view src/cs/layer1/tm_include/l1tm_msgty.h @ 624:012028896cfb

FFS dev.c, Leonardo target: Fujitsu MB84VF5F5F4J2 #if 0'ed out The FFS code we got from TI/Openmoko had a stanza for "Fujitsu MB84VF5F5F4J2 stacked device", using a fake device ID code that would need to be patched manually into cfgffs.c (suppressing and overriding autodetection) and using an FFS base address in the nCS2 bank, indicating that this FFS config was probably meant for the MCP version of Leonardo which allows for 16 MiB flash with a second bank on nCS2. We previously had this FFS config stanza conditionalized under CONFIG_TARGET_LEONARDO because the base address contained therein is invalid for other targets, but now that we actually have a Leonardo build target in FC Magnetite, I realize that the better approach is to #if 0 out this stanza altogether: it is already non-functional because it uses a fake device ID code, thus it is does not add support for more Leonardo board variants, instead it is just noise.
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 22 Dec 2019 21:24:29 +0000
parents 945cf7f506b2
children
line wrap: on
line source

 /************* Revision Controle System Header *************
 *                  GSM Layer 1 software 
 * L1TM_MSGTY.H
 *
 *        Filename l1tm_msgty.h
 *  Copyright 2003 (C) Texas Instruments  
 *
 ************* Revision Controle System Header *************/


/***********************************************************************/
/*                           TESTMODE 3.X                              */
/***********************************************************************/


typedef struct
{ 
  UWORD8 cid;
  UWORD8 str_len_in_bytes;

  // all primitive types should be a unique struct within
  // the union u.
  union
    {
    struct
    {
      WORD16 index;
      UWORD16 value;
    } tm_params;
    struct
    {
      WORD8 index;
      UWORD8 table[TM_PAYLOAD_UPLINK_SIZE_MAX];
    } tm_table;
    struct
    {
      UWORD32 address;
      UWORD8 table[TM_PAYLOAD_UPLINK_SIZE_MAX];
    } mem_write;
    struct
    {
      UWORD32 src;
      UWORD32 length;
    } mem_read;
    struct
    {
      UWORD8 packet[128];
    } ffs;
  } u;
}
T_TESTMODE_PRIM;

typedef struct
{ 
  UWORD32          arfcn;
  UWORD32          number_of_measurements;
  UWORD8           place_of_measurement;
  UWORD32          num_loop;  
  UWORD32          agc;
}
T_TMODE_PM_REQ;

typedef struct
{
  UWORD16       power_array_size;
  T_POWER_ARRAY power_array[1];
}
T_TMODE_RXLEV_REQ;

typedef struct
{ 
  UWORD32   dummy; 
}
T_TMODE_FB0_REQ;

typedef struct
{ 
  UWORD32   dummy; 
}
T_TMODE_FB1_REQ;

typedef struct
{ 
  UWORD32   dummy;
}
T_TMODE_SB_REQ;

typedef struct
{ 
  UWORD32   dummy; 
}
T_TMODE_FB_SB_REQ;

typedef struct
{
  BOOL          fb_flag;    //TRUE if FB found, otherwise FALSE 
  WORD8         ntdma;      //tdma between window start and beginning of FB (0..23)
  UWORD8        neigh_id;
  UWORD32       pm_fullres;
  UWORD32       toa;
  WORD16        angle;
  UWORD32       snr;
}
T_TMODE_FB_CON;

typedef struct
{
  UWORD16     radio_freq;
  BOOL        sb_flag;
  UWORD32     fn_offset;
  UWORD32     time_alignmt;
  UWORD8      bsic;
  UWORD8      neigh_id;
  UWORD8      attempt;
  UWORD32     pm_fullres;
  UWORD32     toa;
  WORD16      angle;
  UWORD32     snr;  
}
T_TMODE_NCELL_SYNC_IND;

typedef struct
{
  UWORD32     fn_offset;
  UWORD32     time_alignmt;
  UWORD8      bsic;
}
T_TMODE_NEW_SCELL_REQ;

typedef struct
{
  UWORD16        radio_freq;
  UWORD8         l2_channel;
  BOOL           error_flag;
  T_RADIO_FRAME  l2_frame;
  UWORD8         tc;
  UWORD32        fn;
  UWORD8         neigh_id;
}
T_TMODE_BCCHS_CON; 

typedef struct
{
  UWORD32 dummy;
}
T_TMODE_STOP_SCELL_BCCH_REQ;

typedef struct
{
  UWORD32 dummy;
}
T_TMODE_SCELL_NBCCH_REQ;

typedef struct 
{
  UWORD32   fn;
  UWORD8    channel_request;
} 
T_TMODE_RA_DONE;

typedef struct
{
  UWORD32   dummy;
}
T_TMODE_RA_START;

typedef struct
{
  #if (CODE_VERSION == SIMULATION)
    UWORD8  ul_dl;
  #else
    UWORD32 dummy;
  #endif
}  
T_TMODE_IMMED_ASSIGN_REQ;

typedef struct
{
  UWORD8  A[22+1];
}
T_TMODE_RADIO_FRAME;

typedef struct
{
  UWORD16      radio_freq;
  UWORD8       l2_channel;
  UWORD8       error_cause;
  T_TMODE_RADIO_FRAME l2_frame;
  UWORD8       bsic;
  UWORD8       tc;
}
T_TMODE_SACCH_INFO;

typedef struct
{
  UWORD32  pm_fullres;
  UWORD32  snr;
  UWORD32  toa;
  WORD16   angle;
  UWORD32  qual_nbr_meas_full; // Fullset: nbr meas. of rxqual.
  UWORD32  qual_full;          // Fullset: rxqual meas.
}
T_TMODE_TCH_INFO;

typedef struct
{
  UWORD32 none;
}
T_TMODE_STOP_RX_TX;

#if L1_GPRS
  typedef struct
  {
    #if (CODE_VERSION == SIMULATION)
      UWORD8 multislot_class;
      UWORD8 dl_ts_alloc;
      UWORD8 ul_ts_alloc;
      UWORD8 ul_alloc_length;
      BOOL   mon_enable;
      BOOL   pm_enable;
    #else
      UWORD32 dummy;
    #endif
  }  
  T_TMODE_PDTCH_ASSIGN_REQ;

  typedef struct
  {
    UWORD32  pm_fullres;
    UWORD32  snr;
    UWORD32  toa;
    WORD16   angle;
    BOOL     crc_error_tbl[8];
  }
  T_TMODE_PDTCH_INFO;
#endif



/**************** ENUMs ***********************/

// TestMode Error Codes
enum
{
  E_OK         =   0,   // Function completed successfully.
  E_FINISHED   =   1,   // Previously started operation has finished.
  E_TESTMODE   =   2,   // Function not legal in this GGT test mode.
  E_BADINDEX   =   3,   // The index is undefined.
  E_INVAL      =   4,   // Invalid Argument (out of range or other).
  E_BADSIZE    =   7,   // Some table or list parameter was wrong in size
  E_AGAIN      =   8,   // Not ready, try again later.
  E_NOSYS      =   9,   // Function not implemented.
  E_NOSUBSYS   =  10,   // Sub-Function not implemented.
  E_BADCID     =  14,   // Invalid CID.
  E_CHECKSUM   =  15,   // Checksum Error.
  E_PACKET     =  16,    // Packet format is bad (wrong number of arguments).
  E_FORWARD    =  31   // Command parsed successfully, but further processing necessary
};

// CID's 
enum 
{
  TM_INIT                    = 0x20,
  TM_MODE_SET                = 0x21,
  VERSION_GET                = 0x22,
  RF_ENABLE                  = 0x23,
  STATS_READ                 = 0x24,
  STATS_CONFIG_WRITE         = 0x25,
  STATS_CONFIG_READ          = 0x26,
  RF_PARAM_WRITE             = 0x30,
  RF_PARAM_READ              = 0x31,
  RF_TABLE_WRITE             = 0x32,
  RF_TABLE_READ              = 0x33,
  RX_PARAM_WRITE             = 0x34,
  RX_PARAM_READ              = 0x35,
  TX_PARAM_WRITE             = 0x36,
  TX_PARAM_READ              = 0x37,
  TX_TEMPLATE_WRITE          = 0x38,
  TX_TEMPLATE_READ           = 0x39,
  MEM_WRITE                  = 0x40,
  MEM_READ                   = 0x41,
  CODEC_WRITE                = 0x42,
  CODEC_READ                 = 0x43,
  MISC_PARAM_WRITE           = 0x44,
  MISC_PARAM_READ            = 0x45,
  MISC_TABLE_WRITE           = 0x46,
  MISC_TABLE_READ            = 0x47,
  MISC_ENABLE                = 0x48,
  SPECIAL_PARAM_WRITE        = 0x50,
  SPECIAL_PARAM_READ         = 0x51,
  SPECIAL_TABLE_WRITE        = 0x52,
  SPECIAL_TABLE_READ         = 0x53,
  SPECIAL_ENABLE             = 0x54,

  #if (CODE_VERSION != SIMULATION)
    TPU_TABLE_WRITE            = 0x55,
    TPU_TABLE_READ             = 0x56,
  #endif

  TM_FFS                     = 0x70
};

// TestMode function enum's
enum RF_PARAM 
{
  BCCH_ARFCN         = 1,
  TCH_ARFCN          = 2,
  MON_ARFCN          = 3,
  #if L1_GPRS
    PDTCH_ARFCN        = 4,
  #endif
  STD_BAND_FLAG      = 7,
  AFC_ENA_FLAG       = 8,
  AFC_DAC_VALUE      = 9,
  INITIAL_AFC_DAC    = 10
  #if L1_GPRS
    ,MULTISLOT_CLASS    = 20
  #endif
};

enum RF_TABLE 
{
  RX_AGC_TABLE              = 8,
  AFC_PARAMS                = 9,
  RX_AGC_GLOBAL_PARAMS      = 12,
  RX_IL_2_AGC_MAX           = 13,
  RX_IL_2_AGC_PWR           = 14,
  RX_IL_2_AGC_AV            = 15,
  TX_LEVELS                 = 16, // 16=GSM900, 32=DCS1800, 48=PCS1900
  TX_CAL_CHAN               = 17, // 17=GSM900, 33=DCS1800, 49=PCS1900

#if (ORDER2_TX_TEMP_CAL==1)
  TX_CAL_TEMP               = 20, // 20=GSM900, 36=DCS1800, 52=PCS1900
#else
  TX_CAL_TEMP               = 18, // 18=GSM900, 34=DCS1800, 50=PCS1900
#endif

  TX_CAL_EXTREME            = 19, // 19=GSM900, 35=DCS1800, 51=PCS1900
  RX_CAL_CHAN               = 25, // 25=GSM900, 41=DCS1800, 57=PCS1900
  RX_CAL_TEMP               = 26, // 26=GSM900, 42=DCS1800, 58=PCS1900
  RX_CAL_LEVEL              = 27, // 27=GSM900, 43=DCS1800, 59=PCS1900
  RX_AGC_PARAMS             = 31, // 31=GSM900, 47=DCS1800, 63=PCS1900
  RX_AGC_PARAMS_PCS         = 63,
  #if (RF_FAM == 35)
    RX_PLL_TUNING_TABLE     = 65, 
  #endif 
  TX_DATA_BUFFER            = 80
  #if L1_GPRS
   ,RLC_TX_BUFFER_CS1       = 81,
    RLC_TX_BUFFER_CS2       = 82,
    RLC_TX_BUFFER_CS3       = 83,
    RLC_TX_BUFFER_CS4       = 84
  #endif
};

enum RX_PARAM 
{
  RX_AGC_GAIN             = 1,
  RX_TIMESLOT             = 2,
  RX_AGC_ENA_FLAG         = 8,
  RX_PM_ENABLE            = 9,
  RX_FRONT_DELAY          = 10,
  RX_FLAGS_CAL            = 14,
  RX_FLAGS_PLATFORM       = 15,
  RX_FLAGS_IQ_SWAP        = 17,
  RX_FLAGS_ALL            = 18
  #if L1_GPRS
    ,RX_GPRS_SLOTS          = 28,
    RX_GPRS_CODING          = 29
  #endif
};

enum TX_PARAM 
{
  TX_PWR_LEVEL            = 1,
  TX_APC_DAC              = 4,
  TX_RAMP_TEMPLATE        = 5,
  TX_CHAN_CAL_TABLE       = 6,
  TX_RESERVED             = 7,
  TX_BURST_TYPE           = 8,
  TX_BURST_DATA           = 9,
  TX_TIMING_ADVANCE       = 10,
  TX_TRAINING_SEQ         = 11,
  TX_PWR_SKIP             = 13,
  TX_FLAGS_CAL            = 14,
  TX_FLAGS_PLATFORM       = 15,
  TX_FLAGS_IQ_SWAP        = 17,
  TX_FLAGS_ALL            = 18
  #if L1_GPRS
    ,TX_GPRS_POWER0         = 20,
    TX_GPRS_POWER1          = 21,
    TX_GPRS_POWER2          = 22,
    TX_GPRS_POWER3          = 23,
    TX_GPRS_POWER4          = 24,
    TX_GPRS_POWER5          = 25,
    TX_GPRS_POWER6          = 26,
    TX_GPRS_POWER7          = 27,
    TX_GPRS_SLOTS           = 28,
    TX_GPRS_CODING          = 29
  #endif
};

enum MISC_PARAM 
{
  GPIOSTATE0                = 8,
  GPIODIR0                  = 9,
  GPIOSTATE1                = 10,
  GPIODIR1                  = 11,
  GPIOSTATE0P               = 12,
  GPIODIR0P                 = 13,
  GPIOSTATE1P               = 14,
  GPIODIR1P                 = 15,
  ADC_INTERVAL              = 18,
  ADC_ENA_FLAG              = 19,
  CONVERTED_ADC0            = 20,
  CONVERTED_ADC1            = 21,
  CONVERTED_ADC2            = 22,
  CONVERTED_ADC3            = 23,
  CONVERTED_ADC4            = 24,
  CONVERTED_ADC5            = 25,
  CONVERTED_ADC6            = 26,
  CONVERTED_ADC7            = 27,
  CONVERTED_ADC8            = 28,
  RAW_ADC0                  = 30,
  RAW_ADC1                  = 31,
  RAW_ADC2                  = 32,
  RAW_ADC3                  = 33,
  RAW_ADC4                  = 34,
  RAW_ADC5                  = 35,
  RAW_ADC6                  = 36,
  RAW_ADC7                  = 37,
  RAW_ADC8                  = 38,
  ADC0_COEFF_A              = 50,
  ADC1_COEFF_A              = 51,
  ADC2_COEFF_A              = 52,
  ADC3_COEFF_A              = 53,
  ADC4_COEFF_A              = 54,
  ADC5_COEFF_A              = 55,
  ADC6_COEFF_A              = 56,
  ADC7_COEFF_A              = 57,
  ADC8_COEFF_A              = 58,
  ADC0_COEFF_B              = 60,
  ADC1_COEFF_B              = 61,
  ADC2_COEFF_B              = 62,
  ADC3_COEFF_B              = 63,
  ADC4_COEFF_B              = 64,
  ADC5_COEFF_B              = 65,
  ADC6_COEFF_B              = 66,
  ADC7_COEFF_B              = 67,
  ADC8_COEFF_B              = 68,
  SLEEP_MODE                = 80,
  CURRENT_TM_MODE           = 127
};

enum STATS_CONFIG 
{
  LOOPS                     = 16,
  AUTO_RESULT_LOOPS         = 17,
  AUTO_RESET_LOOPS          = 18,
  #if L1_GPRS
    STAT_GPRS_SLOTS           = 20,
  #endif
  STAT_TYPE                 = 24,
  STAT_BITMASK              = 25
};

enum STATS_READ 
{
  ACCUMULATED_RX_STATS      = 1,
  MOST_RECENT_RX_STATS      = 2
};

enum BITMASK 
{
  RSSI                      = 0x0001,
  DSP_PM                    = 0x0002,
  ANGLE_MEAN                = 0x0004,
  ANGLE_VAR                 = 0x0008,
  SNR_MEAN                  = 0x0010,
  SNR_VAR                   = 0x0020,
  TOA_MEAN                  = 0x0040,
  TOA_VAR                   = 0x0080,
  RESERVED1                 = 0x0100,
  RESERVED2                 = 0x0200,
  ANGLE_MIN                 = 0x0400,
  ANGLE_MAX                 = 0x0800,
  FRAME_NUMBER              = 0x1000,
  RUNS                      = 0x2000,
  SUCCESSES                 = 0x4000,
  BSIC                      = 0x8000
};

enum RF_ENABLE_E 
{
  STOP_ALL                  =  0,
  RX_TCH                    =  1,
  TX_TCH                    =  2,
  RX_TX_TCH                 =  3,
  #if L1_GPRS
    RX_TX_PDTCH              =  4,
  #endif
  RX_TCH_CONT               =  8,
  TX_TCH_CONT               =  9,
  BCCH_LOOP                 = 10,
  SB_LOOP                   = 11,
  FB1_LOOP                  = 12,
  FB0_LOOP                  = 13,
  SINGLE_PM                 = 15,
  #if L1_GPRS
    RX_TX_PDTCH_MON           = 16,
  #endif
  #if (RF_FAM == 35)
    RX_PLL_TUNING             =  17,
  #endif
  RX_TX_MON_TCH             = 19,
  RX_TX_MON                 = 27
};
  
enum VERSION_GET_E 
{
  BBCHIP_MODULE_REV         = 0x10,
  CHIPID_MODULE_REV         = 0x14,
  CHIPVER_MODULE_REV        = 0x15,
  DSPSW_MODULE_REV          = 0x22,
  ANALOGCHIP_MODULE_REV     = 0x30,
  GSM_MODULE_REV            = 0x80,
  LAYER1_MODULE_REV         = 0x84,
  RFDRIVER_MODULE_REV       = 0x88,
  TM_API_MODULE_REV         = 0xE0,
  L1_TM_CORE_MODULE_REV     = 0xE1,
  STD_MODULE_REV            = 0xE2,
  DSP_MODULE_REV            = 0xE3,
  BOARD_MODULE_REV          = 0xE4,
  RF_MODULE_REV             = 0xE5 
};