memory the old AFC variables in case of spurious + FB detection */ + static WORD32 old_psi_past[C_N_del+1]; /* F13.19 */ + static WORD16 old_psi_quant; /* F13.3 */ + +#endif +#if (L1_FF_MULTIBAND == 1) + UWORD8 physical_band_id; +#endif + +#if 0 /* LoCosto added var init */ +//Set AFC close loop gain for ALGO_AFC_LQG_PREDICTOR. +if(l1_mode==I_MODE)//MS is in Idle mode +L = 41732; //F0.20 L=41732/2^20 = 0.04 +else //All other modes than Idle +L = 10433; //F0.20 L=10433/2^20 = 0.01 +#endif + +#if (L1_FF_MULTIBAND == 0) + + if (((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) && +#if (VCXO_ALGO == 1) + ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) +#else + (phase != AFC_INIT)) +#endif + { + if (radio_freq >= l1_config.std.first_radio_freq_band2) + { + angle = (angle + 1) >> 1; + } + } + + else if (((l1_config.std.id == DCS1800) || (l1_config.std.id == PCS1900)) && +#if (VCXO_ALGO == 1) + ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) +#else + (phase != AFC_INIT)) +#endif + { + angle = (angle + 1) >> 1; + } + +#else // L1_FF_MULTIBAND = 1 below + +#if (VCXO_ALGO == 1) + if((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)) +#else + if(phase != AFC_INIT) +#endif + { + physical_band_id = l1_multiband_radio_freq_convert_into_physical_band_id(radio_freq); + + if( (multiband_rf[physical_band_id].gsm_band_identifier == DCS1800) || (multiband_rf[physical_band_id].gsm_band_identifier == PCS1900)) + { + angle = (angle + 1) >> 1; + } + } + +#endif // #if (L1_FF_MULTIBAND == 1) else + + + + /*********************************/ + /* frequency offset compensation */ + /*********************************/ + /* Initialization */ + +#if (VCXO_ALGO == 1) + switch (l1_config.params.afc_algo) + { + + /* algo1 only: */ + case ALGO_AFC_KALMAN: + { +#endif +#if (VCXO_ALGO == 0) + if (phase==AFC_INIT) + { + // WARNING + // In this case, "angle" variable contains EEPROM_AFC initialization value + // directly loaded from EEPROM, and "snr" variable is not meaningful. + /* Static variables initialisation */ + P=C_cov_start; + Psi=0; + if (angle>C_max_step) + Psi_quant[C_N_del]=C_max_step; + else + if(angle<C_min_step) + Psi_quant[C_N_del]=C_min_step; + else Psi_quant[C_N_del]=angle; + + Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ + } /* end AFC_INIT*/ + else + { + if (phase==AFC_OPEN_LOOP) + { + /* delay line for Psi_quant values */ + for (i=1;i<=C_N_del;i++) + Psi_quant[i-1]=Psi_quant[i]; + + var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; + /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ + +#if(RF_FAM == 61) + /* In order to implement the NINT function for a F16.0, we check */ + /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); + var_16=quotient*4; +#else + /* In order to implement the NINT function for a F16.0, we check */ + /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); + var_16=quotient*8; +#endif + if (var_16>C_max_step) + Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); + else + if(var_16<C_min_step) + Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); + else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ + + Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ + }/*end if AFC_OPEN_LOOP*/ + + else + { + /* delay line for Psi_quant values */ + for (i=1;i<=C_N_del;i++) + Psi_quant[i-1]=Psi_quant[i]; + + /********************/ + /* Filter algorithm */ + /********************/ + + /* Covariance error is increased of C_Q */ + P=P+(*frame_count)*C_Q; + + /* Clipping of P */ + if (P>C_thr_P) P=C_thr_P; + + if (snr>=C_thr_snr) + { + /* Clipping of error angle */ + if (angle>C_thr_phi) + angle=C_thr_phi; + if (angle<-C_thr_phi) + angle=-C_thr_phi; + + /* Kalman gain */ + /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ + /*C_a0_kalman=0.01 */ + /*C_g_kalman =0.05 */ + num=(C_g_kalman/snr)+P+C_a0_kalman; + /* (F2.30 / F6.10) = F 12.20 */ + + /* denom = P << 19 = F 1.39 */ + /* extension of denom=P to a 40 bits variable */ + /* denom (F12.20) << 16 = F 4.36 */ + guard1=(WORD16)((WORD32)P>>16); + /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ + denomH=(UWORD16)P; + /* Low part of denom is equal to 0, because P has been 16 */ + /* bits left shifted previously. */ + denomH_3msb=(denomH>>13)&0x0007; + guard1=(guard1<<3)|denomH_3msb; + denomH<<=3; + denom=(UWORD32)denomH<<16; + /* num + guard1 are a 40 bits representation of P */ + /* In order to compute P(F1.39)/num, we sample P in guard1 */ + /* (scaled to a 32 bits number) and num (32 bits number) */ + /* K = ((guard1<<24)/num)<<8 + (denom/num) */ + var1=(WORD32)guard1<<24; + var1=var1/num; + var1=(WORD32)var1<<8; + /* var2 is an unsigned variable, var1 contains signed guard*/ + /* bits. */ + var2=denom/num; + K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ + /* F13.19 << 1 = F12.20 */ + + /* Clipping of the Kalman gain */ + if (K>=C_thr_K) + K=C_thr_K; + + /*******************************************************/ + /* P=(1-K)*P = 0.8 * 0.5 at maximum */ + /*******************************************************/ + /* Perform a positive variable F12.20 multiplication by*/ + /* positive variable F12.20 */ + var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ + guard1=0; /* positive variable */ + var1=UMult_40b(P,var_16,&guard1); + var_16=(WORD16)((1048576L-K)>>16); + /* acchigh(1-K) = F12.20 */ + var2=P*var_16; /* var2 = 0x80000 * 0xc */ + /* at maximum, so result */ + /* is 32 bits WORD32 and */ + /* equal 0x600000 */ + /* extension of var2 to a 40 bits variable : var2<<16 */ + guard2=(WORD16)((WORD32)var2>>16); + guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); + var2=var2<<16; + var_32=Add_40b(guard1guard2,var1,var2,&guardout); + /* var_32 (F8.40) >> 16 = F8.24 */ + LGuard=(WORD32)guardout<<16; + var1=(UWORD32)var_32>>16; + /* var_32 >> 4 = F12.20 */ + P=(var1+LGuard)>>4; + + Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); + /* F0.32 * F13.3 = F5.35 */ + LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ + /* F13.19 */ + var1=(UWORD32)Phi_32>>16; + Phi_32=Psi-(LGuard+var1); /* F13.19 */ + + /*Phi=angle-Phi_32*/ + Phi_32=((WORD32)angle<<4)-Phi_32; + /* F1.15 * 4 = F13.19 */ + Phi=(WORD16)(Phi_32>>4); /* F17.15 */ + /*var1=K*Phi F12.20 * F1.15 = 13.35 */ + guard1=0; + var1=Mult_40b(K,Phi,&guard1); + /* var1 (F13.35) >> 16 */ + /* F13.19 */ + LGuard=(WORD32)guard1<<16; + var1=(UWORD32)var1>>16; + Psi+=var1+LGuard; + }/*if snr */ + + var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); + /* F13.19 * C = F13.19 */ + +#if(RF_FAM == 61) + /* In order to implement the NINT function for a F13.3, we check */ + /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); + var_16=quotient*4; +#else + /* In order to implement the NINT function for a F13.3, we check */ + /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); + var_16=quotient*8; +#endif + if (var_16>C_max_step) + Psi_quant[C_N_del]=C_max_step; + else + if(var_16<C_min_step) + Psi_quant[C_N_del]=C_min_step; + else Psi_quant[C_N_del]=var_16; /* F13.3 */ + + }/*end AFC_CLOSE_LOOP*/ + } /* end else AFC_INIT*/ + + *frame_count=0; + return(Psi_quant[C_N_del]>>3); /* F16.0 */ + +#else + + } /* end case algo 1 */ + + + /* algo2 + init + estimator/predictor */ + case ALGO_AFC_LQG_PREDICTOR: + { + /******************************************************************/ + /* (New) VCXO Algorithm */ + /******************************************************************/ + + switch (phase) { + case AFC_INIT_CENTER : + case AFC_INIT_MAX : + case AFC_INIT_MIN : + quant_avg = 0; + M_Count = 0; +#if 0 /* present in LoCosto but not in TCS211 */ + for (i = 0; i <= C_PSI_AVG_SIZE_D ; i++) //omaps00090550 + psi_avg[i] = 0; +#endif + first_avg = 1; + good_snr = 0; + + // DAC search algorithm is as follows - up to 12 attempts are made + // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> + // The first four attempts are made on DAC_center + // The next four attempts are made on DAC_max + // The last four attempts are made on DAC_min + // There are statistical reasons for trying four times + + switch (phase) + { + case AFC_INIT_CENTER: + psi_quant = l1_config.params.afc_dac_center; + break; + case AFC_INIT_MAX: + psi_quant = l1_config.params.afc_dac_max; + break; + case AFC_INIT_MIN: + psi_quant = l1_config.params.afc_dac_min; + break; + default : + break; + } + + /* F0.32 * F13.3 = F5.35 */ + psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); + /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ + psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); + + break; + + case AFC_OPEN_LOOP : + { + /* VCXO changes for spurious FB detection */ + if (l1s.spurious_fb_detected == TRUE) + { + psi_quant = old_psi_quant; + + for(i=0;i<C_N_del+1;i++) + psi_past[i] = old_psi_past[i]; + + /* reset the spurious_fb_detected_flag */ + l1s.spurious_fb_detected = FALSE; + } /* end of spuriousFB detected */ + + /* save in memory the old AFC related values */ + old_psi_quant = psi_quant; + + for(i=0;i<C_N_del+1;i++) + old_psi_past[i] = psi_past[i]; + + /* delay line for psi_quant values */ + for (i = 1; i <= C_N_del; i++) + psi_past[i-1] = psi_past[i]; + + /* (F16.0 * F1.15 = F17.15) << 4 = F13.19 */ + var_32 = (WORD32) ((WORD32)angle * l1_config.params.psi_sta_inv) << 4; + +#if(RF_FAM == 61) + /* In order to implement the NINT function for a F16.0,*/ + /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ + var_16 = (WORD16) + ((WORD32) (((WORD32)(var_32 + (1<<17))) / (1<<18))); + var_16 = var_16 * 4; +#else + /* In order to implement the NINT function for a F16.0,*/ + /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ + var_16 = (WORD16) + ((WORD32) (((WORD32)(var_32 + (1<<18))) / (1<<19))); + var_16 = var_16 * 8; +#endif + + #if 0 /* LoCosto code with saturation */ + if (var_16 > C_max_step) + psi_quant = Add_Sat_sign_16b(psi_quant,C_max_step); + else if (var_16 < C_min_step) + psi_quant = Add_Sat_sign_16b(psi_quant,C_min_step); + else psi_quant = Add_Sat_sign_16b(psi_quant,var_16); /* F13.3 */ + #else /* matching TCS211 */ + if (var_16 > C_max_step) + psi_quant += C_max_step; + else if (var_16 < C_min_step) + psi_quant += C_min_step; + else psi_quant += var_16; /* F13.3 */ + #endif + + /* F0.32 * F13.3 = F5.35 */ + psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); + /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ + psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); + + } + break; + + case AFC_CLOSED_LOOP : + + /* delay line for psi_quant values */ + for (i = 1; i <= C_N_del; i++) + psi_past[i-1] = psi_past[i]; + + /************************************/ + /* Estimation */ + /************************************/ + if ( (l1_config.params.rgap_algo != 0) && + ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) + #if L1_GPRS + || l1_mode==PACKET_TRANSFER_MODE + #endif + )) + { + + M_Count += *frame_count; + if (snr >= l1_config.params.afc_snr_thr) { + // Accumulate average over N TDMA frames + psi_avg[0] += psi_past[C_N_del]; + // Count number of good snr's within window_avg_size chunks + good_snr++; + } + // M_Count >= M ? + if (M_Count >= l1_config.params.afc_win_avg_size_M) { + // M_Count counts how far we have reached in the window_avg_size blocks + + // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements + if (good_snr > 0) + psi_avg[0] /= good_snr; + + // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] + if (first_avg == 1) { + first_avg = 0; + // Use first estimation as best guess for the other avg values + // This is used both at initialisation and when returning from reception gap + for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) + psi_avg[i] = psi_avg[0]; + } + + // Estimation 1st order + // Use biggest window to reduce noise effects signal in psi values + // NOTE: Due to performance issues division by MSIZE is in predictor + if (l1_config.params.rgap_algo >= 1) { + quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); + } + + for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) + psi_avg[i+1] = psi_avg[i]; + psi_avg[0] = 0; + M_Count = 0; + good_snr = 0; + } + + } else { + // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! + first_avg = 1; + M_Count = 0; + good_snr = 0; + psi_avg[0] = 0; + } + + if (snr >= l1_config.params.afc_snr_thr) { + /********************/ + /* Filter algorithm */ + /********************/ + + /* No prediction during normal operation */ + B_Count= 0; + + /* Clip error angle */ + if (angle > C_thr_phi) + angle = C_thr_phi; + if (angle < -C_thr_phi) + angle = -C_thr_phi; + + Phi_32 = psi_past[C_N_del] - psi_past[0]; /* F13.19 */ + /* Phi = angle - Phi_32*/ + Phi_32 = ((WORD32) angle << 4) - Phi_32; + /* F1.15 * 4 = F13.19 */ + #if 0 /* LoCosto code */ + Phi = (WORD16)((WORD32)((WORD32)(Phi_32 + (1<<3)))/ (1<<4)); /* F17.15 */ + #else /* TCS211 reconstruction */ + Phi = Phi_32 >> 4; + #endif + /* (F0.20 * F1.15) >> 16 = F13.19 */ + #if 0 /* LoCosto code with saturation and L */ + var_32 = (L * Phi + (1<<15)) >> 16; + psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],var_32); + #else /* matching TCS211 */ + psi_past[C_N_del] += (10433 * Phi) >> 16; + #endif + + } + else + { + /************************************/ + /* Prediction */ + /************************************/ + + // Only predict in dedicated mode + // NO prediction in idle mode + // l1a_l1s_com.dedic_set.SignalCode = NULL + if ( (l1_config.params.rgap_algo != 0) && + ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) + #if L1_GPRS + || l1_mode==PACKET_TRANSFER_MODE + #endif + )) + { + /* Prediction of psi during reception gaps */ + B_Count + += *frame_count; + + /* Predict psi ONLY when we have sufficient measurements available */ + /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ + + // Was the consecutive bad SNRs threshold value exceeded? + if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { + + // Predict with 0th order estimation is the default + + // Predict with 1st order estimation + if (l1_config.params.rgap_algo >= 1) + { + #if 0 /* LoCosto code with saturation */ + psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del], + ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)) + ); + #else /* matching TCS211 */ + psi_past[C_N_del] += + ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); + #endif + } + + B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; + + // Indicate by raising first_avg flag that a reception gap has occurred + // I.e. the psi_avg table must be reinitialised after leaving reception gap + first_avg = 1; + + // Counters in estimation part must also be reset + M_Count = 0; + good_snr = 0; + psi_avg[0] = 0; + } + } + } + + /* Quantize psi value */ + + /* F0.19 * 16.0 = F16.19 */ + #if 0 /* LoCosto code */ + var_32 = Sat_Mult_20sign_16unsign(psi_past[C_N_del],l1_config.params.psi_st_inv); + #else /* TCS211 reconstruction */ + var_32 = psi_past[C_N_del] * l1_config.params.psi_st_inv; + #endif + +#if(RF_FAM == 61) + /* In order to implement the NINT function for a F13.3,*/ + /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ + var_16 = (WORD16) + ((WORD32)((WORD32)(var_32 + (1<<17))) / (1<<18)); + var_16 = var_16 * 4; +#else + /* In order to implement the NINT function for a F13.3,*/ + /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ + var_16 = (WORD16) + ((WORD32)((WORD32)(var_32 + (1<<18))) / (1<<19)); + var_16 = var_16 * 8; +#endif + if (var_16 > C_max_step) + psi_quant = C_max_step; + else if (var_16 < C_min_step) + psi_quant = C_min_step; + else + psi_quant = var_16; /* F13.3 */ + break; + } // switch phase + + *frame_count = 0; + + return (psi_quant >> 3); /* F16.0 */ + } /* end case algo 2 */ + + /* algo1 + init + estimator/predictor */ + case ALGO_AFC_KALMAN_PREDICTOR: + { + if ((phase==AFC_INIT_CENTER) || (phase==AFC_INIT_MAX) || (phase==AFC_INIT_MIN)) + { + // WARNING + // In this case, "angle" variable contains EEPROM_AFC initialization value + // directly loaded from EEPROM, and "snr" variable is not meaningful. + /* Static variables initialisation */ + + quant_avg = 0; + M_Count = 0; +#if 0 /* present in LoCosto but not in TCS211 */ + for (i = 0; i <=C_PSI_AVG_SIZE_D ; i++) //omaps00090550 + psi_avg[i] = 0; +#endif + first_avg = 1; + good_snr = 0; + + // DAC search algorithm is as follows - up to 12 attempts are made + // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> + // The first four attempts are made on DAC_center + // The next four attempts are made on DAC_max + // The last four attempts are made on DAC_min + // There are statistical reasons for trying four times + + switch (phase) { + case AFC_INIT_CENTER: + Psi_quant[C_N_del] = l1_config.params.afc_dac_center; + break; + case AFC_INIT_MAX: + Psi_quant[C_N_del] = l1_config.params.afc_dac_max; + break; + case AFC_INIT_MIN: + Psi_quant[C_N_del] = l1_config.params.afc_dac_min; + break; + default : + break; + } + + P=C_cov_start; + Psi=0; + if (angle>C_max_step) + Psi_quant[C_N_del]=C_max_step; + else + if(angle<C_min_step) + Psi_quant[C_N_del]=C_min_step; + else Psi_quant[C_N_del]=angle; + + /* F0.32 * F13.3 = F5.35 */ + Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); + /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ + Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); + + } /* end AFC_INIT*/ + else + { + if (phase==AFC_OPEN_LOOP) + { + /* relaod last good values in the ALGO */ + if (l1s.spurious_fb_detected == TRUE) + { + for(i=0;i<C_N_del+1;i++) + Psi_quant[i] = old_Psi_quant[i]; + + Psi = old_Psi; + l1s.spurious_fb_detected = FALSE; + } + + /* Save the old values in memory */ + for(i=0;i<C_N_del+1;i++) + old_Psi_quant[i] = Psi_quant[i]; + old_Psi = Psi; + + /* delay line for Psi_quant values */ + for (i=1;i<=C_N_del;i++) + Psi_quant[i-1]=Psi_quant[i]; + + var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; + /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ + +#if(RF_FAM == 61) + /* In order to implement the NINT function for a F16.0, we check */ + /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); + var_16=quotient*4; +#else + /* In order to implement the NINT function for a F16.0, we check */ + /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); + var_16=quotient*8; +#endif + +#if 0 /* LoCosto code with saturation */ + if (var_16>C_max_step) + Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); + else if (var_16<C_min_step) + Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); + else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ +#else /* matching TCS211 */ + if (var_16>C_max_step) + Psi_quant[C_N_del] += C_max_step; + else if (var_16<C_min_step) + Psi_quant[C_N_del] += C_min_step; + else Psi_quant[C_N_del] += var_16; /* F13.3 */ +#endif + + /* F0.32 * F13.3 = F5.35 */ + Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); + /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ + Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); + + }/*end if AFC_OPEN_LOOP*/ + else + { + + /* delay line for Psi_quant values */ + for (i=1;i<=C_N_del;i++) + Psi_quant[i-1]=Psi_quant[i]; + + /************************************/ + /* Estimation */ + /************************************/ + if ( (l1_config.params.rgap_algo != 0) && + ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) + #if L1_GPRS + || l1_mode==PACKET_TRANSFER_MODE + #endif + )) + { + + M_Count += *frame_count; + if (snr >= l1_config.params.afc_snr_thr) { + // Accumulate average over N TDMA frames + psi_avg[0] += psi_past[C_N_del]; + // Count number of good snr's within window_avg_size chunks + good_snr++; + } + + // M_Count >= M ? + if (M_Count >= l1_config.params.afc_win_avg_size_M) { + // M_Count counts how far we have reached in the window_avg_size blocks + + // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements + if (good_snr > 0) + psi_avg[0] /= good_snr; + + // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] + if (first_avg == 1) { + first_avg = 0; + // Use first estimation as best guess for the other avg values + // This is used both at initialisation and when returning from reception gap + for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) + psi_avg[i] = psi_avg[0]; + } + + // Estimation 1st order + // Use biggest window to reduce noise effects signal in psi values + // NOTE: Due to performance issues division by MSIZE is in predictor + if (l1_config.params.rgap_algo >= 1) { + quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); + } + + for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) + psi_avg[i+1] = psi_avg[i]; + psi_avg[0] = 0; + M_Count = 0; + good_snr = 0; + } + + } else { + // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! + first_avg = 1; + M_Count = 0; + good_snr = 0; + psi_avg[0] = 0; + } + + /********************/ + /* Filter algorithm */ + /********************/ + + /* Covariance error is increased of C_Q */ + P=P+(*frame_count)*C_Q; + + /* Clipping of P */ + if (P>C_thr_P) P=C_thr_P; + + if (snr>=C_thr_snr) + { + /* Clipping of error angle */ + if (angle>C_thr_phi) + angle=C_thr_phi; + if (angle<-C_thr_phi) + angle=-C_thr_phi; + + /* Kalman gain */ + /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ + /*C_a0_kalman=0.01 */ + /*C_g_kalman =0.05 */ + num=(C_g_kalman/snr)+P+C_a0_kalman; + /* (F2.30 / F6.10) = F 12.20 */ + + /* denom = P << 19 = F 1.39 */ + /* extension of denom=P to a 40 bits variable */ + /* denom (F12.20) << 16 = F 4.36 */ + guard1=(WORD16)((WORD32)P>>16); + /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ + denomH=(UWORD16)P; + /* Low part of denom is equal to 0, because P has been 16 */ + /* bits left shifted previously. */ + denomH_3msb=(denomH>>13)&0x0007; + guard1=(guard1<<3)|denomH_3msb; + denomH<<=3; + denom=denomH<<16; //(UWORD32) removed typecast omaps00090550 + /* num + guard1 are a 40 bits representation of P */ + /* In order to compute P(F1.39)/num, we sample P in guard1 */ + /* (scaled to a 32 bits number) and num (32 bits number) */ + /* K = ((guard1<<24)/num)<<8 + (denom/num) */ + var1=(WORD32)guard1<<24; + var1=var1/num; + var1=(WORD32)var1<<8; + /* var2 is an unsigned variable, var1 contains signed guard*/ + /* bits. */ + #if 0 /* fixed LoCosto code */ + var2= ((WORD32)(denom)/(num)); //omaps00090550 + #else /* matching TCS211 */ + var2= denom / num; + #endif + K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ + /* F13.19 << 1 = F12.20 */ + + /* Clipping of the Kalman gain */ + if (K>=C_thr_K) + K=C_thr_K; + + /*******************************************************/ + /* P=(1-K)*P = 0.8 * 0.5 at maximum */ + /*******************************************************/ + /* Perform a positive variable F12.20 multiplication by*/ + /* positive variable F12.20 */ + var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ + guard1=0; /* positive variable */ + var1=UMult_40b(P,var_16,&guard1); + var_16=(WORD16)((1048576L-K)>>16); + /* acchigh(1-K) = F12.20 */ + var2=P*var_16; /* var2 = 0x80000 * 0xc */ + /* at maximum, so result */ + /* is 32 bits WORD32 and */ + /* equal 0x600000 */ + /* extension of var2 to a 40 bits variable : var2<<16 */ + guard2=(WORD16)((WORD32)var2>>16); + guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); + var2=var2<<16; + var_32=Add_40b(guard1guard2,var1,var2,&guardout); + /* var_32 (F8.40) >> 16 = F8.24 */ + LGuard=(WORD32)guardout<<16; + var1=(UWORD32)var_32>>16; + /* var_32 >> 4 = F12.20 */ + P=(var1+LGuard)>>4; + + Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); + /* F0.32 * F13.3 = F5.35 */ + LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ + /* F13.19 */ + var1=(UWORD32)Phi_32>>16; + Phi_32=Psi-(LGuard+var1); /* F13.19 */ + + /*Phi=angle-Phi_32*/ + Phi_32=((WORD32)angle<<4)-Phi_32; + /* F1.15 * 4 = F13.19 */ + Phi=(WORD16)(Phi_32>>4); /* F17.15 */ + /*var1=K*Phi F12.20 * F1.15 = 13.35 */ + guard1=0; + var1=Mult_40b(K,Phi,&guard1); + /* var1 (F13.35) >> 16 */ + /* F13.19 */ + LGuard=(WORD32)guard1<<16; + var1=(UWORD32)var1>>16; + Psi+=var1+LGuard; + } else { + /************************************/ + /* Prediction */ + /************************************/ + + // Only predict in dedicated mode + // NO prediction in idle mode + // l1a_l1s_com.dedic_set.SignalCode = NULL + if ( (l1_config.params.rgap_algo != 0) && + ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) + #if L1_GPRS + || l1_mode==PACKET_TRANSFER_MODE + #endif + )) + { + + /* Prediction of psi during reception gaps */ + B_Count+= *frame_count; + + /* Predict psi ONLY when we have sufficient measurements available */ + /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ + + // Was the consecutive bad SNRs threshold value exceeded? + if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { + + // Predict with 0th order estimation is the default + + // Predict with 1st order estimation + if (l1_config.params.rgap_algo >= 1) + Psi += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); + + B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; + + // Indicate by raising first_avg flag that a reception gap has occurred + // I.e. the psi_avg table must be reinitialised after leaving reception gap + first_avg = 1; + + // Counters in estimation part must also be reset + M_Count = 0; + good_snr = 0; + psi_avg[0] = 0; + } + } + } + + /* Quantize psi value */ + + var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); + /* F13.19 * C = F13.19 */ + +#if(RF_FAM == 61) + /* In order to implement the NINT function for a F13.3, we check */ + /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); + var_16=quotient*4; +#else + /* In order to implement the NINT function for a F13.3, we check */ + /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ + quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); + var_16=quotient*8; +#endif + if (var_16>C_max_step) + Psi_quant[C_N_del]=C_max_step; + else + if(var_16<C_min_step) + Psi_quant[C_N_del]=C_min_step; + else Psi_quant[C_N_del]=var_16; /* F13.3 */ + + + }/*end AFC_CLOSE_LOOP*/ + } /* end else AFC_INIT*/ + + *frame_count = 0; + return(Psi_quant[C_N_del]>>3); /* F16.0 */ + } /* end case algo 3 */ +#endif + +#if (VCXO_ALGO == 1) + default: + return 0; +//omaps00090550 break; + } // end of Switch + #endif + +} /* end l1ctl_afc */ + + +/************************************/ +/* Automatic timing control (TOA) */ +/************************************/ + +#if (TOA_ALGO == 2) + +#define TOA_DEBUG_ENABLE 0 + + +#if (TOA_DEBUG_ENABLE == 1) + + #define TOA_MAKE_ZERO 0 + + #define TOA_LOG_BUFFER_LENGTH 4096 + + typedef struct + { + UWORD16 SNR_val; + UWORD16 TOA_val; + UWORD16 l1_mode; + UWORD16 toa_frames_counter; + UWORD16 fn_mod42432; + }T_TOA_log_debug; + + + T_TOA_log_debug toa_log_debug[TOA_LOG_BUFFER_LENGTH]; + UWORD32 toa_log_index; + + UWORD32 toa_make_zero_f; + +#endif + +/*-------------------------------------------------------*/ +/* l1ctl_toa() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ + +WORD16 l1ctl_toa (UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val) +{ + WORD16 TOA_period_len = TOA_PERIOD_LEN [l1_mode]; + WORD16 TOA_SHIFT=ISH_INVALID; + UWORD16 cumul_abs; + WORD16 cumul_sign; + WORD32 prod_tmp, div_tmp,prod_sign; + WORD32 toa_update_flag=0; + WORD16 cumul; + UWORD16 cumul_counter; +#if (NEW_TOA_ALGO == 1) +UWORD16 Trans_active; + static WORD16 cumul_noTrans =0; + static UWORD16 period_counter_noTrans =0; + + if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) +#if L1_GPRS + || l1_mode==PACKET_TRANSFER_MODE +#endif + ) + Trans_active=TRUE; + else Trans_active=FALSE; +#endif + if (phase==TOA_INIT) + { +#if (NEW_TOA_ALGO == 1) + cumul_noTrans =0; + period_counter_noTrans =0; +#endif + + l1s.toa_var.toa_frames_counter=0; + l1s.toa_var.toa_accumul_counter=0; + l1s.toa_var.toa_accumul_value=0; + #if (TOA_DEBUG_ENABLE == 1) + toa_log_index = 0; + #if (TOA_MAKE_ZERO == 1) + toa_make_zero_f = 1; + #else + toa_make_zero_f = 0; + #endif + #endif + + return (TOA_SHIFT); + } + + cumul = l1s.toa_var.toa_accumul_value; + cumul_counter = l1s.toa_var.toa_accumul_counter; + + #if (TOA_DEBUG_ENABLE == 1) + toa_log_debug[toa_log_index].SNR_val = SNR_val; + toa_log_debug[toa_log_index].TOA_val = TOA_val; + toa_log_debug[toa_log_index].l1_mode = l1_mode; + toa_log_debug[toa_log_index].toa_frames_counter = l1s.toa_var.toa_frames_counter; + toa_log_debug[toa_log_index].fn_mod42432 = l1s.actual_time.fn_mod42432; + + toa_log_index++; + if(toa_log_index == TOA_LOG_BUFFER_LENGTH) + { + toa_log_index = 0; + } + #endif /* #if (TOA_DEBUG_ENABLE == 1) */ + + #if (TRACE_TYPE == 5) + trace_toa_sim_ctrl(SNR_val, TOA_val, l1_mode, l1s.toa_var.toa_frames_counter, + l1s.toa_var.toa_accumul_counter, l1s.toa_var.toa_accumul_value); + #endif + + l1s.toa_var.toa_frames_counter++; + + { + /* Fix for TOA */ + #define DSP_CALC_NO_TABS_HO 0x3CA4 + + UWORD16 *toa_ho_fix; + toa_ho_fix=(UWORD16 *)API_address_dsp2mcu(DSP_CALC_NO_TABS_HO); + + if ((TOA_val >= 22) || (TOA_val <= 6)) { + *toa_ho_fix = 1; + } + + if (*toa_ho_fix == 1) { + if((TOA_val <= 18) && (TOA_val >= 10)) { + *toa_ho_fix = 0; + } + } else { + *toa_ho_fix = 0; + } + } + + +#if (NEW_TOA_ALGO == 1) + if (Trans_active) +{ +#endif + if (SNR_val>= L1_TOA_SNR_THRESHOLD) + { + cumul_counter++; + + prod_tmp = L1_TOA_LAMBDA * cumul; + prod_tmp = prod_tmp + ((0x00004000)); // basically for rounding + div_tmp = ((prod_tmp >> 15) & (0x0000FFFF)); + cumul = div_tmp; + + // implemented below is + // cumul = cumul + (L1_TOA_ONE_MINUS_LAMBDA * signum(TOA_Val - L1_TOA_EXPECTED_TOA)) + if(TOA_val > L1_TOA_EXPECTED_TOA) { + cumul = cumul + L1_TOA_ONE_MINUS_LAMBDA; + } + else if (TOA_val < L1_TOA_EXPECTED_TOA) { + cumul = cumul - L1_TOA_ONE_MINUS_LAMBDA; + } + } // End if SNR_val + + if(l1s.toa_var.toa_update_flag == TRUE) + { + toa_update_flag = 1; + } + + if (toa_update_flag) + { + cumul_sign = (cumul>0)? 1: -1; + cumul_abs = cumul_sign*cumul; + if(cumul_counter <= 5) + { + TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_15)? 0: cumul_sign; + } + else if(cumul_counter == 6) + { + TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_20)? 0: cumul_sign; + } + else if(cumul_counter == 7) + { + TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_25)? 0: cumul_sign; + } + else if(cumul_counter >= 8) + { + TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_30)? 0: cumul_sign; + } + #if (TRACE_TYPE==1) || (TRACE_TYPE==4) + trace_info.toa_trace_var.toa_accumul_value = cumul; + trace_info.toa_trace_var.toa_accumul_counter = cumul_counter; + trace_info.toa_trace_var.toa_frames_counter = l1s.toa_var.toa_frames_counter; + #endif + + cumul = 0; + cumul_counter = 0; + l1s.toa_var.toa_frames_counter = 0; + l1s.toa_var.toa_update_flag = FALSE; + + #if (TOA_DEBUG_ENABLE == 1) + #if (TOA_MAKE_ZERO == 1) + if (toa_make_zero_f == 1) + { + TOA_SHIFT=0; + } + #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ + #endif /*#if (TOA_MAKE_ZERO == 1)*/ + + } // end of if toa_update_flag + #if (NEW_TOA_ALGO == 1) + +} + +else +{ + period_counter_noTrans++; + + if (SNR_val>= L1_TOA_SNR_THRESHOLD) + { + cumul_noTrans = cumul_noTrans + TOA_val - L1_TOA_EXPECTED_TOA; + + } // End if SNR_val + + if (l1s.toa_var.toa_update_flag == TRUE) + { + switch (period_counter_noTrans) + { + case 2: + if (cumul_noTrans>=0) + TOA_SHIFT = (cumul_noTrans+1) >>1 ; + else + TOA_SHIFT = (cumul_noTrans) >>1 ; + break; + case 3: /* Not fully accurate rounding*/ + if (cumul_noTrans>=0) + TOA_SHIFT = (cumul_noTrans+2)/3 ; + else + TOA_SHIFT = (cumul_noTrans-2)/3 ; + break; + case 4: + if (cumul_noTrans>=0) + TOA_SHIFT = (cumul_noTrans+2) >>2 ; + else + TOA_SHIFT = (cumul_noTrans+1) >>2 ; + break; + default: + TOA_SHIFT = cumul_noTrans; + break; + } /* end switch*/ + + if (TOA_SHIFT>8) + TOA_SHIFT =8; + if (TOA_SHIFT<-8) + TOA_SHIFT =-8; + + #if (TRACE_TYPE==1) || (TRACE_TYPE==4) + trace_info.toa_trace_var.toa_accumul_value = cumul_noTrans; + trace_info.toa_trace_var.toa_accumul_counter = period_counter_noTrans; + trace_info.toa_trace_var.toa_frames_counter = period_counter_noTrans; + #endif + + cumul_noTrans = 0; + period_counter_noTrans = 0; + l1s.toa_var.toa_update_flag = FALSE; + #if (TOA_DEBUG_ENABLE == 1) + #if (TOA_MAKE_ZERO == 1) + if (toa_make_zero_f == 1) + { + TOA_SHIFT=0; + } + #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ + #endif /*#if (TOA_MAKE_ZERO == 1)*/ + + } // end if update_flag +} +#endif + // error a TOA is waiting to be updated in the TPU and will be erased + #if (TRACE_TYPE==1) || (TRACE_TYPE==4) + if (l1s.toa_var.toa_shift != ISH_INVALID) + { + l1_trace_toa_not_updated (); // should not occur!! + } + #endif + + if (TOA_SHIFT != ISH_INVALID) // new TOA => set the mask frames + { + // Set mask counter to 2 (2 frames masked). + l1s.toa_var.toa_snr_mask = 2; + } + + l1s.toa_var.toa_accumul_value = cumul; + l1s.toa_var.toa_accumul_counter = cumul_counter; + + return(TOA_SHIFT); + +} // l1ctl_toa + + +#else +/*-------------------------------------------------------*/ +/* l1ctl_toa_update() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +WORD16 l1ctl_toa_update(UWORD32 *TOASP, UWORD32 l1_mode) +{ + static UWORD16 Old_TOA_estimated=12; //unit is Qbit + UWORD32 TOAMAX; + WORD16 IZW,ISH,i; + UWORD32 TOA_estimated=0; //unit is Qbit + UWORD16 Trans_active; + + if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) +#if L1_GPRS + || l1_mode==PACKET_TRANSFER_MODE +#endif + ) + Trans_active=TRUE; + else Trans_active=FALSE; + + /* TOA offset computation and clock adjustement */ + TOAMAX=0; + for (i=1;i<TOA_HISTO_LEN;i++) + { + if (TOASP[i]>TOAMAX) + TOAMAX=TOASP[i]; + } + TOAMAX >>= C_RED; + i=1;IZW=0; + while (i<TOA_HISTO_LEN && IZW==0) + { + if (TOASP[i]>=TOAMAX) + IZW=i; + i++; + } + + /* Estimated TOA calculation */ + if (TOASP[IZW-1]<(2*TOAMAX/3)) + { + TOA_estimated=IZW; + TOA_estimated *= 4; // unit in QBit + } + else + { +#if 0 /* fix added in LoCosto, not present in TCS211 */ + UWORD32 TOA_divisor; +#endif + TOA_estimated=(TOASP[IZW]*IZW)+(TOASP[IZW-1]*(IZW-1)>>C_GEW); + TOA_estimated *= 8; //F13.3 in order to have qBit precision +#if 0 + TOA_divisor = TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); + if (TOA_divisor!=0) +#endif + { + TOA_estimated /= TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); + TOA_estimated /= 2; // unit in QBit ("/8" then "*4" = "/2") + } +#if 0 + else + { + TOA_estimated = 0; + } +#endif + } + + if (Trans_active) + TOA_estimated=(TOA_estimated+(Old_TOA_estimated+4)) / 2; + + /* Offset calculation*/ + if (TOA_estimated>=17 || TOA_estimated<=15) + ISH=TOA_estimated - 16; + else + ISH=0; + + if (Trans_active) + { + if (ISH>1) ISH=1; + if (ISH<-1) ISH=-1; + } + else + { + if (ISH>8) ISH=8; + if (ISH<-8) ISH=-8; + } + + Old_TOA_estimated = TOA_estimated - ISH - 4; + + + return (ISH); +} + +/*-------------------------------------------------------*/ +/* l1ctl_toa() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : generate an histogram of TOA weighted */ +/* with SNR */ +/*-------------------------------------------------------*/ +WORD16 l1ctl_toa(UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val, BOOL *toa_update, UWORD16 *toa_period_count +#if (FF_L1_FAST_DECODING == 1) + , UWORD8 skipped_values +#endif + ) +{ +// xSignalHeaderRec *msg; + UWORD16 i; + WORD16 TOA_period_len = TOA_PERIOD_LEN[l1_mode]; + static UWORD32 histo[TOA_HISTO_LEN]; + static WORD16 period_counter=0; + UWORD32 SNR_ZW; + WORD16 ISH=ISH_INVALID; + + UWORD8 histo_center; + +#if 0 + if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)) + histo_center=4; + else + histo_center=5; +#else + histo_center=4; +#endif + + + if (phase==TOA_INIT) + { + period_counter=0; + + for (i=0;i<TOA_HISTO_LEN;i++) + histo[i]=0; + histo[histo_center]=128; //F6.10 + + return(ISH); + } +#if (FF_L1_FAST_DECODING == 1) + /* Manage any missing bursts due to fast decoding */ + period_counter += skipped_values; +#endif + + period_counter++; + /* Filter update */ + if (SNR_val>=C_SNRGR) + { + if (SNR_val>C_SNR_THR) + SNR_ZW=C_SNR_THR; + else + SNR_ZW=SNR_val; + histo[TOA_val+1]+=SNR_ZW; /* if TOA=0 histo[1]++ */ + /* if TOA=1 histo[2]++ */ + /* ... */ + /* if TOA=9 histo[10]++ */ + /* histo[0] is reserved for computation */ + } + + #if L1_GPRS + if (l1_mode==PACKET_TRANSFER_MODE) + { + if (*toa_update) + { + // Get ISH. + ISH = l1ctl_toa_update(histo, l1_mode); + + //reset TOA period length counter + period_counter=0; + + //reset histogram + for (i=0;i<TOA_HISTO_LEN;i++) + histo[i]=0; + histo[histo_center]=128; //F6.10 + + *toa_update = FALSE; // reset TOA update flag + *toa_period_count = 0; // reset TOA period counter + } + } + else + #endif + if (period_counter>=TOA_period_len) + // It is time to compute a new ISH and to reset the histogram. + // Rem: ">=" is very important since a "l1 mode" change can give + // a "TOA_period_len" smaller than the previous one an + // therefore a "period_counter" may be already higher than + // the new "TOA_period_len". + { + // Get ISH. + ISH = l1ctl_toa_update(histo, l1_mode); + + //reset TOA period length counter + period_counter=0; + + //reset histogram + for (i=0;i<TOA_HISTO_LEN;i++) + histo[i]=0; + histo[histo_center]=128; //F6.10 + } + + // error a TOA is waiting to be updated in the TPU and will be erased + #if (TRACE_TYPE==1) || (TRACE_TYPE==4) + if (l1s.toa_shift != ISH_INVALID) + { + l1_trace_toa_not_updated(); // should not occur !! + } + #endif + + if (ISH != ISH_INVALID) // new TOA => set the mask frames + { + // Set mask counter to 2 (2 frames masked). + l1s.toa_snr_mask = 2; + } + + return(ISH); +} +#endif + +/*-------------------------------------------------------*/ +/* l1ctl_txpwr() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +UWORD8 l1ctl_txpwr(UWORD8 target_txpwr, UWORD8 current_txpwr) +{ + if(target_txpwr > current_txpwr) + { + current_txpwr ++; // Increase TX power by 2 dB. + } + else + if(target_txpwr < current_txpwr) + { + current_txpwr --; // Decrease TX power by 2 dB. + } + + return(current_txpwr); +} + + +/************************************/ +/* Automatic Gain Control */ +/************************************/ +/*-------------------------------------------------------*/ +/* l1ctl_encode_delta1() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +#if(L1_FF_MULTIBAND == 0) +WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) +{ + WORD8 freq_band; + + switch(l1_config.std.id) + { + case GSM: + case GSM_E: + case DCS1800: + case PCS1900: + case GSM850: + freq_band = l1_config.std.cal_freq1_band1; + break; + case DUAL: + case DUALEXT: + case DUAL_US: + if(radio_freq >= l1_config.std.first_radio_freq_band2) + freq_band = l1_config.std.cal_freq1_band2; + else + freq_band = l1_config.std.cal_freq1_band1; + break; + } + return(freq_band); +} +#endif +/*-------------------------------------------------------*/ +/* l1ctl_encode_lna() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +#if (L1_FF_MULTIBAND == 0) +void l1ctl_encode_lna( UWORD8 input_level, + UWORD8 *lna_state, + UWORD16 radio_freq) +{ + + /*** LNA Hysteresis is implemented as following : + + | + On|---<>----+-------+ + | | | + LNA | | | + | ^ v + | | | + | | | + Off| +-------+----<>----- + +-------------------------------- + 50 40 30 20 input_level /-dBm + THR_HIGH THR_LOW ***/ + + + + + + if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) ||(l1_config.std.id == DUAL_US)) && + (radio_freq >= l1_config.std.first_radio_freq_band2)) + { + if ( input_level > l1_config.std.lna_switch_thr_high_band2 ) // < -40dBm ? + { + *lna_state = LNA_ON; // lna_off = FALSE + } + else if ( input_level < l1_config.std.lna_switch_thr_low_band2 ) // > -30dBm ? + { + *lna_state = LNA_OFF; // lna off = TRUE + } + } + else + { + if ( input_level > l1_config.std.lna_switch_thr_high_band1 ) // < -40dBm ? + { + *lna_state = LNA_ON; // lna_off = FALSE + } + else if ( input_level < l1_config.std.lna_switch_thr_low_band1 ) // > -30dBm ? + { + *lna_state = LNA_OFF; // lna off = TRUE + } + } + +} + +#endif + +/*-------------------------------------------------------*/ +/* l1ctl_csgc() */ +/*-------------------------------------------------------*/ +/* Description: */ +/* ============ */ +/* If we are running the first pass of a measurement */ +/* session, we use the HIGH_AGC default agc setting to */ +/* compute the input level from the measured power from */ +/* the DSP. If this input level is saturated we set a */ +/* saturation flag, otherwise we validate the measure and*/ +/* store, for the considered carrier, the input level. */ +/* When all the carriers have been scanned and some have */ +/* been flagged "saturated", we measure them with the */ +/* LOW_AGC agc setting, then store, for the considered */ +/* carrier, the input level. */ +/*-------------------------------------------------------*/ +UWORD8 l1ctl_csgc(UWORD8 pm, UWORD16 radio_freq) +{ + WORD16 current_IL, current_calibrated_IL; + WORD8 delta1_freq, delta2_freq; + WORD16 delta_drp_gain=0; + UWORD32 index; + UWORD16 g_magic; + #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0) + UWORD16 arfcn; + #endif + UWORD16 dco_algo_ctl_pw_temp = 0; + UWORD8 if_ctl = 0; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; + #endif + +#if (L1_FF_MULTIBAND == 0) + + // initialize index + index = radio_freq - l1_config.std.radio_freq_index_offset; + +#else + + index = + l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); + +#endif /*if(L1_FF_MULTIBAND == 0)*/ + + delta1_freq = l1ctl_encode_delta1(radio_freq); + delta2_freq = l1ctl_encode_delta2(radio_freq); + + g_magic = l1ctl_get_g_magic(radio_freq); + +#if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0) + arfcn = Convert_l1_radio_freq(radio_freq); +#endif + + if (l1a_l1s_com.full_list.meas_1st_pass_read) + { + // We validate or not power measure (pm) for the considered carrier + // with measurement achieved with HIGH_AGC setting. We are working + // with non calibrated IL to avoid saturation +#if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + + #if (PWMEAS_IF_MODE_FORCE == 0) + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , + 0, + radio_freq,if_threshold); + #else + if_ctl = IF_120KHZ_DSP; + dco_algo_ctl_pw_temp = DCO_IF_0KHZ; + #endif + + #if (L1_FF_MULTIBAND == 0) + delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format + #else + delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format + #endif // MULTIBAND == 0 else + + if(if_ctl == IF_100KHZ_DSP){ + delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + + #endif +#endif + if (0==pm) // Check and filter illegal pm value by using last valid IL + current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); + else + { +#if TESTMODE + if (!l1_config.agc_enable) + current_IL = (WORD16)(-(pm - ( (l1_config.tmode.rx_params.agc << 1) - delta_drp_gain ) - g_magic)); + else +#endif + current_IL = (WORD16)(-(pm - ( (l1_config.params.high_agc <<1) - delta_drp_gain) - g_magic)); + // for array index purpose, we work with positive IL + + } + + // NOTE: lna_value do not appear in this formula because lna is ALWAYS ON for + // ---- this algorithm, so lna_value=lna_off*l1_config.params.lna_att_gsm=0 + + if ((current_IL<l1_config.params.high_agc_sat_thr) // Warning : we are working with positive IL + // for IL_2_AGC_xx index purpose. + #if TESTMODE + && (l1_config.agc_enable) + #endif + ) + { + // pm is saturated so measure is not valid + l1a_l1s_com.full_list.nbr_sat_carrier_ctrl++; + l1a_l1s_com.full_list.nbr_sat_carrier_read++; + l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 1; + } + else + { + current_calibrated_IL = current_IL - delta1_freq - delta2_freq; + + #if TESTMODE + // When running with fixed AGC setting saturated carriers may occur: + // protect against negative IL; + if ((!l1_config.agc_enable) && (current_calibrated_IL < 0)) + { + current_calibrated_IL=0; + current_IL=0; + } + #endif + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + if (current_IL>INDEX_MAX) + current_IL=INDEX_MAX; + + // we validate the measure and save input_level and lna_off fields. + l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), + &(l1a_l1s_com.last_input_level[index].lna_off), + radio_freq); + + l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + + l1ctl_get_lna_att(radio_freq) * + l1a_l1s_com.last_input_level[index].lna_off; + + l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; + } + } + else // 2nd pass if any. + { + // we validate the measure and save input_level and lna_off(always 0) + // fields. + #if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID, + 0,radio_freq,if_threshold); + #if (L1_FF_MULTIBAND == 0) + delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format + #else + delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format + #endif + if(if_ctl == IF_100KHZ_DSP){ + delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + #endif + #endif + + + if (0==pm) // Check and filter illegal pm value by using last valid IL + current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); + else + current_IL = (WORD16)(-(pm - ( (l1_config.params.low_agc << 1) - delta_drp_gain ) - g_magic)); + + current_calibrated_IL = current_IL - delta1_freq - delta2_freq; + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + if (current_IL>INDEX_MAX) + current_IL=INDEX_MAX; + + l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), + &(l1a_l1s_com.last_input_level[index].lna_off), + radio_freq); + + l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + + l1ctl_get_lna_att(radio_freq) * + l1a_l1s_com.last_input_level[index].lna_off; + + l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; + } + + return((UWORD8)current_calibrated_IL); +} + +/*-------------------------------------------------------*/ +/* l1ctl_pgc() */ +/*-------------------------------------------------------*/ +/* Description : For a given radio_freq, last_known_agc is */ +/* ============ based on a prior knowledge (the last */ +/* stored input_level for the considered */ +/* carrier). From the power measurement on */ +/* this carrier (pm), we update the */ +/* input_level for this carrier, for the */ +/* next task to control. */ +/*-------------------------------------------------------*/ +UWORD8 l1ctl_pgc(UWORD8 pm, UWORD8 last_known_il, + UWORD8 lna_off, UWORD16 radio_freq) +{ + WORD32 last_known_agc; + WORD32 current_IL, current_calibrated_IL; + WORD8 delta1_freq, delta2_freq; + WORD16 delta_drp_gain=0; + WORD32 index, lna_value; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD16 arfcn; + #endif + UWORD16 dco_algo_ctl_pw_temp = 0; + UWORD8 if_ctl = 0; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; + #endif + +#if (L1_FF_MULTIBAND == 0) + + // initialize index + index = radio_freq - l1_config.std.radio_freq_index_offset; + +#else + + index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); + +#endif // #if (L1_FF_MULTIBAND == 0) else + + delta1_freq = l1ctl_encode_delta1(radio_freq); + delta2_freq = l1ctl_encode_delta2(radio_freq); + + lna_value = lna_off * l1ctl_get_lna_att(radio_freq); + + last_known_agc = (Cust_get_agc_from_IL(radio_freq, last_known_il >> 1, PWR_ID)) << 1; + // F7.1 in order to be compatible with + // pm and IL formats [-20,+140 in F7.1] + // contain the input_level value we use + // in the associated CTL task to build + // the agc used in this CTL. + +#if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) +#if (L1_FF_MULTIBAND == 0) + arfcn = Convert_l1_radio_freq(radio_freq); +#else + arfcn = radio_freq; +#endif +#endif + +#if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + + #if (PWMEAS_IF_MODE_FORCE == 0) + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , + last_known_il, + radio_freq,if_threshold); + #else + if_ctl = IF_120KHZ_DSP; + dco_algo_ctl_pw_temp = DCO_IF_0KHZ; + #endif + + delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format + if(if_ctl == IF_100KHZ_DSP){ + delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + + #endif +#endif + + if (0==pm) // Check and filter illegal pm value by using last valid IL + current_IL = l1a_l1s_com.last_input_level[index].input_level - lna_value; + else + current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); + + current_calibrated_IL = current_IL - delta1_freq - delta2_freq; + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + if (current_IL>INDEX_MAX) + current_IL=INDEX_MAX; + + // we validate the measure and save input_level and lna_off fields + l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), + &(l1a_l1s_com.last_input_level[index].lna_off), + radio_freq); + + l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + + l1ctl_get_lna_att(radio_freq) * + l1a_l1s_com.last_input_level[index].lna_off; + + return((UWORD8)current_calibrated_IL); +} + + +/*-------------------------------------------------------*/ +/* l1ctl_pgc2() */ +/*-------------------------------------------------------*/ +/* Description : */ +/* ============= */ +/* from power measurement pm_high_agc, */ +/* achieve with an HIGH_AGC setting, and pm_low_agc */ +/* achieve with a LOW_AGC seeting, we deduce the new */ +/* AGC to apply in the next CTL task. */ +/*-------------------------------------------------------*/ +void l1ctl_pgc2(UWORD8 pm_high_agc, UWORD8 pm_low_agc, UWORD16 radio_freq) +{ + UWORD8 pm; + WORD32 IL_high_agc, IL_low_agc, new_IL, current_calibrated_IL; + WORD8 delta1_freq, delta2_freq; + WORD16 delta_high_drp_gain=0; + WORD16 delta_low_drp_gain=0; + WORD32 index; + UWORD16 g_magic; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD16 arfcn; + #endif + UWORD16 dco_algo_ctl_pw_temp = 0; + UWORD8 if_ctl = 0; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; + #endif + +#if (L1_FF_MULTIBAND == 0) + + // initialize index + index = radio_freq - l1_config.std.radio_freq_index_offset; + +#else + + index = + l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); + +#endif // #if (L1_FF_MULTIBAND == 0) else + + delta1_freq = l1ctl_encode_delta1(radio_freq); + delta2_freq = l1ctl_encode_delta2(radio_freq); + + g_magic = l1ctl_get_g_magic(radio_freq); + + // lna_off was set to 0 during CTRL, so lna_value = 0 do not appear in the following + // formula. + +#if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) +#if (L1_FF_MULTIBAND == 0) + arfcn = Convert_l1_radio_freq(radio_freq); +#else + arfcn = radio_freq; +#endif +#endif + + if ((0==pm_high_agc) || (0==pm_low_agc)) // Check and filter illegal pm value(s) by using last valid IL + new_IL = l1a_l1s_com.last_input_level[index].input_level; + else + { + +#if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + +#if (PWMEAS_IF_MODE_FORCE == 0) + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , + 0, + radio_freq,if_threshold); + #else + if_ctl = IF_120KHZ_DSP; + dco_algo_ctl_pw_temp = DCO_IF_0KHZ; + #endif + + + delta_high_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format + delta_low_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format + if(if_ctl == IF_100KHZ_DSP){ + delta_high_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + delta_low_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_high_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + delta_low_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + #endif +#endif + + IL_high_agc = -(pm_high_agc - ((l1_config.params.high_agc << 1) - delta_high_drp_gain) - g_magic); + IL_low_agc = -(pm_low_agc - ((l1_config.params.low_agc << 1) - delta_low_drp_gain) - g_magic); + + // HIGH_AGC and LOW_AGC are formatted to F7.1 in order to be compatible with + // pm and IL formats + + if (IL_low_agc>=l1_config.params.low_agc_noise_thr) + // pm_low_agc was on the noise floor, so not valid + { + // whatever the value of pm_high_agc, we consider it + // as the right setting + new_IL = IL_high_agc; + pm = pm_high_agc; + } + else + { + // pm_low_agc is valid. + if (IL_high_agc<=l1_config.params.high_agc_sat_thr) + { + // pm_high_agc is not valid, it's saturated. + new_IL = IL_low_agc; + pm = pm_low_agc; + } + else + { + // both pm_low_agc and pm_high_agc are valid, so we test the one that + // gives the maximum input level and consider it as the right setting. + if (IL_high_agc<=IL_low_agc) + { + new_IL = IL_high_agc; + pm = pm_high_agc; + } + else + { + new_IL = IL_low_agc; + pm = pm_low_agc; + } + } + } + } + + #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) + RTTL1_FILL_MON_MEAS(pm_high_agc, IL_high_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) + RTTL1_FILL_MON_MEAS(pm_low_agc, IL_low_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) + #endif + + current_calibrated_IL = new_IL - delta1_freq - delta2_freq; + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + if (new_IL>INDEX_MAX) + new_IL=INDEX_MAX; + + // Updating of input_level and lna_off fields in order to correctly + // setting the AGC for the next task. + l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), + &(l1a_l1s_com.last_input_level[index].lna_off), + radio_freq); + + l1a_l1s_com.last_input_level[index].input_level = (UWORD8)new_IL + + l1ctl_get_lna_att(radio_freq) * + l1a_l1s_com.last_input_level[index].lna_off; +} + + +/*-------------------------------------------------------*/ +/* l1ctl_find_max() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +UWORD8 l1ctl_find_max(UWORD8 *buff, UWORD8 buffer_len) +{ + + // WARNING: for array index purpose we work with POSITIVE input level + // so maximum search for negative numbers is equivalent to + // minimum search for positive numbers!!!!!! + // (-30 > -120 but 30 < 120) + + UWORD8 maximum = 240; + UWORD8 i; + + for (i=0; i<buffer_len; i++) + { + if (buff[i]<maximum) + maximum=buff[i]; + } + + return(maximum); +} + +/*-------------------------------------------------------*/ +/* l1ctl_pagc() */ +/*-------------------------------------------------------*/ +/* Description : */ +/* =========== */ +/* We deduce the last_known_agc from the last stored */ +/* input_level for the considered carrier. We use this */ +/* agc value to "build" the input level linked to the pm */ +/* we have just read. */ +/* This input level is used to feed a fifo of 4 elements */ +/* and then compute an input_level maximum. This value is*/ +/* used to update the input_level for this carrier. This */ +/* input_level will be used for the next task to control.*/ +/*-------------------------------------------------------*/ +UWORD8 l1ctl_pagc(UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) +{ + WORD8 delta1_freq, delta2_freq; + WORD16 delta_drp_gain=0; + WORD32 last_known_agc; + UWORD8 IL_max; + WORD32 current_IL, current_calibrated_IL; + UWORD8 i; + WORD32 lna_value; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD16 arfcn; + #endif + UWORD8 lna_off; + UWORD16 dco_algo_ctl_pw_temp = 0; + UWORD8 if_ctl = 0; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; + #endif + + delta1_freq = l1ctl_encode_delta1(radio_freq); + delta2_freq = l1ctl_encode_delta2(radio_freq); + + // Update fifo + for (i=3;i>0;i--) + l1a_l1s_com.Scell_info.buff_beacon[i]=l1a_l1s_com.Scell_info.buff_beacon[i-1]; + + // from the lna state (ON/OFF) we compute the attenuation + // that was applied to signal when performing the power + // measure. + lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); + + // Compute applied agc for this pm + last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; + // F7.1 in order to be compatible + // with pm and IL formats + // contain the input_level value we use + // in the associated CTL task to build + // the agc used in this CTL. + +#if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) +#if (L1_FF_MULTIBAND == 0) + arfcn = Convert_l1_radio_freq(radio_freq); +#else + arfcn = radio_freq; +#endif +#endif + +#if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , + l1a_l1s_com.Scell_used_IL_dd.input_level, + radio_freq,if_threshold); + lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; + delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format + if(if_ctl == IF_100KHZ_DSP){ + delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + + #endif +#endif + + if (0==pm) // Check and filter illegal pm value by using last valid IL + current_IL = IL_info_ptr->input_level - lna_value; + else + current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); + + current_calibrated_IL = current_IL - delta1_freq - delta2_freq; + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + if (current_IL>INDEX_MAX) + current_IL=INDEX_MAX; + + l1a_l1s_com.Scell_info.buff_beacon[0] = (UWORD8)current_IL; + + IL_max = l1ctl_find_max(&(l1a_l1s_com.Scell_info.buff_beacon[0]),4); + + //input levels are always stored with lna_on + l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), + &(IL_info_ptr->lna_off), + radio_freq ); + + IL_info_ptr->input_level = IL_max + l1ctl_get_lna_att(radio_freq) * + IL_info_ptr->lna_off; + + #if L2_L3_SIMUL + #if (DEBUG_TRACE==BUFFER_TRACE_PAGC) + buffer_trace(4,IL_info_ptr->input_level,last_known_agc, + l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, IL_max >> 1, MAX_ID)); + #endif + #endif + + return((UWORD8)current_calibrated_IL); +} + +/*-------------------------------------------------------*/ +/* l1ctl_dpagc() */ +/*-------------------------------------------------------*/ +/* Description : */ +/* =========== */ +/* Based on the same principle as the one used for PAGC */ +/* algorithm except that we feed 3 different fifo: */ +/* 1) one is dedicated to BCCH carrier */ +/* 2) another one is dedicated to all the other type of */ +/* bursts */ +/* 3) the last one is dedicated to non DTX influenced */ +/* bursts */ +/*-------------------------------------------------------*/ +UWORD8 l1ctl_dpagc(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) +{ + UWORD8 av_G_all, av_G_DTX; + UWORD8 max_G_all, max_G_DTX; + WORD32 last_known_agc, new_IL, current_calibrated_IL; + WORD8 delta1_freq, delta2_freq; + WORD16 delta_drp_gain=0; + UWORD8 i; + UWORD8 *tab_ptr; + T_DEDIC_SET *aset; + WORD32 lna_value; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD16 arfcn; + #endif + UWORD8 lna_off; + UWORD16 dco_algo_ctl_pw_temp = 0; + UWORD8 if_ctl = 0; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; + #endif + + delta1_freq = l1ctl_encode_delta1(radio_freq); + delta2_freq = l1ctl_encode_delta2(radio_freq); + + aset = l1a_l1s_com.dedic_set.aset; + + if (beacon) + tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; + else + tab_ptr = aset->G_all; + + // Update fifo + for (i=DPAGC_FIFO_LEN-1;i>0;i--) + tab_ptr[i]=tab_ptr[i-1]; + + #if TESTMODE + if (!l1_config.agc_enable) + { + // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) + // corresponds to the lna_off bit + last_known_agc = (l1_config.tmode.rx_params.agc) << 1; + lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); + } + else + #endif + { + #if DPAGC_MAX_FLAG + last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; + // F7.1 in order to be compatible with pm and IL formats + #else + last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1; + // F7.1 in order to be compatible with pm and IL formats + #endif + // input_level_dd : contain the input_level value we use + // in the associated CTL task to build the agc used in this CTL. + + lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); + } + +#if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) +#if (L1_FF_MULTIBAND == 0) + arfcn = Convert_l1_radio_freq(radio_freq); +#else + arfcn = radio_freq; +#endif +#endif + +#if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , + l1a_l1s_com.Scell_used_IL_dd.input_level, + radio_freq,if_threshold); + lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; + delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format + if(if_ctl == IF_100KHZ_DSP){ + delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + + #endif +#endif + + if (0==pm) // Check and filter illegal pm value by using last valid IL + new_IL = IL_info_ptr->input_level - lna_value; + else + new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); + + current_calibrated_IL = new_IL - delta1_freq - delta2_freq; + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + + #if TESTMODE + if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 + { + // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) + for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) + { + l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; + } + l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 + l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 + } + #endif + + if (new_IL>INDEX_MAX) + new_IL=INDEX_MAX; + + tab_ptr[0] = (UWORD8)new_IL; + + if (dtx_on && !beacon) + { + // Update DTX fifo + for (i=DPAGC_FIFO_LEN-1;i>0;i--) + aset->G_DTX[i]=aset->G_DTX[i-1]; + + aset->G_DTX[0]=tab_ptr[0]; + } + + /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ + #if DPAGC_MAX_FLAG + max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); + + if (!beacon) + { + max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); + + // WARNING: for array index purpose we work with POSITIVE input level + // so maximum search for negative numbers is equivalent to + // minimum search for positive numbers!!!!!! + // (-30 > -120 but 30 < 120) + if (max_G_all <= max_G_DTX) + new_IL = max_G_all; + else + new_IL = max_G_DTX; + } + else + new_IL = max_G_all; + #else + av_G_all=av_G_DTX=0; + + for (i=0;i<DPAGC_FIFO_LEN;i++) + av_G_all += tab_ptr[i]; + + av_G_all /= DPAGC_FIFO_LEN; + + if (!beacon) + { + for (i=0;i<DPAGC_FIFO_LEN;i++) + av_G_DTX += aset->G_DTX[i]; + + av_G_DTX /= DPAGC_FIFO_LEN; + + if (av_G_all >= av_G_DTX) + new_IL = av_G_all; + else + new_IL = av_G_DTX; + } + else + new_IL = av_G_all; + #endif + + // Updating of input_level and lna_off fields in order to correctly + // setting the AGC for the next task. + // input_level is always store with lna_on + l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), + &(IL_info_ptr->lna_off), + radio_freq ); + + IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * + IL_info_ptr->lna_off; + + #if L2_L3_SIMUL + #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) + buffer_trace(4,IL_info_ptr->input_level,last_known_agc, + l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID)); + #endif + #endif + + return((UWORD8)current_calibrated_IL); +} + +#if (AMR == 1) + /*-------------------------------------------------------*/ + /* l1ctl_dpagc_amr() */ + /*-------------------------------------------------------*/ + /* Description : */ + /* =========== */ + /* Based on the same principle as the one used for DPAGC */ + /* algorithm except that the way to feed the G_dtx is */ + /* different */ + /*-------------------------------------------------------*/ + UWORD8 l1ctl_dpagc_amr(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) + { + UWORD8 av_G_all, av_G_DTX; + UWORD8 max_G_all, max_G_DTX, max_il; + WORD32 last_known_agc, new_IL, current_calibrated_IL; + WORD8 delta1_freq, delta2_freq; + WORD16 delta_drp_gain=0; + UWORD8 i; + UWORD8 *tab_ptr, *tab_amr_ptr; + T_DEDIC_SET *aset; + WORD32 lna_value; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD16 arfcn; + #endif + UWORD8 lna_off; + UWORD16 dco_algo_ctl_pw_temp = 0; + UWORD8 if_ctl = 0; + #if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) + UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; + #endif + + delta1_freq = l1ctl_encode_delta1(radio_freq); + delta2_freq = l1ctl_encode_delta2(radio_freq); + + aset = l1a_l1s_com.dedic_set.aset; + + if (beacon) + tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; + else + tab_ptr = aset->G_all; + + // Update fifo + for (i=DPAGC_FIFO_LEN-1;i>0;i--) + tab_ptr[i]=tab_ptr[i-1]; + + tab_amr_ptr = aset->G_amr; + for (i=DPAGC_AMR_FIFO_LEN-1;i>0;i--) + tab_amr_ptr[i]=tab_amr_ptr[i-1]; + + #if TESTMODE + if (!l1_config.agc_enable) + { + // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) + // corresponds to the lna_off bit + last_known_agc = (l1_config.tmode.rx_params.agc) << 1; + lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); + } + else + #endif + { + #if DPAGC_MAX_FLAG + last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; + // F7.1 in order to be compatible with pm and IL formats + #else + last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1; + // F7.1 in order to be compatible with pm and IL formats + #endif + // input_level_dd : contain the input_level value we use + // in the associated CTL task to build the agc used in this CTL. + + lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); + } + +#if (RF_RAM == 61) && (CODE_VERSION != SIMULATION) +#if (L1_FF_MULTIBAND == 0) + arfcn = Convert_l1_radio_freq(radio_freq); +#else + arfcn = radio_freq; +#endif +#endif + +#if(RF_FAM == 61) + #if (CODE_VERSION != SIMULATION) + cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , + l1a_l1s_com.Scell_used_IL_dd.input_level, + radio_freq,if_threshold); + lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; + delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format + if(if_ctl == IF_100KHZ_DSP){ + delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; + } + else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ + delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; + } + #endif +#endif + + if (0==pm) // Check and filter illegal pm value by using last valid IL + new_IL = IL_info_ptr->input_level - lna_value; + else + new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); + + current_calibrated_IL = new_IL - delta1_freq - delta2_freq; + + // Protect IL stores against overflow + if (current_calibrated_IL>INDEX_MAX) + current_calibrated_IL=INDEX_MAX; + + #if TESTMODE + if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 + { + // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) + for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) + { + l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; + } + l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 + l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 + } + #endif + + if (new_IL>INDEX_MAX) + new_IL=INDEX_MAX; + + tab_ptr[0] = (UWORD8)new_IL; + tab_amr_ptr[0] = (UWORD8)new_IL; + + if (dtx_on && !beacon) + { + // a new AMR block is received, feed the G_dtx with the max_il of the block + for (i=DPAGC_FIFO_LEN-1;i>0;i--) + aset->G_DTX[i]=aset->G_DTX[i-1]; + + if (l1a_l1s_com.dedic_set.aset->achan_ptr->mode == TCH_AHS_MODE) + { + // Keep the max_il between the last 2 bursts + if (aset->G_amr[0] > aset->G_amr[1]) + max_il = aset->G_amr[0]; + else + max_il = aset->G_amr[1]; + } + else + { + // Keep the max_il between the last 4 bursts + max_il = l1ctl_find_max(&aset->G_amr[0], DPAGC_AMR_FIFO_LEN); + } + + aset->G_DTX[0]= max_il; + } + + /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ + #if DPAGC_MAX_FLAG + max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); + + if (!beacon) + { + max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); + + // WARNING: for array index purpose we work with POSITIVE input level + // so maximum search for negative numbers is equivalent to + // minimum search for positive numbers!!!!!! + // (-30 > -120 but 30 < 120) + if (max_G_all <= max_G_DTX) + new_IL = max_G_all; + else + new_IL = max_G_DTX; + } + else + new_IL = max_G_all; + #else + av_G_all=av_G_DTX=0; + + for (i=0;i<DPAGC_FIFO_LEN;i++) + av_G_all += tab_ptr[i]; + + av_G_all /= DPAGC_FIFO_LEN; + + if (!beacon) + { + for (i=0;i<DPAGC_FIFO_LEN;i++) + av_G_DTX += aset->G_DTX[i]; + + av_G_DTX /= DPAGC_FIFO_LEN; + + if (av_G_all >= av_G_DTX) + new_IL = av_G_all; + else + new_IL = av_G_DTX; + } + else + new_IL = av_G_all; + #endif + + // Updating of input_level and lna_off fields in order to correctly + // setting the AGC for the next task. + // input_level is always store with lna_on + + l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), + &(IL_info_ptr->lna_off), + radio_freq ); + IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * + IL_info_ptr->lna_off; + + #if L2_L3_SIMUL + #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) + buffer_trace(4,IL_info_ptr->input_level,last_known_agc, + l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID)); + #endif + #endif + + return((UWORD8)current_calibrated_IL); + } +#endif // AMR == 1 + +/*-------------------------------------------------------*/ +/* l1ctl_get_g_magic() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +#if (L1_FF_MULTIBAND == 0) +UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) +{ + + + if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) + { + if (radio_freq >= l1_config.std.first_radio_freq_band2) + return(l1_config.std.g_magic_band2); + else + return(l1_config.std.g_magic_band1); + } + else + return(l1_config.std.g_magic_band1); + + +} +#endif + +/*-------------------------------------------------------*/ +/* l1ctl_get_lna_att() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +#if (L1_FF_MULTIBAND == 0) +UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) +{ + + + if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) + { + if (radio_freq >= l1_config.std.first_radio_freq_band2) + return(l1_config.std.lna_att_band2); + else + return(l1_config.std.lna_att_band1); + } + else + return(l1_config.std.lna_att_band1); + + +} +#endif +/*-------------------------------------------------------*/ +/* l1ctl_update_TPU_with_toa() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ +void l1ctl_update_TPU_with_toa(void) +{ + #if (TOA_ALGO != 0) + WORD16 toa_shift; + + #if (TOA_ALGO == 2) + toa_shift = l1s.toa_var.toa_shift; + #else + toa_shift = l1s.toa_shift; + #endif + + if (toa_shift != ISH_INVALID) + // New ISH (TOA shift) has been stored in "l1s.toa_shift". + { + // NEW !!! For EOTD measurements in IDLE mode, cut AFC updates... + #if (L1_EOTD==1) + #if (L1_GPRS) + if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || + (l1a_l1s_com.mode == DEDIC_MODE)|| + (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED)) + #else + if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || + (l1a_l1s_com.mode == DEDIC_MODE)) + #endif + { + // In dedicated or transfer modes we need to track an TOA + // updates to post correct th results, else E-OTD implementation + // has qb errors... + + if( (l1a_l1s_com.nsync.eotd_meas_session == TRUE) + && (l1a_l1s_com.nsync.eotd_toa_phase == 1) ) + { + l1a_l1s_com.nsync.eotd_toa_tracking += toa_shift; + } + #endif + // Update tpu offset. + l1s.tpu_offset = (l1s.tpu_offset + TPU_CLOCK_RANGE + toa_shift) % TPU_CLOCK_RANGE; + + #if (TRACE_TYPE==1) || (TRACE_TYPE==4) + #if (GSM_IDLE_RAM == 0) + l1_trace_new_toa(); + #else + l1_trace_new_toa_intram(); + #endif + #endif + + #if (L1_EOTD==1) + } + #endif + + #if (TRACE_TYPE == 5) + #if (TOA_ALGO == 2) + trace_toa_sim_update (toa_shift,l1s.tpu_offset); + #endif + #endif + + // Reset ISH. + #if (TOA_ALGO == 2) + l1s.toa_var.toa_shift = ISH_INVALID; // Reset the ISH. + #else + l1s.toa_shift = ISH_INVALID; // Reset the ISH. + #endif + } + #endif +} + + +/*-------------------------------------------------------*/ +/* l1ctl_saic() */ +/*-------------------------------------------------------*/ +/* Parameters : */ +/* Return : */ +/* Functionality : */ +/*-------------------------------------------------------*/ + +#if (L1_SAIC != 0) +#define SWH_CHANTAP_INIT 0xFFD068CE +#if (NEW_SNR_THRESHOLD == 1) +UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode, UWORD8 task, UWORD8 * saic_flag) +#else +UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode) +#endif /* NEW_SNR_THRESHOLD */ +{ + UWORD16 SWH_flag = 0; + UWORD8 CSF_Filter_choice = L1_SAIC_HARDWARE_FILTER; +#if (NEW_SNR_THRESHOLD == 0) + volatile UWORD16 *ptr; + UWORD8 saic_flag; +#endif /* NEW_SNR_THRESHOLD */ +#if (NEW_SNR_THRESHOLD == 0) + ptr = (volatile UWORD16 * ) (SWH_CHANTAP_INIT); + *ptr = 0; + saic_flag=1; +#else + *saic_flag=0; +#endif + + switch (l1_mode) + { + case DEDIC_MODE: // GSM DEDICATED MODE + { +#if (NEW_SNR_THRESHOLD == 1) + *saic_flag=1; +#endif + if(IL_for_rxlev < L1_SAIC_GENIE_GSM_DEDIC_THRESHOLD) + { + SWH_flag=1; + } + + break; + } + #if L1_GPRS + case PACKET_TRANSFER_MODE: // PACKET TRANSFER MODE + { +#if (NEW_SNR_THRESHOLD == 0) + #if (L1_SAIC == 1) + if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) + { + *ptr = 4; + } + #endif /*#if (L1_SAIC == 3)*/ +#endif + + #if (L1_SAIC == 3) + if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) + { + SWH_flag = 1; + } + #endif /*#if (L1_SAIC == 3)*/ + break; + } + #endif /*#if L1_GPRS*/ + default: /* GSM OR GPRS IDLE MODES */ + { + #if ((L1_SAIC == 2)||(L1_SAIC == 3)) + if(IL_for_rxlev < L1_SAIC_GENIE_GSM_GPRS_IDLE_THRESHOLD) + { + SWH_flag=1; + } + #endif + break; + } + } + + l1ddsp_load_swh_flag (SWH_flag , +#if (NEW_SNR_THRESHOLD == 0) + saic_flag +#else + *saic_flag +#endif + ); + + if(SWH_flag == 1) + { + CSF_Filter_choice = L1_SAIC_PROGRAMMABLE_FILTER; + } + + + #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) + l1_trace_saic(SWH_flag, +#if (NEW_SNR_THRESHOLD == 0) + saic_flag +#else + *saic_flag +#endif + ); + #endif + #if (TRACE_TYPE == 5) + trace_saic_sim(IL_for_rxlev, l1_mode, SWH_flag); + #endif + + return(CSF_Filter_choice); +} +#endif + +#if (FF_L1_FAST_DECODING == 1) +/*-----------------------------------------------------------------*/ +/* l1ctl_pagc_missing_bursts */ +/*-----------------------------------------------------------------*/ +/* */ +/* Description: */ +/* ------------ */ +/* When fast decoding is active, fewer bursts are decoded. As a */ +/* result, fewer gain values are available. The PAGC algo must */ +/* be updated with the missed values. */ +/* */ +/* Input parameters: */ +/* ----------------- */ +/* UWORD8 skipped_values: the number of skipped bursts due to fast */ +/* decoding. */ +/* */ +/* Input parameters from globals: */ +/* ------------------------------ */ +/* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ +/* l1_config.params.il_min: minimum level */ +/* */ +/* Output parameters: */ +/* ------------------ */ +/* none */ +/* */ +/* Modified parameters from globals: */ +/* --------------------------------- */ +/* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ +/* */ +/*-----------------------------------------------------------------*/ + +void l1ctl_pagc_missing_bursts (UWORD8 skipped_values) +{ + UWORD8 i = 0; + + /* skipped_values cannot be greater than 3, otherwise this is an error + * and the PAGC algorithm mustn't be updated. */ + if (skipped_values > 3) + { + return; + } + + /* Update fifo by removing skipped_values of samples */ + for (i = 3; i > (skipped_values - 1); i--) + { + l1a_l1s_com.Scell_info.buff_beacon[i] = l1a_l1s_com.Scell_info.buff_beacon[i-skipped_values]; + } + + /* Insert minimum IL level as many times a burst has been skipped */ + for (i = 0; i < skipped_values; i++) + { + l1a_l1s_com.Scell_info.buff_beacon[i] = l1_config.params.il_min; + } +} +#endif /* #if (FF_L1_FAST_DECODING == 1) */