view src/gpf2/osl/os_mem_ir.c @ 624:012028896cfb

FFS dev.c, Leonardo target: Fujitsu MB84VF5F5F4J2 #if 0'ed out The FFS code we got from TI/Openmoko had a stanza for "Fujitsu MB84VF5F5F4J2 stacked device", using a fake device ID code that would need to be patched manually into cfgffs.c (suppressing and overriding autodetection) and using an FFS base address in the nCS2 bank, indicating that this FFS config was probably meant for the MCP version of Leonardo which allows for 16 MiB flash with a second bank on nCS2. We previously had this FFS config stanza conditionalized under CONFIG_TARGET_LEONARDO because the base address contained therein is invalid for other targets, but now that we actually have a Leonardo build target in FC Magnetite, I realize that the better approach is to #if 0 out this stanza altogether: it is already non-functional because it uses a fake device ID code, thus it is does not add support for more Leonardo board variants, instead it is just noise.
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 22 Dec 2019 21:24:29 +0000
parents e9bdc8184d50
children
line wrap: on
line source

/*
 * This C module is a reconstruction based on the disassembly of
 * os_mem.obj in frame_na7_db_ir.lib from the Leonardo package.
 */

/* set of included headers from COFF symtab: */
#include <stdio.h>
#include <string.h>
#include "nucleus.h"
#include "typedefs.h"
#include "os.h"
#include "gdi.h"
#include "os_types.h"
#include "os_glob.h"

extern T_OS_PART_GRP_TABLE_ENTRY PartGrpTable[];
extern T_OS_POOL_BORDER PoolBorder[];

GLOBAL LONG
os_is_valid_partition(T_VOID_STRUCT *Buffer)
{
	int i;

	for (i = 0; i <= MaxPoolGroups; i++) {
		if (PoolBorder[i].End == 0)
			return(OS_ERROR);
		if ((char *)Buffer < PoolBorder[i].Start)
			continue;
		if ((char *)Buffer >= PoolBorder[i].End)
			continue;
		return(OS_OK);
	}
	return(OS_ERROR);
}

GLOBAL LONG
os_PartitionCheck(ULONG *ptr)
{
	PM_HEADER *phdr;
	PM_PCB *pool;

	phdr = (PM_HEADER *)(ptr - 2);
	if (phdr->pm_next_available)
		return(OS_PARTITION_FREE);
	pool = phdr->pm_partition_pool;
	if (ptr[(pool->pm_partition_size - 4) >> 2] == GUARD_PATTERN)
		return(OS_OK);
	else
		return(OS_PARTITION_GUARD_PATTERN_DESTROYED);
}

GLOBAL LONG
os_DeallocatePartition(OS_HANDLE TaskHandle, T_VOID_STRUCT *Buffer)
{
	if (os_is_valid_partition(Buffer) != OS_OK)
		return(OS_ERROR);
	if (NU_Deallocate_Partition(Buffer) != NU_SUCCESS)
		return(OS_ERROR);
	return(OS_OK);
}

GLOBAL LONG
os_AllocatePartition(OS_HANDLE TaskHandle, T_VOID_STRUCT **Buffer, ULONG Size,
		     ULONG Suspend, OS_HANDLE GroupHandle)
{
	T_OS_PART_POOL *pool, *requested_pool;
	ULONG nu_suspend;
	STATUS sts;
	int ret;

	for (pool = PartGrpTable[GroupHandle].grp_head; pool;
	     pool = pool->next)
		if (Size <= pool->size)
			break;
	if (!pool)
		return(OS_ERROR);
	requested_pool = pool;
	ret = OS_OK;
	nu_suspend = NU_NO_SUSPEND;
try_alloc:
	sts = NU_Allocate_Partition(&pool->pcb, (VOID **) Buffer, nu_suspend);
	switch (sts) {
	case NU_SUCCESS:
		return(ret);
	case NU_TIMEOUT:
	case NU_INVALID_SUSPEND:
		*Buffer = 0;
		return(OS_TIMEOUT);
	case NU_NO_PARTITION:
		pool = pool->next;
		if (pool) {
			ret = OS_ALLOCATED_BIGGER;
			goto try_alloc;
		}
		pool = requested_pool;
		if (Suspend) {
			nu_suspend = Suspend;
			ret = OS_WAITED;
			goto try_alloc;
		}
		return(OS_TIMEOUT);
	default:
		*Buffer = 0;
		return(OS_ERROR);
	}
}