FreeCalypso > hg > fc-magnetite
view src/cs/system/template/gsm_ds_pirelli_ram.template @ 624:012028896cfb
FFS dev.c, Leonardo target: Fujitsu MB84VF5F5F4J2 #if 0'ed out
The FFS code we got from TI/Openmoko had a stanza for "Fujitsu MB84VF5F5F4J2
stacked device", using a fake device ID code that would need to be patched
manually into cfgffs.c (suppressing and overriding autodetection) and using
an FFS base address in the nCS2 bank, indicating that this FFS config was
probably meant for the MCP version of Leonardo which allows for 16 MiB flash
with a second bank on nCS2.
We previously had this FFS config stanza conditionalized under
CONFIG_TARGET_LEONARDO because the base address contained therein is invalid
for other targets, but now that we actually have a Leonardo build target in
FC Magnetite, I realize that the better approach is to #if 0 out this stanza
altogether: it is already non-functional because it uses a fake device ID
code, thus it is does not add support for more Leonardo board variants,
instead it is just noise.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 22 Dec 2019 21:24:29 +0000 |
parents | a1ed3269da48 |
children |
line wrap: on
line source
/* * Integrated Protocol Stack Linker command file (all components) * * Target : ARM * * Copyright (c) Texas Instruments 2002, Condat 2002 * * This version of the linker script template has been concocted * by Spacefalcon the Outlaw based on previous hacks. */ -c /* Autoinitialize variables at runtime */ /*********************************/ /* SPECIFY THE SYSTEM MEMORY MAP */ /*********************************/ MEMORY { /* using XRAM instead of flash */ /* Interrupt Vectors Table */ I_MEM (RXI) : org = 0x01000000 len = 0x00000100 /* Boot Sector */ B_MEM (RXI) : org = 0x01000100 len = 0x00001f00 /* Magic Word for Calypso Boot ROM */ MWC_MEM (RXI) : org = 0x01002000 len = 0x00000004 fill = 0x0000001 /* Program Memory */ P_MEM1 (RXI) : org = 0x01004000 len = 0x00000700 P_MEM2 (RXI) : org = 0x01004700 len = 0x00000004 P_MEM3 (RXI) : org = 0x01004704 len = 0x003fb8fc /* FFS Area */ FFS_MEM (RX) : org = 0x02000000 len = 0x00800000 /**************************************************************************/ /* CS1: External SRAM 1 Mbytes ********************************************/ /* Data Memory */ /* * Huge XRAM on the Pirelli: present it as two banks of 4 MiB each * ... or a little less since we just stole half of it for "flash" */ D_MEM1 (RW) : org = 0x01400000 len = 0x00380000 D_MEM2 (RW) : org = 0x01780000 len = 0x00080000 /**************************************************************************/ /* CS6: Calypso Internal SRAM 512 kbytes **********************************/ /* Code & Variables Memory */ S_MEM (RXW) : org = 0x00800100 len = 0x0007ff00 /**************************************************************************/ } /***********************************************/ /* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */ /***********************************************/ /* * Since the bootloader directly calls the INT_Initialize() routine located * in int.s, this int.s code must always be mapped at the same address * (usually in the second flash sector). Its length is about 0x500 bytes. * Then comes the code that need to be loaded into the internal RAM. */ SECTIONS { .intvecs : {} > I_MEM /* Interrupt Vectors Table */ .monitor : > B_MEM /* Monitor Constants & Code */ { $(CONST_BOOT_LIB) } .inttext : {} > P_MEM1 /* int.s Code */ .bss_dar : > D_MEM1 /* DAR SWE Variables */ { $(BSS_DAR_LIB) } /* * The .bss section should not be split to ensure it is initialized to 0 * each time the SW is reset. So the whole .bss is mapped either in D_MEM1 * or in D_MEM2. * * Falcon's note for K5A3281: see the comments above where the memory * regions are defined. */ .bss : > D_MEM1 | D_MEM2 /* Global & Static Variables */ { $(BSS_BOOT_LIB) } /* * All .bss sections, which must be mapped in internal RAM must be * grouped in order to initialized the corresponding memory to 0. * This initialization is done in int.s file before calling the Nucleus * routine. */ GROUP { S_D_Mem /* Label of start address of .bss section in Int. RAM */ .DintMem { /* * .bss sections of the application */ $(BSS_LIBS) } API_HISR_stack : {} E_D_Mem /* Label of end address of .bss section in Int. RAM */ } > S_MEM /* * .text and .const sections which must be mapped in internal RAM. */ .ldfl : {} > P_MEM2 /* Used to know the start load address */ GROUP load = P_MEM3, run = S_MEM { S_P_Mem /* Label of start address of .text & .const sections in Int. RAM */ .PIntMem { /* * .text and .const sections of the application. * * The .veneer sections correspond exactly to .text:v&n sections * implementing the veneer functions. The .text:v$n -> .veneer * translation is performed by PTOOL software when PTOOL_OPTIONS * environement variable is set to veneer_section. */ $(CONST_LIBS) } E_P_Mem /* Label of end address of .text and .const sections in Int. RAM */ } /* * The rest of the code is mapped in flash, however the trampolines * load address should be consistent with .text. */ COMMENT2START `trampolines load = P_MEM3, run = S_MEM COMMENT2END .text : {} > P_MEM3 /* Code */ /* * The rest of the constants is mapped in flash. * The .cinit section should not be split. */ .cinit : {} > P_MEM3 /* Initialization Tables */ .const : {} > P_MEM3 /* Constant Data */ KadaAPI : {} > P_MEM3 /* ROMized CLDC */ .javastack: {} >> D_MEM1 | D_MEM2 /* Java stack */ .stackandheap : > D_MEM1 /* System Stacks, etc... */ { /* Leave 20 32bit words for register pushes. */ . = align(8); . += 20 * 4; /* Stack for abort and/or undefined modes. */ exception_stack = .; /* Leave 38 32bit words for state saving on exceptions. */ _xdump_buffer = .; . += 38 * 4; . = align(8); /* Beginning of stacks and heap area - 2.75 kbytes (int.s) */ stack_segment = .; . += 0xB00; } .data : {} > D_MEM1 /* Initialized Data */ .sysmem : {} > D_MEM1 /* Dynamic Memory Allocation Area */ }