FreeCalypso > hg > fc-magnetite
view src/cs/layer1/tm_cust0/l1tm_cust.c @ 395:11e279107681
Magnetite fw can now be compiled to target Calypso C05 (F741979B) silicon
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 18 Jan 2018 00:03:48 +0000 |
parents | b870b6a44d31 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1TM_CUST.C * * Filename %M% * Version %I% * Date %G% * ************* Revision Controle System Header *************/ #include "l1_confg.h" #if TESTMODE #include "tm_defs.h" #include "l1_const.h" #include "l1_types.h" #include "l1tm_defty.h" #include "l1tm_cust.h" #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #include "l1_defty.h" #include "l1_msgty.h" #include "l1_tabs.h" #include "l1tm_msgty.h" #include "l1tm_varex.h" #include "abb.h" #if (RF==35) #include "tpudrv35.h" #include "l1_rf35.h" #endif #if (RF==12) #include "tpudrv12.h" #include "l1_rf12.h" #endif #if (RF==10) #include "tpudrv10.h" #include "l1_rf10.h" #endif #if (RF==8) #include "tpudrv8.h" #include "l1_rf8.h" #endif #if (RF==2) #include "l1_rf2.h" #endif #include <string.h> // Import band configuration from Flash module (need to replace by an access function) //extern UWORD8 std; extern T_L1_CONFIG l1_config; extern T_RF rf; extern T_RF_BAND rf_band[GSM_BANDS]; extern UWORD16 AGC_TABLE[AGC_TABLE_SIZE]; extern T_ADC adc; extern T_ADCCAL adc_cal; extern UWORD16 TM_ul_data[16]; //Uplink data to be stored into ABB Uplink buffer extern T_STD_CONFIG std_config[]; static UWORD8 tm_band = 0; // External function prototypes void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); void Cust_init_std(void); void l1_tpu_init_light(void); enum { TM_RF_ID = 0, TM_ADC_ID = 1 }; typedef signed char effs_t; // external FFS function prototypes effs_t ffs_mkdir(const char *pathname); void config_ffs_write(char type); /***********************************************************************/ /* TESTMODE 4.X */ /***********************************************************************/ /*----------------------------------------------------------*/ /* Cust_tm_init() */ /*----------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Init default configuration for TM params */ /*----------------------------------------------------------*/ void Cust_tm_init(void) { UWORD32 i; l1_config.adc_enable = ADC_ENABLE; // ADC readings enabled l1_config.agc_enable = AGC_ENABLE; // AGC algo enabled l1_config.afc_enable = AFC_ENABLE; // AFC algo enabled l1_config.tmode.rf_params.bcch_arfcn = TM_BCCH_ARFCN; l1_config.tmode.rf_params.tch_arfcn = TM_TCH_ARFCN; l1_config.tmode.rf_params.mon_arfcn = TM_MON_ARFCN; l1_config.tmode.rf_params.channel_type = TM_CHAN_TYPE; // TCH_F l1_config.tmode.rf_params.subchannel = TM_SUB_CHAN; l1_config.tmode.rf_params.reload_ramps_flag = 0; l1_config.tmode.rf_params.tmode_continuous = TM_NO_CONTINUOUS; l1_config.tmode.rx_params.slot_num = TM_SLOT_NUM; // Time Slot l1_config.tmode.rx_params.agc = TM_AGC_VALUE; //This may be outside the range of the RF chip used l1_config.tmode.rx_params.pm_enable = TM_PM_ENABLE; l1_config.tmode.rx_params.lna_off = TM_LNA_OFF; l1_config.tmode.rx_params.number_of_measurements = TM_NUM_MEAS; l1_config.tmode.rx_params.place_of_measurement = TM_WIN_MEAS; l1_config.tmode.tx_params.txpwr = TM_TXPWR; // Min power level for GSM900 l1_config.tmode.tx_params.txpwr_skip = TM_TXPWR_SKIP; l1_config.tmode.tx_params.timing_advance = TM_TA; l1_config.tmode.tx_params.burst_type = TM_BURST_TYPE; // default is normal up-link burst l1_config.tmode.tx_params.burst_data = TM_BURST_DATA; // default is all zeros l1_config.tmode.tx_params.tsc = TM_TSC; // Training Sequence ("BCC" on BSS) #if (CODE_VERSION != SIMULATION) l1_config.tmode.stats_config.num_loops = TM_NUM_LOOPS; // 0 actually means infinite #else l1_config.tmode.stats_config.num_loops = 4; // 0 actually means infinite #endif l1_config.tmode.stats_config.auto_result_loops = TM_AUTO_RESULT_LOOPS; // 0 actually means infinite l1_config.tmode.stats_config.auto_reset_loops = TM_AUTO_RESET_LOOPS; // 0 actually means infinite l1_config.tmode.stats_config.stat_type = TM_STAT_TYPE; l1_config.tmode.stats_config.stat_bitmask = TM_STAT_BITMASK; #if (CODE_VERSION != SIMULATION) // Initialize APCDEL1 register of Omega ABB_Write_Register_on_page(PAGE0, APCDEL1, (C_APCDEL1 - 0x0004) >> 6); #endif l1tm.tm_msg_received = FALSE; for (i=0;i<16;i++) TM_ul_data[i]=0; #if L1_GPRS l1_config.tmode.rf_params.pdtch_arfcn = TM_PDTCH_ARFCN; l1_config.tmode.rf_params.multislot_class = TM_MULTISLOT_CLASS; l1_config.tmode.stats_config.stat_gprs_slots = TM_STAT_GPRS_SLOTS; l1_config.tmode.rx_params.timeslot_alloc = TM_RX_ALLOCATION; l1_config.tmode.rx_params.coding_scheme = TM_RX_CODING_SCHEME; l1_config.tmode.tx_params.timeslot_alloc = TM_TX_ALLOCATION; l1_config.tmode.tx_params.coding_scheme = TM_TX_CODING_SCHEME; for (i=0; i<8; i++) l1_config.tmode.tx_params.txpwr_gprs[i] = TM_TXPWR_GPRS; for (i=0; i<27; i++) l1_config.tmode.tx_params.rlc_buffer[i] = 0; #endif } /**********************************************************************/ /* Test mode functions used for RF calibration */ /**********************************************************************/ void Cust_tm_rf_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value) { switch (index) { case STD_BAND_FLAG: { UWORD8 std_temp, band_temp; std_temp = value & 0xff; // tm_band = b7..0 of value band_temp = value >> 8; // band = b15..8 of value // get define //if (sizeof(std_config)/sizeof(T_STD_CONFIG) <= std_temp) if (9 <= std_temp) // std max { tm_return->status = E_BADINDEX; break; } else if ( GSM_BANDS <= band_temp) { tm_return->status = E_BADINDEX; break; } else if ( BAND_NONE == std_config[std_temp].band[band_temp]) { tm_return->status = E_BADINDEX; break; } else { l1_config.std.id = std_temp; tm_band = band_temp; // update RAM struct with either default or ffs Cust_init_std(); l1_tpu_init_light(); tm_return->status = E_OK; break; } } case INITIAL_AFC_DAC: { rf.afc.eeprom_afc = (WORD16) value << 3; // shift to put into F13.3 format l1_config.params.eeprom_afc = rf.afc.eeprom_afc; tm_return->status = E_OK; break; } default: { tm_return->status = E_BADINDEX; break; } } // end switch } void Cust_tm_rf_param_read(T_TM_RETURN *tm_return, WORD16 index) { volatile UWORD16 value; switch (index) { case STD_BAND_FLAG: { value = ((tm_band << 8) | (l1_config.std.id) ); // return global std, tm_band (intel format) break; } case INITIAL_AFC_DAC: { value = rf.afc.eeprom_afc >> 3; // returned as F13.3 break; } default: { tm_return->size = 0; tm_return->status = E_BADINDEX; return; } } // end switch memcpy(tm_return->result, (UWORD8 *)&value, 2); tm_return->size = 2; tm_return->status = E_OK; } void Cust_tm_rf_table_write(T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]) { UWORD8 band=0; tm_return->index = index; // store index before it gets modified tm_return->size = 0; switch (index) { case RX_AGC_TABLE: { if (size != sizeof(AGC_TABLE)) { tm_return->status = E_BADSIZE; break; } memcpy(&AGC_TABLE[0], table, size); tm_return->status = E_OK; break; } case AFC_PARAMS: { #if (VCXO_ALGO == 1) if (size != 24) // 4 UWORD32 + 4 WORD16 values #else if (size != 16) // 4 UWORD32 values #endif { tm_return->status = E_BADSIZE; break; } memcpy(&rf.afc.psi_sta_inv, table, size); l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv; l1_config.params.psi_st = rf.afc.psi_st; l1_config.params.psi_st_32 = rf.afc.psi_st_32; l1_config.params.psi_st_inv = rf.afc.psi_st_inv; #if (CODE_VERSION == NOT_SIMULATION) #if (VCXO_ALGO == 1) l1_config.params.afc_dac_center = rf.afc.dac_center; l1_config.params.afc_dac_min = rf.afc.dac_min; l1_config.params.afc_dac_max = rf.afc.dac_max; l1_config.params.afc_snr_thr = rf.afc.snr_thr; #endif #endif tm_return->status = E_OK; break; } case RX_AGC_GLOBAL_PARAMS: { if (size != 8) // 4 UWORD16 values { tm_return->status = E_BADSIZE; break; } memcpy(&rf.rx.agc.low_agc_noise_thr, table, size); l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr; l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr; l1_config.params.low_agc = rf.rx.agc.low_agc; l1_config.params.high_agc = rf.rx.agc.high_agc; tm_return->status = E_OK; break; } case RX_IL_2_AGC_MAX: { if (size != sizeof(rf.rx.agc.il2agc_max)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf.rx.agc.il2agc_max[0], table, size); tm_return->status = E_OK; break; } case RX_IL_2_AGC_PWR: { if (size != sizeof(rf.rx.agc.il2agc_pwr)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf.rx.agc.il2agc_pwr[0], table, size); tm_return->status = E_OK; break; } case RX_IL_2_AGC_AV: { if (size != sizeof(rf.rx.agc.il2agc_av)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf.rx.agc.il2agc_av[0], table, size); tm_return->status = E_OK; break; } case TX_LEVELS: { if (size != sizeof(rf_band[tm_band].tx.levels)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf_band[tm_band].tx.levels[0], table, size); tm_return->status = E_OK; break; } case TX_CAL_CHAN: // generic for all bands { if (size != sizeof(rf_band[tm_band].tx.chan_cal_table)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf_band[tm_band].tx.chan_cal_table[0][0], table, size); tm_return->status = E_OK; break; } case TX_CAL_TEMP: // generic for all bands { if (size != sizeof(rf_band[tm_band].tx.temp)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf_band[tm_band].tx.temp[0], table, size); tm_return->status = E_OK; break; } case RX_CAL_CHAN: // generic for all bands { if (size != sizeof(rf_band[tm_band].rx.agc_bands)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf_band[tm_band].rx.agc_bands[0], table, size); tm_return->status = E_OK; break; } case RX_CAL_TEMP: // generic for all bands { if (size != sizeof(rf_band[tm_band].rx.temp)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf_band[tm_band].rx.temp[0], table, size); tm_return->status = E_OK; break; } case RX_AGC_PARAMS: { if (size != sizeof(rf_band[tm_band].rx.rx_cal_params)) { tm_return->status = E_BADSIZE; break; } memcpy(&rf_band[tm_band].rx.rx_cal_params, table, size); if (tm_band == 0) { l1_config.std.g_magic_band1 = rf_band[tm_band].rx.rx_cal_params.g_magic; l1_config.std.lna_att_band1 = rf_band[tm_band].rx.rx_cal_params.lna_att; l1_config.std.lna_switch_thr_low_band1 = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_low; l1_config.std.lna_switch_thr_high_band1 = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_high; } else if (tm_band == 1) { l1_config.std.g_magic_band2 = rf_band[tm_band].rx.rx_cal_params.g_magic; l1_config.std.lna_att_band2 = rf_band[tm_band].rx.rx_cal_params.lna_att; l1_config.std.lna_switch_thr_low_band2 = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_low; l1_config.std.lna_switch_thr_high_band2 = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_high; } else { tm_return->status = E_INVAL; break; } tm_return->status = E_OK; break; } case TX_CAL_EXTREME: case RX_CAL_LEVEL: { tm_return->status = E_NOSUBSYS; break; } #if L1_GPRS case RLC_TX_BUFFER_CS1: case RLC_TX_BUFFER_CS2: case RLC_TX_BUFFER_CS3: case RLC_TX_BUFFER_CS4: { UWORD8 i, buffer_size; tm_return->index = index; // store index before it gets modified tm_return->size = 0; buffer_size = size/2 + size%2; // bytes will be concatenated into UWORD16 if (buffer_size > 27) //max. number of data bytes { tm_return->status = E_BADSIZE; break; } // make sure that last byte is zero in case of odd number of bytes table[size] = 0; // init the whole buffer before downloading new data for (i=0; i<27; i++) l1_config.tmode.tx_params.rlc_buffer[i] = 0; for (i=0; i<buffer_size; i++) { l1_config.tmode.tx_params.rlc_buffer[i] = (table[2*i+1] << 8) | table[2*i]; } l1_config.tmode.tx_params.rlc_buffer_size = buffer_size; tm_return->status = E_OK; break; } #endif case TX_DATA_BUFFER: { UWORD8 i; tm_return->index = index; // store index before it gets modified tm_return->size = 0; if (size != 32) // 16 UWORD16 (containing 10 data bits each) { tm_return->status = E_BADSIZE; break; } memcpy(&TM_ul_data, table, size); for (i=0; i<16; i++) { TM_ul_data[i] = TM_ul_data[i] << 6; } tm_return->status = E_OK; break; } default: { tm_return->status = E_BADINDEX; break; } } // end switch } void Cust_tm_rf_table_read(T_TM_RETURN *tm_return, WORD8 index) { switch (index) { case RX_AGC_TABLE: { tm_return->size = sizeof(AGC_TABLE); memcpy(tm_return->result, &AGC_TABLE[0], tm_return->size); break; } case AFC_PARAMS: { #if (VCXO_ALGO == 1) tm_return->size = 24; // 4 UWORD32's + 4 WORD16 #else tm_return->size = 16; // 4 UWORD32's #endif memcpy(tm_return->result, &rf.afc.psi_sta_inv, tm_return->size); break; } case RX_AGC_GLOBAL_PARAMS: { tm_return->size = 8; // 4 UWORD16's memcpy(tm_return->result, &rf.rx.agc.low_agc_noise_thr, tm_return->size); break; } case RX_IL_2_AGC_MAX: { tm_return->size = sizeof(rf.rx.agc.il2agc_max); memcpy(tm_return->result, &rf.rx.agc.il2agc_max[0], tm_return->size); break; } case RX_IL_2_AGC_PWR: { tm_return->size = sizeof(rf.rx.agc.il2agc_pwr); memcpy(tm_return->result, &rf.rx.agc.il2agc_pwr[0], tm_return->size); break; } case RX_IL_2_AGC_AV: { tm_return->size = sizeof(rf.rx.agc.il2agc_av); memcpy(tm_return->result, &rf.rx.agc.il2agc_av[0], tm_return->size); break; } case TX_LEVELS: { tm_return->size = sizeof(rf_band[tm_band].tx.levels); memcpy(tm_return->result, &rf_band[tm_band].tx.levels[0], tm_return->size); break; } case TX_CAL_CHAN: // generic for all bands { tm_return->size = sizeof(rf_band[tm_band].tx.chan_cal_table); memcpy(tm_return->result, &rf_band[tm_band].tx.chan_cal_table[0][0], tm_return->size); break; } case TX_CAL_TEMP: // generic for all bands { tm_return->size = sizeof(rf_band[tm_band].tx.temp); memcpy(tm_return->result, &rf_band[tm_band].tx.temp[0], tm_return->size); break; } case RX_CAL_CHAN: // generic for all bands { tm_return->size = sizeof(rf_band[tm_band].rx.agc_bands); memcpy(tm_return->result, &rf_band[tm_band].rx.agc_bands[0], tm_return->size); break; } case RX_CAL_TEMP: // generic for all bands { tm_return->size = sizeof(rf_band[tm_band].rx.temp); memcpy(tm_return->result, &rf_band[tm_band].rx.temp[0], tm_return->size); break; } case RX_AGC_PARAMS: { // WARNING: sizeof(rf.rx.rx_cal_params[band]) returns 12 because of alignment tm_return->size = 10; // five UWORD16's memcpy(tm_return->result, &rf_band[tm_band].rx.rx_cal_params, tm_return->size); break; } case TX_CAL_EXTREME: case RX_CAL_LEVEL: { tm_return->size = 0; tm_return->status = E_NOSUBSYS; return; } #if L1_GPRS case RLC_TX_BUFFER_CS1: case RLC_TX_BUFFER_CS2: case RLC_TX_BUFFER_CS3: case RLC_TX_BUFFER_CS4: { tm_return->size = l1_config.tmode.tx_params.rlc_buffer_size * 2; // UWORD16's memcpy(tm_return->result, &l1_config.tmode.tx_params.rlc_buffer[0], tm_return->size); break; } #endif case TX_DATA_BUFFER: { UWORD8 i; for (i=0; i<16; i++) { tm_return->result[2*i]=(TM_ul_data[i] >> 6) & 0x00FF; tm_return->result[2*i+1]=(TM_ul_data[i] >> 14) & 0x0003; } tm_return->size = 32; //16*UWORD16 break; } #if (RF==35) case RX_PLL_TUNING_TABLE: { tm_return->size = sizeof(pll_tuning); //6*UWORD16 memcpy(tm_return->result, &pll_tuning, tm_return->size); pll_tuning.enable = 0; break; } #endif default: { tm_return->size = 0; tm_return->status = E_BADINDEX; return; } } // end switch tm_return->index = index; tm_return->status = E_OK; } void Cust_tm_rx_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value) { switch (index) { case RX_FRONT_DELAY: { //delay for dual band not implemented yet rf.tx.prg_tx = value; l1_config.params.prg_tx_gsm = rf.tx.prg_tx; l1_config.params.prg_tx_dcs = rf.tx.prg_tx; tm_return->status = E_OK; break; } default: { tm_return->status = E_BADINDEX; break; } } // end switch } void Cust_tm_rx_param_read(T_TM_RETURN *tm_return, WORD16 index) { volatile UWORD16 value; switch (index) { case RX_FRONT_DELAY: { value = rf.tx.prg_tx; break; } default: { tm_return->status = E_BADINDEX; tm_return->size = 0; return; } } // end switch memcpy(tm_return->result, (UWORD8 *)&value, 2); tm_return->size = 2; tm_return->status = E_OK; } void Cust_tm_tx_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value, UWORD8 band) { switch (index) { case TX_APC_DAC: { // generic for all bands rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].apc = value; tm_return->status = E_OK; break; } case TX_RAMP_TEMPLATE: { if (value >= sizeof(rf_band[tm_band].tx.ramp_tables)/sizeof(rf_band[tm_band].tx.ramp_tables[0])) // [0..15] { tm_return->status = E_INVAL; break; } // generic for all bands rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].ramp_index = value; tm_return->status = E_OK; l1_config.tmode.rf_params.reload_ramps_flag = 1; break; } case TX_CHAN_CAL_TABLE: { if (value >= sizeof(rf_band[tm_band].tx.chan_cal_table)/sizeof(rf_band[tm_band].tx.chan_cal_table[0])) { tm_return->status = E_INVAL; break; } // generic for all bands rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].chan_cal_index = value; tm_return->status = E_OK; break; } case TX_BURST_TYPE: { if (value > 1) // [0..1] { tm_return->status = E_INVAL; break; } l1_config.tmode.tx_params.burst_type = value; tm_return->status = E_OK; break; } case TX_BURST_DATA: { // range is [0..10], currently we support [0..13] at the moment if (value > 13) { tm_return->status = E_INVAL; break; } l1_config.tmode.tx_params.burst_data = value; tm_return->status = E_OK; break; } case TX_TRAINING_SEQ: { if (value > 7) // [0..7] { tm_return->status = E_INVAL; break; } l1_config.tmode.tx_params.tsc = value; tm_return->status = E_OK; break; } default: { tm_return->status = E_BADINDEX; break; } } // end switch } void Cust_tm_tx_param_read(T_TM_RETURN *tm_return, WORD16 index, UWORD8 band) { volatile UWORD16 value; switch (index) { case TX_PWR_LEVEL: { value = l1_config.tmode.tx_params.txpwr; break; } case TX_APC_DAC: { value = rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].apc; break; } case TX_RAMP_TEMPLATE: { value = rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].ramp_index; break; } case TX_CHAN_CAL_TABLE: { value = rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].chan_cal_index; break; } case TX_BURST_TYPE: { value = l1_config.tmode.tx_params.burst_type; break; } case TX_BURST_DATA: { value = l1_config.tmode.tx_params.burst_data; break; } case TX_TIMING_ADVANCE: { value = l1_config.tmode.tx_params.timing_advance; break; } case TX_TRAINING_SEQ: { value = l1_config.tmode.tx_params.tsc; break; } case TX_PWR_SKIP: { value = l1_config.tmode.tx_params.txpwr_skip; break; } #if L1_GPRS case TX_GPRS_POWER0: case TX_GPRS_POWER1: case TX_GPRS_POWER2: case TX_GPRS_POWER3: case TX_GPRS_POWER4: case TX_GPRS_POWER5: case TX_GPRS_POWER6: case TX_GPRS_POWER7: { value = l1_config.tmode.tx_params.txpwr_gprs[index - TX_GPRS_POWER0]; break; } case TX_GPRS_SLOTS: { value = l1_config.tmode.tx_params.timeslot_alloc; break; } case TX_GPRS_CODING: { value = l1_config.tmode.tx_params.coding_scheme; break; } #endif default: { tm_return->status = E_BADINDEX; tm_return->size = 0; return; } } // end switch memcpy(tm_return->result, (UWORD8 *)&value, 2); tm_return->size = 2; tm_return->status = E_OK; } void Cust_tm_tx_template_write(T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]) { if (index >= sizeof(rf_band[tm_band].tx.ramp_tables)/sizeof(T_TX_RAMP)) { tm_return->status = E_BADINDEX; } else if (size != sizeof(T_TX_RAMP)) { // We are writing both the up and down ramps; size must be exact. tm_return->status = E_BADSIZE; } else { memcpy(rf_band[tm_band].tx.ramp_tables[index].ramp_up, &table[0], size/2); memcpy(rf_band[tm_band].tx.ramp_tables[index].ramp_down, &table[size/2], size/2); tm_return->status = E_OK; l1_config.tmode.rf_params.reload_ramps_flag = 1; } tm_return->index = index; tm_return->size = 0; } void Cust_tm_tx_template_read(T_TM_RETURN *tm_return, WORD8 index) { tm_return->index = index; if (index >= sizeof(rf_band[tm_band].tx.ramp_tables)/sizeof(T_TX_RAMP)) { tm_return->status = E_BADINDEX; tm_return->size = 0; return; } memcpy(&tm_return->result[0], rf_band[tm_band].tx.ramp_tables[index].ramp_up, sizeof(rf_band[tm_band].tx.ramp_tables[index].ramp_up)); memcpy(&tm_return->result[sizeof(rf_band[tm_band].tx.ramp_tables[index].ramp_up)], rf_band[tm_band].tx.ramp_tables[index].ramp_down, sizeof(rf_band[tm_band].tx.ramp_tables[index].ramp_down)); tm_return->size = sizeof(rf_band[tm_band].tx.ramp_tables[index]); tm_return->status = E_OK; } void Cust_tm_misc_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value) { switch (index) { case GPIOSTATE0: case GPIODIR0: case GPIOSTATE1: case GPIODIR1: case GPIOSTATE0P: case GPIODIR0P: case GPIOSTATE1P: case GPIODIR1P: { tm_return->status = E_NOSUBSYS; break; } case CONVERTED_ADC0: case CONVERTED_ADC1: case CONVERTED_ADC2: case CONVERTED_ADC3: case CONVERTED_ADC4: case CONVERTED_ADC5: case CONVERTED_ADC6: case CONVERTED_ADC7: case CONVERTED_ADC8: { adc.converted[index - CONVERTED_ADC0] = value; tm_return->status = E_OK; break; } case RAW_ADC0: case RAW_ADC1: case RAW_ADC2: case RAW_ADC3: case RAW_ADC4: case RAW_ADC5: case RAW_ADC6: case RAW_ADC7: case RAW_ADC8: { adc.raw[index - RAW_ADC0] = value; tm_return->status = E_OK; break; } case ADC0_COEFF_A: case ADC1_COEFF_A: case ADC2_COEFF_A: case ADC3_COEFF_A: case ADC4_COEFF_A: case ADC5_COEFF_A: case ADC6_COEFF_A: case ADC7_COEFF_A: case ADC8_COEFF_A: { adc_cal.a[index - ADC0_COEFF_A] = value; tm_return->status = E_OK; break; } case ADC0_COEFF_B: case ADC1_COEFF_B: case ADC2_COEFF_B: case ADC3_COEFF_B: case ADC4_COEFF_B: case ADC5_COEFF_B: case ADC6_COEFF_B: case ADC7_COEFF_B: case ADC8_COEFF_B: { adc_cal.b[index - ADC0_COEFF_B] = value; tm_return->status = E_OK; break; } case SLEEP_MODE: { tm_return->status = E_NOSUBSYS; break; } default: { tm_return->status = E_BADINDEX; break; } } // end switch } void Cust_tm_misc_param_read(T_TM_RETURN *tm_return, WORD16 index) { volatile UWORD16 value; switch (index) { case GPIOSTATE0: case GPIODIR0: case GPIOSTATE1: case GPIODIR1: case GPIOSTATE0P: case GPIODIR0P: case GPIOSTATE1P: case GPIODIR1P: { tm_return->status = E_NOSUBSYS; tm_return->size = 0; return; } case CONVERTED_ADC0: case CONVERTED_ADC1: case CONVERTED_ADC2: case CONVERTED_ADC3: case CONVERTED_ADC4: case CONVERTED_ADC5: case CONVERTED_ADC6: case CONVERTED_ADC7: case CONVERTED_ADC8: { value = adc.converted[index - CONVERTED_ADC0]; break; } case RAW_ADC0: case RAW_ADC1: case RAW_ADC2: case RAW_ADC3: case RAW_ADC4: case RAW_ADC5: case RAW_ADC6: case RAW_ADC7: case RAW_ADC8: { value = adc.raw[index - RAW_ADC0]; break; } case ADC0_COEFF_A: case ADC1_COEFF_A: case ADC2_COEFF_A: case ADC3_COEFF_A: case ADC4_COEFF_A: case ADC5_COEFF_A: case ADC6_COEFF_A: case ADC7_COEFF_A: case ADC8_COEFF_A: { value = adc_cal.a[index - ADC0_COEFF_A]; break; } case ADC0_COEFF_B: case ADC1_COEFF_B: case ADC2_COEFF_B: case ADC3_COEFF_B: case ADC4_COEFF_B: case ADC5_COEFF_B: case ADC6_COEFF_B: case ADC7_COEFF_B: case ADC8_COEFF_B: { value = adc_cal.b[index - ADC0_COEFF_B]; break; } case SLEEP_MODE: { tm_return->status = E_NOSUBSYS; tm_return->size = 0; return; } default: { tm_return->status = E_BADINDEX; tm_return->size = 0; return; } } // end switch memcpy(tm_return->result, (UWORD8 *)&value, 2); tm_return->size = 2; tm_return->status = E_OK; } void Cust_tm_misc_enable(T_TM_RETURN *tm_return, WORD16 action) { UWORD8 status; // FIXME: This enum really should go into testmode header file. enum ME_CFG_WRITE_E { CFG_WRITE_MKDIRS = 100, CFG_WRITE_RF_CAL = 102, CFG_WRITE_RF_CFG = 103, CFG_WRITE_TX_CAL = 104, CFG_WRITE_TX_CFG = 105, CFG_WRITE_RX_CAL = 106, CFG_WRITE_RX_CFG = 107, CFG_WRITE_SYS_CAL = 108, CFG_WRITE_SYS_CFG = 109 }; tm_return->size = 0; tm_return->index = action; tm_return->status = E_OK; // FIXME: This code should actually be in misc_enable() switch(action) { case CFG_WRITE_MKDIRS: ffs_mkdir("/gsm"); ffs_mkdir("/pcm"); ffs_mkdir("/sys"); ffs_mkdir("/mmi"); ffs_mkdir("/vos"); ffs_mkdir("/var"); ffs_mkdir("/gsm/rf"); ffs_mkdir("/gsm/com"); ffs_mkdir("/vos/vm"); ffs_mkdir("/vos/vrm"); ffs_mkdir("/vos/vrp"); ffs_mkdir("/var/log"); ffs_mkdir("/var/tst"); ffs_mkdir("/gsm/rf/tx"); ffs_mkdir("/gsm/rf/rx"); break; case CFG_WRITE_RF_CAL: config_ffs_write('f'); break; case CFG_WRITE_RF_CFG: config_ffs_write('F'); break; case CFG_WRITE_TX_CAL: config_ffs_write('t'); break; case CFG_WRITE_TX_CFG: config_ffs_write('T'); break; case CFG_WRITE_RX_CAL: config_ffs_write('r'); break; case CFG_WRITE_RX_CFG: config_ffs_write('R'); break; case CFG_WRITE_SYS_CAL: config_ffs_write('s'); break; case CFG_WRITE_SYS_CFG: config_ffs_write('S'); break; default: tm_return->status = E_BADINDEX; } } void Cust_tm_special_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value) { tm_return->size = 0; tm_return->index = index; tm_return->status = E_NOSYS; } void Cust_tm_special_param_read(T_TM_RETURN *tm_return, WORD16 index) { tm_return->size = 0; tm_return->index = index; tm_return->status = E_NOSYS; } void Cust_tm_special_table_write(T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[]) { tm_return->size = 0; tm_return->index = index; tm_return->status = E_NOSYS; } void Cust_tm_special_table_read(T_TM_RETURN *tm_return, WORD8 index) { tm_return->size = 0; tm_return->index = index; tm_return->status = E_NOSYS; } void Cust_tm_special_enable(T_TM_RETURN *tm_return, WORD16 action) { tm_return->size = 0; tm_return->index = action; tm_return->status = E_NOSYS; } #endif // TESTMODE