FreeCalypso > hg > fc-magnetite
view src/cs/layer1/cust0/l1_rf2.h @ 624:012028896cfb
FFS dev.c, Leonardo target: Fujitsu MB84VF5F5F4J2 #if 0'ed out
The FFS code we got from TI/Openmoko had a stanza for "Fujitsu MB84VF5F5F4J2
stacked device", using a fake device ID code that would need to be patched
manually into cfgffs.c (suppressing and overriding autodetection) and using
an FFS base address in the nCS2 bank, indicating that this FFS config was
probably meant for the MCP version of Leonardo which allows for 16 MiB flash
with a second bank on nCS2.
We previously had this FFS config stanza conditionalized under
CONFIG_TARGET_LEONARDO because the base address contained therein is invalid
for other targets, but now that we actually have a Leonardo build target in
FC Magnetite, I realize that the better approach is to #if 0 out this stanza
altogether: it is already non-functional because it uses a fake device ID
code, thus it is does not add support for more Leonardo board variants,
instead it is just noise.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 22 Dec 2019 21:24:29 +0000 |
parents | 945cf7f506b2 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * * Filename l1_rf2.h * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #ifndef __L1_RF_H__ #define __L1_RF_H__ /************************************/ /************************************/ // # define /************************************/ /************************************/ /* SYNTHESIZER setup time... */ /************************************/ #define RX_SYNTH_SETUP_TIME 215L // Synthesizer setup time in quarter bit. #define TX_SYNTH_SETUP_TIME 270L // Synthesizer setup time in quarter bit. /************************************/ /* time for TPU scenario ending... */ /************************************/ #define RX_TPU_SCENARIO_ENDING (4-3) // execution time of BDLENA down // minus serialization time #define TX_TPU_SCENARIO_ENDING (4-3) // execution time of BULON down // minus serialization time /************************************/ /* TXPWR configuration... */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) #define FIXED_TXPWR ((0x1FF << 6) | AUXAPC | FALSE) // TXPWR=15 // #define FIXED_TXPWR ((0xFF << 6) | AUXAPC | FALSE) #endif /************************************/ /* TX Propagation delay... */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) // #define PRG_TX ( 52L ) #define PRG_TX ( 8L) #endif /************************************/ /*(ANALOG)delay (in qbits) */ /************************************/ #define UL_ABB_DELAY 0 // modulator input to output delay /************************************/ /* Initial value for AFC... */ /************************************/ #define EEPROM_AFC ((-952-2400)*8) // F13.3 required!!!!! (default : -952*8, initial deviation of -2400 forced) #define SETUP_AFC_AND_RF 2 // time to have a stable output of the AFC and RF Band Gap(in Frames) // !! minimum Value : 1 Frame due to the fact there is no // hisr() in the first wake-up frame !!!! #if (ANLG_FAM == 1) /************************************/ /* Omega power on... */ /************************************/ // Omega registers values will be programmed at 1st DSP communication interrupt #define C_DEBUG1 (0x0000 | FALSE) // Enable f_tx delay of 400000 cyc DEBUG #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE ) // Value at reset #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE ) // Uplink gain amp 3 dB, Sidetone gain to -17 dB #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE ) // Downlink gain amp 0dB, Volume control -12 dB #define C_BBCTRL ((0x000 << 6) | BBCTRL | TRUE ) // value at reset #define C_APCOFF ((0x000 << 6) | APCOFF | TRUE ) #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE ) // value at reset #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE ) // value at reset #define C_DAI_ON_OFF 0x0000 // value at reset #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE ) // value at reset #define C_VBCTRL ((0x00B << 6) | VBCTRL | TRUE ) // VULSWITCH=0, VDLAUX=1, VDLEAR=1 // BULRUDEL will be initialized on rach only .... #define C_APCDEL1 ((0x000 << 6) | APCDEL1 | FALSE) #endif #if (ANLG_FAM == 2) /************************************/ /* Iota power on... */ /************************************/ // Iota registers values will be programmed at 1st DSP communication interrupt #define C_DEBUG1 (0x0000 | FALSE) // Enable f_tx delay of 400000 cyc DEBUG #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE ) // Value at reset #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE ) // Uplink gain amp 3 dB, Sidetone gain to -17 dB #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE ) // Downlink gain amp 0dB, Volume control -12 dB #define C_BBCTRL ((0x000 << 6) | BBCTRL | TRUE ) // value at reset #define C_BULGCAL ((0x000 << 6) | BULGCAL | TRUE ) // IAG=0 dB, QAG=0 dB #define C_APCOFF ((0x000 << 6) | APCOFF | TRUE ) // value at reset #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE ) // value at reset #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE ) // value at reset #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE ) // value at reset #define C_DAI_ON_OFF 0x0000 // value at reset #define C_VBCTRL1 ((0x00B << 6) | VBCTRL1 | TRUE ) // VULSWITCH=1, VDLAUX=1, VDLEAR=1 #define C_VBCTRL2 ((0x000 << 6) | VBCTRL2 | TRUE ) // MICBIASEL=0, VDLHSO=0, MICAUX=0 // BULRUDEL will be initialized on rach only .... #define C_APCDEL1 ((0x000 << 6) | APCDEL1 | TRUE ) #define C_APCDEL2 ((0x000 << 6) | APCDEL2 | TRUE ) #endif #if (ANLG_FAM == 3) // SYREN registers values will be programmed at 1st DSP communication interrupt #define C_DEBUG1 (0x0000 | FALSE) // Enable f_tx delay of 400000 cyc DEBUG #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE ) // Value at reset #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE ) // Side tone -17 dB, PGA_UL 3 dB #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE ) // PGA_DL 0dB, Volume -12 dB #define C_BBCTRL ((0x000 << 6) | BBCTRL | TRUE ) // Internal autocalibration, Output common mode=1.35V // Monoslot, Vpp=8/15*Vref #define C_BULGCAL ((0x000 << 6) | BULGCAL | TRUE ) // IAG=0 dB, QAG=0 dB #define C_APCOFF ((0x000 << 6) | APCOFF | TRUE ) // value at reset #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE ) // value at reset #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE ) // value at reset #define C_DAI_ON_OFF 0x0000 // value at reset #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE ) // value at reset #define C_VBCTRL1 ((0x108 << 6) | VBCTRL1 | TRUE ) // VULSWITCH=1 AUXI 28,2 dB #define C_VBCTRL2 ((0x001 << 6) | VBCTRL2 | TRUE ) // HSMIC on, SPKG gain @ 2,5dB // BULRUDEL will be initialized on rach only .... #define C_APCDEL1 ((0x000 << 6) | APCDEL1 | TRUE ) #define C_APCDEL2 ((0x000 << 6) | APCDEL2 | TRUE ) #define C_VBPOP ((0x004 << 6) | VBPOP | TRUE ) // HSOAUTO enabled only #define C_VAUDINITD 2 // vaud_init_delay init 2 frames #define C_VAUDCTRL ((0x000 << 6) | VAUDCTRL | TRUE ) // Init to zero #define C_VAUOCTRL ((0x155 << 6) | VAUOCTRL | TRUE ) // Speech on all outputs #define C_VAUSCTRL ((0x000 << 6) | VAUSCTRL | TRUE ) // Init to zero #define C_VAUDPLL ((0x000 << 6) | VAUDPLL | TRUE ) // Init to zero // SYREN registers values programmed by L1 directly through SPI (ABB_on) #define C_BBCFG 0x44 // Syren Like BDLF Filter - DC OFFSET removal OFF #endif /************************************/ /* Automatic frequency compensation */ /************************************/ /********************* C_Psi_sta definition *****************************/ /* C_Psi_sta = (2*pi*Fr) / (N * Fb) */ /* (1) = (2*pi*V*ppm*0.9) / (N*V*Fb) */ /* regarding Vega V/N = 2.4/4096 */ /* regarding VCO ppm/V = 16 / 1 (average slope of the VCO) */ /* (1) = (2*pi*2.4*16*0.9) / (4096*1*270.83) */ /* = 0.000195748 */ /* C_Psi_sta_inv = 1/C_Psi_sta = 5108 */ /************************************************************************/ #define C_Psi_sta_inv 9307L // (1/C_Psi_sta) #define C_Psi_st 6 // C_Psi_sta * 0.8 F0.16 #define C_Psi_st_32 369173L // F0.32 #define C_Psi_st_inv 11634L // (1/C_Psi_st) typedef struct { WORD16 eeprom_afc; UWORD32 psi_sta_inv; UWORD32 psi_st; UWORD32 psi_st_32; UWORD32 psi_st_inv; } T_AFC_PARAMS; /************************************/ /* Swap IQ definitions... */ /************************************/ /* 0=No Swap, 1=Swap RX only, 2=Swap TX only, 3=Swap RX and TX */ #define SWAP_IQ_GSM 0 #define SWAP_IQ_DCS 0 #define SWAP_IQ_PCS 0 // not supported by rf2 #define SWAP_IQ_GSM850 0 // not supported by rf2 /************************************/ /************************************/ // typedef /************************************/ /************************************/ /*************************************************************/ /* Define structure for apc of TX Power ******/ /*************************************************************/ typedef struct { // pcm-file "rf/tx/level.gsm|dcs" UWORD16 apc; // 0..31 UWORD8 ramp_index; // 0..RF_TX_RAMP_SIZE UWORD8 chan_cal_index; // 0..RF_TX_CHAN_CAL_TABLE_SIZE } T_TX_LEVEL; /************************************/ /* Automatic Gain Control */ /************************************/ /* Define structure for sub-band definition of TX Power ******/ typedef struct { UWORD16 upper_bound; // highest physical arfcn of the sub-band WORD16 agc_calib; // AGC for each TXPWR }T_RF_AGC_BAND; /************************************/ /* Ramp definitions */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) typedef struct { UWORD8 ramp_up [16]; // Ramp-up profile UWORD8 ramp_down [16]; // Ramp-down profile } T_TX_RAMP; #endif // RF structure definition //======================== enum RfRevision { RF_IGNORE = 0x0000, RF_SL2 = 0x1000, RF_GAIA_20X = 0x2000, RF_GAIA_20A = 0x2001, RF_GAIA_20B = 0x2002, RF_ATLAS_20B = 0x2020, RF_PASCAL_20 = 0x2030 }; // Number of bands supported #define GSM_BANDS 2 #define MULTI_BAND1 0 #define MULTI_BAND2 1 // RF table sizes #define RF_RX_CAL_CHAN_SIZE 9 // number of AGC sub-bands #define RF_RX_CAL_TEMP_SIZE 11 // number of temperature ranges #define RF_TX_CHAN_CAL_TABLE_SIZE 4 // channel calibration table size #define RF_TX_NUM_SUB_BANDS 8 // number of sub-bands in channel calibration table #define RF_TX_LEVELS_TABLE_SIZE 32 // level table size #define RF_TX_RAMP_SIZE 15 // number of ramp definitions #define RF_TX_CAL_TEMP_SIZE 5 // number of temperature ranges #define AGC_TABLE_SIZE 1 #define TEMP_TABLE_SIZE 131 // number of elements in ADC->temp conversion table // RX parameters and tables //------------------------- // AGC parameters and tables typedef struct { UWORD16 low_agc_noise_thr; UWORD16 high_agc_sat_thr; UWORD16 low_agc; UWORD16 high_agc; UWORD8 il2agc_pwr[121]; UWORD8 il2agc_max[121]; UWORD8 il2agc_av[121]; } T_AGC; // Calibration parameters typedef struct { UWORD16 g_magic; UWORD16 lna_att; UWORD16 lna_switch_thr_low; UWORD16 lna_switch_thr_high; } T_RX_CAL_PARAMS; // RX temperature compensation typedef struct { WORD16 temperature; WORD16 agc_calib; } T_RX_TEMP_COMP; // RF RX structure typedef struct { T_AGC agc; } T_RF_RX; //common // RF RX structure typedef struct { T_RX_CAL_PARAMS rx_cal_params; T_RF_AGC_BAND agc_bands[RF_RX_CAL_CHAN_SIZE]; T_RX_TEMP_COMP temp[RF_RX_CAL_TEMP_SIZE]; } T_RF_RX_BAND; // TX parameters and tables //------------------------- // TX temperature compensation typedef struct { WORD16 temperature; #if (ORDER2_TX_TEMP_CAL==1) WORD16 a; WORD16 b; WORD16 c; #else WORD16 apc_calib; #endif } T_TX_TEMP_CAL; // Ramp up and ramp down delay typedef struct { UWORD16 up; UWORD16 down; } T_RAMP_DELAY; typedef struct { UWORD16 arfcn_limit; WORD16 chan_cal; } T_TX_CHAN_CAL; // RF TX structure typedef struct { T_RAMP_DELAY ramp_delay; UWORD8 guard_bits; // number of guard bits needed for ramp up UWORD8 prg_tx; } T_RF_TX; //common // RF TX structure typedef struct { T_TX_LEVEL levels[RF_TX_LEVELS_TABLE_SIZE]; T_TX_CHAN_CAL chan_cal_table[RF_TX_CHAN_CAL_TABLE_SIZE][RF_TX_NUM_SUB_BANDS]; T_TX_RAMP ramp_tables[RF_TX_RAMP_SIZE]; T_TX_TEMP_CAL temp[RF_TX_CAL_TEMP_SIZE]; } T_RF_TX_BAND; // band structure typedef struct { T_RF_RX_BAND rx; T_RF_TX_BAND tx; UWORD8 swap_iq; } T_RF_BAND; // RF structure typedef struct { // common for all bands UWORD16 rf_revision; UWORD16 radio_band_support; T_RF_RX rx; T_RF_TX tx; T_AFC_PARAMS afc; } T_RF; /************************************/ /* MADC definitions */ /************************************/ // Omega: 5 external channels if touch screen not used, 3 otherwise enum ADC_INDEX { ADC_VBAT, ADC_VCHARG, ADC_ICHARG, ADC_VBACKUP, ADC_BATTYP, ADC_BATTEMP, ADC_RFTEMP, ADC_ADC3, ADC_ADC4, ADC_INDEX_END // ADC_INDEX_END must be the end of the enums }; typedef struct { WORD16 converted[ADC_INDEX_END]; // converted UWORD16 raw[ADC_INDEX_END]; // raw from ADC } T_ADC; /************************************/ /* MADC calibration */ /************************************/ typedef struct { UWORD16 a[ADC_INDEX_END]; WORD16 b[ADC_INDEX_END]; } T_ADCCAL; // Conversion table: ADC value -> temperature typedef struct { UWORD16 adc; // ADC reading is 10 bits WORD16 temp; // temp is in approx. range -30..+80 } T_TEMP; typedef struct { char *name; void *addr; int size; } T_CONFIG_FILE; typedef struct { char *name; // name of ffs file suffix T_RF_BAND *addr; // address to default flash structure UWORD16 max_carrier; // max carrier UWORD16 max_txpwr; // max tx power } T_BAND_CONFIG; typedef struct { UWORD8 band[GSM_BANDS]; // index to band address UWORD8 txpwr_tp; // tx power turning point UWORD16 first_arfcn; // first index } T_STD_CONFIG; enum GSMBAND_DEF { BAND_NONE, BAND_EGSM900, BAND_DCS1800, BAND_PCS1900, BAND_GSM850, // put new bands here BAND_GSM900 //last entry }; /************************************/ /* ABB (Omega) Initialization */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2)) #define ABB_TABLE_SIZE 16 #endif #if (ANLG_FAM == 3) #define ABB_TABLE_SIZE 22 #endif // Note that this translation is probably not needed at all. But until L1 is // (maybe) changed to simply initialize the ABB from a table of words, we // use this to make things more easy-readable. #if (ANLG_FAM == 1) enum ABB_REGISTERS { ABB_AFCCTLADD = 0, ABB_VBUCTRL, ABB_VBDCTRL, ABB_BBCTRL, ABB_APCOFF, ABB_BULIOFF, ABB_BULQOFF, ABB_DAI_ON_OFF, ABB_AUXDAC, ABB_VBCTRL, ABB_APCDEL1 }; #elif (ANLG_FAM == 2) enum ABB_REGISTERS { ABB_AFCCTLADD = 0, ABB_VBUCTRL, ABB_VBDCTRL, ABB_BBCTRL, ABB_BULGCAL, ABB_APCOFF, ABB_BULIOFF, ABB_BULQOFF, ABB_DAI_ON_OFF, ABB_AUXDAC, ABB_VBCTRL1, ABB_VBCTRL2, ABB_APCDEL1, ABB_APCDEL2 }; #elif (ANLG_FAM == 3) enum ABB_REGISTERS { ABB_AFCCTLADD = 0, ABB_VBUCTRL, ABB_VBDCTRL, ABB_BBCTRL, ABB_BULGCAL, ABB_APCOFF, ABB_BULIOFF, ABB_BULQOFF, ABB_DAI_ON_OFF, ABB_AUXDAC, ABB_VBCTRL1, ABB_VBCTRL2, ABB_APCDEL1, ABB_APCDEL2, ABB_VBPOP, ABB_VAUDINITD, ABB_VAUDCTRL, ABB_VAUOCTRL, ABB_VAUSCTRL, ABB_VAUDPLL }; #endif #endif