FreeCalypso > hg > fc-magnetite
view src/g23m-gprs/llc/llc.h @ 516:1ed9de6c90bd
src/g23m-gsm/sms/sms_for.c: bogus malloc removed
The new error handling code that was not present in TCS211 blob version
contains a malloc call that is bogus for 3 reasons:
1) The memory allocation in question is not needed in the first place;
2) libc malloc is used instead of one of the firmware's proper ways;
3) The memory allocation is made inside a function and then never freed,
i.e., a memory leak.
This bug was caught in gcc-built FreeCalypso fw projects (Citrine
and Selenite) because our gcc environment does not allow any use of
libc malloc (any reference to malloc produces a link failure),
but this code from TCS3.2 is wrong even for Magnetite: if this code
path is executed repeatedly over a long time, the many small allocations
made by this malloc call without a subsequent free will eventually
exhaust the malloc heap provided by the TMS470 environment, malloc will
start returning NULL, and the bogus code will treat it as an error.
Because the memory allocation in question is not needed at all,
the fix entails simply removing it.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 22 Jul 2018 06:04:49 +0000 |
parents | 219afcfc6250 |
children |
line wrap: on
line source
/* +----------------------------------------------------------------------------- | Project : | Modul : +----------------------------------------------------------------------------- | Copyright 2002 Texas Instruments Berlin, AG | All rights reserved. | | This file is confidential and a trade secret of Texas | Instruments Berlin, AG | The receipt of or possession of this file does not convey | any rights to reproduce or disclose its contents or to | manufacture, use, or sell anything it may describe, in | whole, or in part, without the specific written consent of | Texas Instruments Berlin, AG. +----------------------------------------------------------------------------- | Purpose : Definitions for the Protocol Stack Entity | Logical Link Control (LLC) +----------------------------------------------------------------------------- */ #ifndef LLC_H #define LLC_H /*#ifdef FF_EGPRS #ifndef LLC_EDGE #define LLC_EDGE #endif *//*LLC_EDGE*/ /*#endif */ /*FF_EGPRS*/ /* * Shift of constants from SAPs LL and LLGMM to PS_include are handled here. */ #ifdef LL_2to1 #ifndef DTACS_MOBILITY_MANAGEMENT #define DTACS_MOBILITY_MANAGEMENT GRLC_MOBILITY_MANAGEMENT #endif #ifndef GRR_DTACS_DEFGRR_DTACS_DEF #define GRR_DTACS_DEF GRLC_DTACS_DEF #endif #ifndef GRR_DTACS_MOBILITY_MANAGEMENT #define GRR_DTACS_MOBILITY_MANAGEMENT GRLC_DTACS_MOBILITY_MANAGEMENT #endif #ifndef LLC_MAX_CNF #define LLC_MAX_CNF LL_MAX_CNF #endif #ifndef LLC_MAX_L3_XID_LEN #define LLC_MAX_L3_XID_LEN LL_MAX_L3_XID_LEN #endif #ifndef LLGMM_ERRCS_ACK_NO_PEER_RES_REEST #define LLGMM_ERRCS_ACK_NO_PEER_RES_REEST CAUSE_LLC_ACK_NO_PEER_RES_REEST #endif #ifndef LLGMM_ERRCS_DISC_NO_PEER_RES #define LLGMM_ERRCS_DISC_NO_PEER_RES CAUSE_LLC_DISC_NO_PEER_RES #endif #ifndef LLGMM_ERRCS_DM1_RECEIVED #define LLGMM_ERRCS_DM1_RECEIVED CAUSE_LLC_DM1_RECEIVED #endif #ifndef LLGMM_ERRCS_DM1_RECEIVED_REEST #define LLGMM_ERRCS_DM1_RECEIVED_REEST CAUSE_LLC_DM1_RECEIVED_REEST #endif #ifndef LLGMM_ERRCS_FRMR_COND #define LLGMM_ERRCS_FRMR_COND CAUSE_LLC_FRMR_COND #endif #ifndef LLGMM_ERRCS_FRMR_COND_REEST #define LLGMM_ERRCS_FRMR_COND_REEST CAUSE_LLC_FRMR_COND_REEST #endif #ifndef LLGMM_ERRCS_FRMR_RECEIVED #define LLGMM_ERRCS_FRMR_RECEIVED CAUSE_LLC_FRMR_RECEIVED #endif #ifndef LLGMM_ERRCS_L3_REEST #define LLGMM_ERRCS_L3_REEST CAUSE_LLC_L3_REEST #endif #ifndef LLGMM_ERRCS_MULT_ASS_TLLI #define LLGMM_ERRCS_MULT_ASS_TLLI CAUSE_LLC_MULT_ASS_TLLI #endif #ifndef LLGMM_ERRCS_NO_PEER_RES #define LLGMM_ERRCS_NO_PEER_RES CAUSE_LLC_NO_PEER_RES #endif #ifndef LLGMM_ERRCS_PEER_BUSY_REEST #define LLGMM_ERRCS_PEER_BUSY_REEST CAUSE_LLC_PEER_BUSY_REEST #endif #ifndef LLGMM_ERRCS_PEER_REEST #define LLGMM_ERRCS_PEER_REEST CAUSE_LLC_PEER_REEST #endif #ifndef LLGMM_ERRCS_SABM_NO_PEER_RES #define LLGMM_ERRCS_SABM_NO_PEER_RES CAUSE_LLC_SABM_NO_PEER_RES #endif #ifndef LLGMM_ERRCS_XID_NO_PEER_RE #define LLGMM_ERRCS_XID_NO_PEER_RES CAUSE_LLC_XID_NO_PEER_RES #endif #ifndef LLGMM_ERRCS_DM0_RECEIVED_REEST #define LLGMM_ERRCS_DM0_RECEIVED_REEST CAUSE_LLC_DM0_RECEIVED_REEST #endif #ifndef LL_ERRCS_NO_PEER_RES #define LL_ERRCS_NO_PEER_RES CAUSE_LLC_NO_PEER_RES #endif #ifndef LL_ERRCS_INVALID_XID #define LL_ERRCS_INVALID_XID CAUSE_LLC_INVALID_XID #endif #ifndef LL_PEAK_SUB #define LL_PEAK_SUB PS_PEAK_SUB #endif #ifndef LL_RELCS_DM_RECEIVED #define LL_RELCS_DM_RECEIVED CAUSE_LLC_DM_RECEIVED #endif #ifndef LL_RELCS_INVALID_XID #define LL_RELCS_INVALID_XID CAUSE_LLC_INVALID_XID #endif #ifndef LL_RELCS_NORMAL #define LL_RELCS_NORMAL CAUSE_LLC_NORMAL_REL #endif #ifndef LL_RELCS_NO_PEER_RES #define LL_RELCS_NO_PEER_RES CAUSE_LLC_NO_PEER_RES #endif #ifndef LL_DELAY_SUB #define LL_DELAY_SUB PS_DELAY_SUB #endif #ifndef LL_MEAN_SUB #define LL_MEAN_SUB PS_MEAN_SUB #endif #ifndef LL_NO_REL #define LL_NO_REL PS_NO_REL #endif #ifndef LL_PRECED_SUB #define LL_PRECED_SUB PS_PRECED_SUB #endif #ifndef LL_RLC_PROT #define LL_RLC_PROT PS_RLC_PROT #endif #ifndef LL_SAPI_1 #define LL_SAPI_1 PS_SAPI_1 #endif #ifndef LL_SAPI_3 #define LL_SAPI_3 PS_SAPI_3 #endif #ifndef LL_SAPI_5 #define LL_SAPI_5 PS_SAPI_5 #endif #ifndef LL_SAPI_7 #define LL_SAPI_7 PS_SAPI_7 #endif #ifndef LL_SAPI_9 #define LL_SAPI_9 PS_SAPI_9 #endif #ifndef LL_SAPI_11 #define LL_SAPI_11 PS_SAPI_11 #endif #ifndef LL_RADIO_PRIO_1 #define LL_RADIO_PRIO_1 PS_RADIO_PRIO_1 #endif #ifndef LL_TLLI_INVALID #define LL_TLLI_INVALID PS_TLLI_INVALID #endif #ifndef GRLC_RADIO_PRIO_1 #define GRLC_RADIO_PRIO_1 PS_RADIO_PRIO_1 #endif #ifndef GRLC_PEAK_SUB #define GRLC_PEAK_SUB PS_PEAK_SUB #endif #ifndef T_desc_list3 #define T_desc_list3 T_LL_desc_list3 #endif #endif /* LL_2to1 */ /* --------------------------------------------------------------------------------- */ /* remove traces */ #ifndef _SIMULATION_ #ifdef GET_STATE #undef GET_STATE #define GET_STATE(P) (ENTITY_DATA->P state) #endif #endif /* _SIMULATION_ */ /* --------------------------------------------------------------------------------- */ #ifdef TRACE_EVE #define TRACE_0_INFO(s) TRACE_EVENT ("Info: " s) #define TRACE_1_INFO(s,p1) TRACE_EVENT_P1("Info: " s,p1) #define TRACE_2_INFO(s,p1,p2) TRACE_EVENT_P2("Info: " s,p1,p2) #define TRACE_3_INFO(s,p1,p2,p3) TRACE_EVENT_P3("Info: " s,p1,p2,p3) #define TRACE_4_INFO(s,p1,p2,p3,p4) TRACE_EVENT_P4("Info: " s,p1,p2,p3,p4) #else #define TRACE_0_INFO(s) #define TRACE_1_INFO(s,p1) #define TRACE_2_INFO(s,p1,p2) #define TRACE_3_INFO(s,p1,p2,p3) #define TRACE_4_INFO(s,p1,p2,p3,p4) #endif #ifdef TRACE_PRIM #define TRACE_0_PARA(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s) #define TRACE_1_PARA(s,p1) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1) #define TRACE_2_PARA(s,p1,p2) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1,p2) #define TRACE_3_PARA(s,p1,p2,p3) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1,p2,p3) #define TRACE_4_PARA(s,p1,p2,p3,p4) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1,p2,p3,p4) #define TRACE_0_OUT_PARA(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s) #define TRACE_1_OUT_PARA(s,p1) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1) #define TRACE_2_OUT_PARA(s,p1,p2) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1,p2) #define TRACE_3_OUT_PARA(s,p1,p2,p3) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1,p2,p3) #define TRACE_4_OUT_PARA(s,p1,p2,p3,p4) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1,p2,p3,p4) #define TRACE_PRIM_FROM(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "Pdir: " s) #define TRACE_PRIM_TO(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "Pdir: " s) #else #define TRACE_0_PARA(s) #define TRACE_1_PARA(s,p1) #define TRACE_2_PARA(s,p1,p2) #define TRACE_3_PARA(s,p1,p2,p3) #define TRACE_4_PARA(s,p1,p2,p3,p4) #define TRACE_0_OUT_PARA(s) #define TRACE_1_OUT_PARA(s,p1) #define TRACE_2_OUT_PARA(s,p1,p2) #define TRACE_3_OUT_PARA(s,p1,p2,p3) #define TRACE_4_OUT_PARA(s,p1,p2,p3,p4) #define TRACE_PRIM_FROM(s) #define TRACE_PRIM_TO(s) #endif /* --------------------------------------------------------------------------------- */ /* * The following macro is similar to PFREE_DESC2. Instead of doing * a PFREE(P) it does a MFREE(p). This macro is used to free CCI primitives * which are removed from CCI SAP and added into this header file. */ #define MFREE_PRIM_DESC2(p) { MFREE_DESC2 ((p)->desc_list2.first); \ MFREE ((p)); \ } /* * The following macro is similar to PFREE_DESC. Instead of doing * a PFREE(P) it does a MFREE(p). This macro is used to free CCI primitives * which are removed from CCI SAP and added into this header file. */ #define MFREE_PRIM_DESC(p) { MFREE_DESC ((p)->desc_list.first); \ MFREE ((p)); \ } /* * defines the user of the vsi interface */ #define VSI_CALLER LLC_handle, #define VSI_CALLER_SINGLE LLC_handle /* * Macros */ /* * Switch all LLC services with multiple incarnations to use the incarnation * for the given SAPI. Current sapi is stored and all LLC layer parameters * with multiple incarnations are switched to use the incarnation for the * given SAPI. */ #define SWITCH_LLC(s) llc_data->current_sapi = s; \ SWITCH_PARAM (iov_i, IMAP(s)); \ SWITCH_PARAM (n200, UIMAP(s)); \ SWITCH_PARAM (n201_u, UIMAP(s)); \ SWITCH_PARAM (n201_i, IMAP(s)); \ SWITCH_PARAM (md, IMAP(s)); \ SWITCH_PARAM (mu, IMAP(s)); \ SWITCH_PARAM (kd, IMAP(s)); \ SWITCH_PARAM (ku, IMAP(s)); \ SWITCH_PARAM (requested_l3_xid, IMAP(s)); \ SWITCH_SERVICE (llc, sapi, UIMAP(s)); \ SWITCH_SERVICE (llc, u, UIMAP(s)); \ SWITCH_SERVICE (llc, itx, IMAP(s)); \ SWITCH_SERVICE (llc, irx, IMAP(s)); \ SWITCH_SERVICE (llc, uitx, UIMAP(s)); \ SWITCH_SERVICE (llc, uirx, UIMAP(s)); \ SWITCH_SERVICE (llc, t200, UIMAP(s)); /* * Switch service s of entity e to use incarnation i. */ #define SWITCH_SERVICE(e,s,i) e##_data->##s = &(##e##_data->##s##_base[i]); /* * Switch LLC layer parameter p to incarnation i. */ #define SWITCH_PARAM(p,i) llc_data->##p = &(llc_data->##p##_base[i]); /* * Map SAPI to incarnation, for either acknowledged (4 incarnations) or * unacknowledged operation (6 incarnations) */ #ifdef LL_2to1 #define IMAP(s) (s == PS_SAPI_3 ? 0 : \ s == PS_SAPI_5 ? 1 : \ s == PS_SAPI_9 ? 2 : \ s == PS_SAPI_11? 3 : 0) #define UIMAP(s) (s == PS_SAPI_1 ? 0 : \ s == PS_SAPI_3 ? 1 : \ s == PS_SAPI_5 ? 2 : \ s == PS_SAPI_7 ? 3 : \ s == PS_SAPI_9 ? 4 : \ s == PS_SAPI_11? 5 : 0) #else #define IMAP(s) (s == LL_SAPI_3 ? 0 : \ s == LL_SAPI_5 ? 1 : \ s == LL_SAPI_9 ? 2 : \ s == LL_SAPI_11? 3 : 0) #define UIMAP(s) (s == LL_SAPI_1 ? 0 : \ s == LL_SAPI_3 ? 1 : \ s == LL_SAPI_5 ? 2 : \ s == LL_SAPI_7 ? 3 : \ s == LL_SAPI_9 ? 4 : \ s == LL_SAPI_11? 5 : 0) #endif /* * Add octet size of XID parameter P to variable V if the parameter is tagged. */ #define ADD_IF_TAGGED(V,P) \ if (llc_data->u->xid_tag & (0x00000001L << P)) \ { \ V += P##_LEN + P##_HDR_LEN; \ } /* * Tag XID parameter if requested to negotiate */ #define TAG_IF_REQUESTED(V,P) \ if (llc_data->##V##valid) \ { \ llc_data->u->xid_tag |= (0x00000001L << P); \ } /* * Tag XID parameter if requested to negotiate and sense of negotiation fits */ #define TAG_IF_REQUESTED_RSP(S,V,P) \ if (llc_data->u->requested_xid.##V##.valid) \ { \ if (llc_data->decoded_xid.##V##.valid) \ { \ /* simple add parameter. Sense of negotiation is already checked */ \ llc_data->u->xid_tag |= (0x00000001L << P); \ } \ else \ { \ /* Sense of negotiation compared with current values */ \ if (llc_data->u->requested_xid.##V##.value S *(llc_data->##V)) \ { \ llc_data->u->xid_tag |= (0x00000001L << P); \ } \ } \ } /* * Timer values are negotiated in units of 0.1 seconds but internally stored * in milliseconds. Therefore a conversion must be done with each XID * negotiation of timer values. */ #define XID_TIMER_CONVERSION 100 #define XID2INT(l) (l * XID_TIMER_CONVERSION) #define INT2XID(l) (l / XID_TIMER_CONVERSION) /* * Timer start- and stop macros for LLC */ #define TIMERSTART(t,d) itx_##t##_start((d)) #define TIMERSTOP(t) itx_##t##_stop() /* * Number of service incarnations (LLME, TX, and RX have only one incarnation) */ #define ACKNOWLEDGED_INC 4 #define UNACKNOWLEDGED_INC 6 #define MAX_SAPI_INC 6 #define U_NUM_INC UNACKNOWLEDGED_INC #define ITX_NUM_INC ACKNOWLEDGED_INC #define IRX_NUM_INC ACKNOWLEDGED_INC #define UITX_NUM_INC UNACKNOWLEDGED_INC #define UIRX_NUM_INC UNACKNOWLEDGED_INC #define T200_NUM_INC UNACKNOWLEDGED_INC #define T201_NUM_INC ACKNOWLEDGED_INC /* * Constants */ /* * Value constants for attached_counter */ #define CCI_NO_ATTACHE (0x0) /* no entity/service is attached to the primitive */ /* * Value constants for fcs_check */ #define CCI_FCS_PASSED (0x0) /* FCS check has been successfully passed */ #define CCI_FCS_FAILED (0x1) /* FCS check has been failed */ /* * Value constants for pm */ #define CCI_PM_UNPROTECTED (0x0) /* FCS covers frame header and information fields */ #define CCI_PM_PROTECTED (0x1) /* FCS covers frame header field and first N202 octets of information field */ /* * Value constants for ciphering_algorithm */ #define CCI_CIPHER_NO_ALGORITHM (0x0) /* frame shall not be ciphered */ #define CCI_CIPHER_GPRS_A5_1 (0x1) /* frame shall be ciphered using algorithm GPRS A5/1 */ #define CCI_CIPHER_GPRS_A5_2 (0x2) /* frame shall be ciphered using algorithm GPRS A5/2 */ /* * Value constants for direction */ #define CCI_DIRECTION_UPLINK (0x0) /* direction of LLC frame transmission is MS to SGSN */ #define CCI_DIRECTION_DOWNLINK (0x1) /* direction of LLC frame transmission is SGSN to MS */ /* * Bitoffset for encoding/decoding */ #define ENCODE_OFFSET 0 /* * C/R bit */ #define SGSN_COMMAND 1 #define SGSN_RESPONSE 0 #define MS_COMMAND 0 #define MS_RESPONSE 1 /* * Size definitions for common U frames (in octets and in bits). * Define only the header of the frame. FCS_SIZE will be added when the FCS * is calculated! */ #define U_HDR_SIZE 2 #define U_HDR_SIZE_BITS (U_HDR_SIZE * 8) #define FCS_SIZE 3 #define FCS_SIZE_BITS (FCS_SIZE * 8) #ifdef REL99 #define U_NULL_SIZE (U_HDR_SIZE) #define U_NULL_SIZE_BITS (U_NULL_SIZE * 8) #endif /* REL99 */ #define U_DISC_SIZE (U_HDR_SIZE) #define U_DISC_SIZE_BITS (U_DISC_SIZE * 8) #define U_DM_SIZE (U_HDR_SIZE) #define U_DM_SIZE_BITS (U_DM_SIZE * 8) #define U_FRMR_INFO_SIZE 10 #define U_FRMR_SIZE (U_HDR_SIZE + U_FRMR_INFO_SIZE) #define U_FRMR_SIZE_BITS (U_FRMR_SIZE * 8) /* * Masks and IDs for the different frame formats. Bitwise AND *_MASK with * the first octet of the control field must result in *_ID. */ #define I_FRAME_MASK 0x80 #define S_FRAME_MASK 0xC0 #define UI_FRAME_MASK 0xE0 #define U_FRAME_MASK 0xE0 #define I_FRAME_ID 0x00 #define S_FRAME_ID 0x80 #define UI_FRAME_ID 0xC0 #define U_FRAME_ID 0xE0 /* * Number of octets that must be contained in a valid control field of a frame. */ #define I_CTRL_OCTETS 3 #define S_CTRL_OCTETS 2 #define UI_CTRL_OCTETS 2 #define U_CTRL_OCTETS 1 /* * Minimum number of octets that must be contained in a frame to access * the complete control field. */ #define CTRL_MIN_OCTETS 2 #define I_CTRL_MIN_OCTETS 4 #define S_CTRL_MIN_OCTETS 3 #define UI_CTRL_MIN_OCTETS 3 #define U_CTRL_MIN_OCTETS 2 /* * Minimum number of octets that must be contained in a valid frame, excluding * the FCS field. */ #define I_FRAME_MIN_OCTETS_WITHOUT_FCS 5 #define S_FRAME_MIN_OCTETS_WITHOUT_FCS 3 #define UI_FRAME_MIN_OCTETS_WITHOUT_FCS 3 #define U_FRAME_MIN_OCTETS_WITHOUT_FCS 2 /* * Minimum number of octets that must be contained in a valid frame. */ #define FRAME_MIN_OCTETS 5 #define I_FRAME_MIN_OCTETS 8 #define S_FRAME_MIN_OCTETS 6 #define UI_FRAME_MIN_OCTETS 6 #define U_FRAME_MIN_OCTETS 5 #define U_FRAME_FRMR_INFO_OCTETS U_FRMR_INFO_SIZE #define S_FRAME_SACK_MIN_CTRL_OCTETS 1 #define S_FRAME_SACK_MAX_CTRL_OCTETS 32 /* * I frame and S frame commands/responses (bits S1, S2). */ #define I_FRAME_RR 0x00 #define I_FRAME_ACK 0x01 #define I_FRAME_RNR 0x02 #define I_FRAME_SACK 0x03 /* * U frame commands/responses (bits M4, M3, M2, M1). */ #ifdef REL99 #define U_FRAME_NULL 0x00 #endif /*REL99*/ #define U_FRAME_DM 0x01 #define U_FRAME_DISC 0x04 #define U_FRAME_UA 0x06 #define U_FRAME_SABM 0x07 #define U_FRAME_FRMR 0x08 #define U_FRAME_XID 0x0B /* * Reasons of frame rejection condition. The lower nibble conforms * to W4-W1 in the FRMR response frame. */ #define FRMR_W1 0x01 #define FRMR_W2 0x02 #define FRMR_W3 0x04 #define FRMR_W4 0x08 /* * !!!!!asap <R.LLC.XCEPTION.A.010> "W1 bit: Bit W3 shall be set to 1 in * conjunction with this bit." Is that always the case? */ #define FRMR_INCORRECT_LENGTH FRMR_W1 #define FRMR_INCORRECT_LENGTH_ABM (FRMR_W1 | FRMR_W4) #define FRMR_EXCEEDS_N201 FRMR_W2 #define FRMR_EXCEEDS_N201_ABM (FRMR_W2 | FRMR_W4) #define FRMR_UNDEFINED_CTRL FRMR_W3 #define FRMR_UNDEFINED_CTRL_ABM (FRMR_W3 | FRMR_W4) #define FRMR_CTRL_LENGTH_UNKNOWN 0x00 /* * Maximum value of LLC sequence numbers and state variables: * N(S), N(R), V(S), V(R), ... */ #define MAX_SEQUENCE_NUMBER 511 /* * UITX_*_QUEUE_SIZE defines the maximum number of frames for the various * UITX service incarnations (depeding on SAPI). UITX is the only service * which is limited with uplink flow control. Enough memory must be present * for all other services (U, ITX). U requires a maximum of 2 simultaneously * stored frames per SAPI: the first being a received response to a * previously sent command, and the second being a command which is to be sent * directly afterwards. */ #define UITX_1_QUEUE_SIZE 10 #define UITX_3_QUEUE_SIZE 1 #define UITX_5_QUEUE_SIZE 1 #define UITX_7_QUEUE_SIZE 1 #define UITX_9_QUEUE_SIZE 1 #define UITX_11_QUEUE_SIZE 1 #define ITX_3_QUEUE_SIZE 1 #define ITX_5_QUEUE_SIZE 1 #define ITX_9_QUEUE_SIZE 1 #define ITX_11_QUEUE_SIZE 1 /* * Because of the lack of flow control between GRLC and LLC, it is possible, * that LLC recieve frames from GRLC, but can not forward them to the higher * layers. The following constants define the number of UI frames to buffer * per SAPI until we get an LL_GETUNITDATA_REQ */ #define UIRX_QUEUE_SIZE 32 /* * The number of queued I-frames in ITX is limited to the windowsize ku. * If only ku frames are queued and we got an acknowledge for this, LLC * would have no more frames to send. The following variable defines a * number of additional frames to buffer. */ #ifdef _SIMULATION_ #define ITX_ADD_QUEUE_SIZE 8 #else #define ITX_ADD_QUEUE_SIZE 1 #endif /* * Maximum supported LLC parameter which should be negotiated initial. * Only values which are different to the default should be defined here. * In future this value should be read from the flash file system. */ #define N201_U_SUPPORTED 520 #define N201_I_SUPPORTED 520 #define KD_KD_SUPPORTED 64 #if defined (LL_2to1) || defined (REL99) #define KD_KU_SUPPORTED 16 #else #define KD_KU_SUPPORTED 8 #endif #define KD_MD_SUPPORTED 0 #define KD_MU_SUPPORTED 0 /* * Service definitions. Used to access service data with GET/SET_STATE. * * Services with multiple incarnation have to be defined as xxx-> * Services with only one incarnation have to be defined as xxx. */ #define LLME llme. #define SAPI sapi-> #define U u-> #define ITX itx-> #define IRX irx-> #define UITX uitx-> #define UIRX uirx-> #define T200 t200-> #define T201 t201-> #define TX tx. #define RX rx. /* #ifndef NTRACE*/ /* * These defintions are only needed for debugging purposes (!NTRACE). */ /* * The following definitions are necessary for the state initialisation of * services with the INIT_STATE() macro. */ #define U_0 U #define U_1 U #define U_2 U #define U_3 U #define U_4 U #define U_5 U #define ITX_0 ITX #define ITX_1 ITX #define ITX_2 ITX #define ITX_3 ITX #define IRX_0 IRX #define IRX_1 IRX #define IRX_2 IRX #define IRX_3 IRX #define UITX_0 UITX #define UITX_1 UITX #define UITX_2 UITX #define UITX_3 UITX #define UITX_4 UITX #define UITX_5 UITX #define UIRX_0 UIRX #define UIRX_1 UIRX #define UIRX_2 UIRX #define UIRX_3 UIRX #define UIRX_4 UIRX #define UIRX_5 UIRX #define T200_0 T200 #define T200_1 T200 #define T200_2 T200 #define T200_3 T200 #define T200_4 T200 #define T200_5 T200 #define T201_0 T201 #define T201_1 T201 #define T201_2 T201 #define T201_3 T201 /* * Service name definitions for trace purposes. The service abbrevation * (e.g. LLME) has to be the same as above for the service definitions. */ #define SERVICE_NAME_LLME "LLME" #define SERVICE_NAME_U_0 "U_1" #define SERVICE_NAME_U_1 "U_3" #define SERVICE_NAME_U_2 "U_5" #define SERVICE_NAME_U_3 "U_7" #define SERVICE_NAME_U_4 "U_9" #define SERVICE_NAME_U_5 "U_11" #define SERVICE_NAME_ITX_0 "ITX_3" #define SERVICE_NAME_ITX_1 "ITX_5" #define SERVICE_NAME_ITX_2 "ITX_9" #define SERVICE_NAME_ITX_3 "ITX_11" #define SERVICE_NAME_IRX_0 "IRX_3" #define SERVICE_NAME_IRX_1 "IRX_5" #define SERVICE_NAME_IRX_2 "IRX_9" #define SERVICE_NAME_IRX_3 "IRX_11" #define SERVICE_NAME_UITX_0 "UITX_1" #define SERVICE_NAME_UITX_1 "UITX_3" #define SERVICE_NAME_UITX_2 "UITX_5" #define SERVICE_NAME_UITX_3 "UITX_7" #define SERVICE_NAME_UITX_4 "UITX_9" #define SERVICE_NAME_UITX_5 "UITX_11" #define SERVICE_NAME_UIRX_0 "UIRX_1" #define SERVICE_NAME_UIRX_1 "UIRX_3" #define SERVICE_NAME_UIRX_2 "UIRX_5" #define SERVICE_NAME_UIRX_3 "UIRX_7" #define SERVICE_NAME_UIRX_4 "UIRX_9" #define SERVICE_NAME_UIRX_5 "UIRX_11" #define SERVICE_NAME_T200_0 "T200_1" #define SERVICE_NAME_T200_1 "T200_3" #define SERVICE_NAME_T200_2 "T200_5" #define SERVICE_NAME_T200_3 "T200_7" #define SERVICE_NAME_T200_4 "T200_9" #define SERVICE_NAME_T200_5 "T200_11" #define SERVICE_NAME_TX "TX" #define SERVICE_NAME_RX "RX" /* #endif !NTRACE */ /* * Timer definitions. For each timer a BASE and MAX value is defined. */ #define TIMER_T200_BASE (0) #define TIMER_T200_1 (TIMER_T200_BASE) #define TIMER_T200_3 (TIMER_T200_BASE+1) #define TIMER_T200_5 (TIMER_T200_BASE+2) #define TIMER_T200_7 (TIMER_T200_BASE+3) #define TIMER_T200_9 (TIMER_T200_BASE+4) #define TIMER_T200_11 (TIMER_T200_BASE+5) #define TIMER_T200_MAX (TIMER_T200_11) #define TIMER_T201_BASE (TIMER_T200_MAX+1) #define TIMER_T201_3 (TIMER_T201_BASE) #define TIMER_T201_5 (TIMER_T201_BASE+1) #define TIMER_T201_9 (TIMER_T201_BASE+2) #define TIMER_T201_11 (TIMER_T201_BASE+3) #define TIMER_T201_MAX (TIMER_T201_11) #define TIMER_MAX (TIMER_T201_MAX) #define TIMER_NUM (TIMER_MAX+1) /* * State definitions for each service. */ #define LLME_TLLI_UNASSIGNED 1 #define LLME_TLLI_ASSIGNED 2 #define LLME_TLLI_ASSIGNED_SUSPENDED 3 #define U_TLLI_UNASSIGNED 1 #define U_ADM 2 #define U_LOCAL_ESTABLISHMENT 3 #define U_REMOTE_ESTABLISHMENT 4 #define U_ABM 5 #define U_LOCAL_RELEASE 6 #define U_ESTABLISH_RES_PENDING 7 #define ITX_TLLI_UNASSIGNED 1 #define ITX_TLLI_ASSIGNED 2 #define ITX_ABM 3 #define ITX_ABM_PEER_BUSY 4 #define IRX_TLLI_UNASSIGNED 1 #define IRX_TLLI_ASSIGNED 2 #define IRX_ABM 3 #define IRX_ABM_BUSY 4 #define UITX_TLLI_UNASSIGNED_NOT_READY 1 #define UITX_TLLI_UNASSIGNED_READY 2 #define UITX_ADM_NOT_READY 3 #define UITX_ADM_READY 4 #define UIRX_TLLI_UNASSIGNED_NOT_READY 1 #define UIRX_TLLI_UNASSIGNED_READY 2 #define UIRX_ADM_NOT_READY 3 #define UIRX_ADM_READY 4 #define T200_TLLI_UNASSIGNED 1 #define T200_RESET 2 #define T200_RUNNING 3 #define TX_TLLI_UNASSIGNED_NOT_READY 1 #define TX_TLLI_UNASSIGNED_READY 2 #define TX_TLLI_ASSIGNED_NOT_READY 3 #define TX_TLLI_ASSIGNED_READY 4 #define RX_TLLI_UNASSIGNED 1 #define RX_TLLI_ASSIGNED 2 #ifndef TI_PS_OP_CIPH_DRIVER /* * user defined constants */ #define CIPH_SIZE_CK (0x10) #define CIPH_MAX_ELEM (0x14) #define CIPH_MAX_HEADER_SIZE (0x25) #define CIPH_N202 (0x4) /*==== TYPES ======================================================*/ /* * The following definitions was originally generated by CCD. The definitions are not used as * primitive definitions anymore, only for SNDCP internal usage. */ /* --------------------------------------------------------------------------------- */ /* * enum to Variable algo * Ciphering algorithm. * CCDGEN:WriteEnum_Count==2834 */ #ifndef __T_CIPH_algo__ #define __T_CIPH_algo__ typedef enum { CIPH_EA0 = 0x0, /* No encryption */ CIPH_EA1 = 0x1, /* Frame shall be ciphered using algorithm EA1 */ CIPH_EA2 = 0x2, /* Frame shall be ciphered using algorithm EA2 */ CIPH_EA3 = 0x3 /* Frame shall be ciphered using algorithm EA3 */ }T_CIPH_algo; #endif /* * enum to Variable direction * DIRECTION parameter * CCDGEN:WriteEnum_Count==2836 */ #ifndef __T_CIPH_direction__ #define __T_CIPH_direction__ typedef enum { CIPH_UPLINK_DIR = 0x0, /* See [3G 33.102] */ CIPH_DOWNLINK_DIR = 0x1 /* See [3G 33.102] */ }T_CIPH_direction; #endif /* * enum to Variable status * Status of the ciphering process * CCDGEN:WriteEnum_Count==2853 */ #ifndef __T_CIPH_status__ #define __T_CIPH_status__ typedef enum { CIPH_CIPH_FAIL = 0x0, /* Ciphering successful */ CIPH_CIPH_PASS = 0x1, /* Ciphering failed */ CIPH_CIPH_BUSY = 0x2, /* Ongoing ciphering */ CIPH_FCS_ERROR = 0x3 /* FCS error */ }T_CIPH_status; #endif /* * enum to Variable pm * Protected or unprotected mode * CCDGEN:WriteEnum_Count==2840 */ #ifndef __T_CIPH_pm__ #define __T_CIPH_pm__ typedef enum { CIPH_PM_UNPROTECTED = 0x0, /* FCS covers frame header field and first N202 octets of information field */ CIPH_PM_PROTECTED = 0x1 /* FCS covers frame header and information fields */ }T_CIPH_pm; #endif #ifndef __T_CIPH_ck__ #define __T_CIPH_ck__ /* * Ciphering key. * CCDGEN:WriteStruct_Count==13956 */ typedef struct { U8 ck_element[CIPH_SIZE_CK]; /*< 0: 16> T_CIPH_ck_element, Ciphering key element */ } T_CIPH_ck; #endif #ifndef __T_CIPH_init_cipher_req_parms__ #define __T_CIPH_init_cipher_req_parms__ /* * Ciphering algorithm initialisation parameters. * CCDGEN:WriteStruct_Count==13968 */ typedef struct { U8 algo; /*< 0: 1> T_CIPH_algo, Ciphering algorithm. */ U8 direction; /*< 1: 1> T_CIPH_direction, DIRECTION parameter */ U8 zzz_align0; /*< 2: 1> alignment */ U8 zzz_align1; /*< 3: 1> alignment */ T_CIPH_ck *ptr_ck; /*< 4: 4> pointer to Ciphering key. */ } T_CIPH_init_cipher_req_parms; #endif #ifndef __T_CIPH_gprs_parameters__ #define __T_CIPH_gprs_parameters__ /* * Structure containing LLC parameters * CCDGEN:WriteStruct_Count==13976 */ typedef struct { U8 pm; /*< 0: 1> T_CIPH_pm, Protected or unprotected mode */ U8 zzz_align0; /*< 1: 1> alignment */ U16 header_size; /*< 2: 2> T_CIPH_header_size, Frame header size */ U32 ciphering_input; /*< 4: 4> frame-dependent ciphering input */ U32 threshold; /*< 8: 4> T_CIPH_threshold, Threshold parameter */ } T_CIPH_gprs_parameters; #endif #ifndef __T_CIPH_umts_parameters__ #define __T_CIPH_umts_parameters__ /* * Structure containing umts parameters * CCDGEN:WriteStruct_Count==13980 */ typedef struct { U8 bearer; /*< 0: 1> T_CIPH_bearer, BEARER parameter */ U8 zzz_align0; /*< 1: 1> alignment */ U8 zzz_align1; /*< 2: 1> alignment */ U8 zzz_align2; /*< 3: 1> alignment */ U32 count_c; /*< 4: 4> COUNT-C parameter */ U8 dest_bit_offset; /*< 8: 1> T_CIPH_dest_bit_offset, Bit offset */ U8 org_bit_offset; /*< 9: 1> T_CIPH_org_bit_offset, Bit offset */ U8 zzz_align3; /*< 10: 1> alignment */ U8 zzz_align4; /*< 11: 1> alignment */ U32 threshold; /*< 12: 4> T_CIPH_threshold, Threshold parameter */ } T_CIPH_umts_parameters; #endif #ifndef __T_CIPH_in_data__ #define __T_CIPH_in_data__ /* * Structure containing length and pointer to the data * CCDGEN:WriteStruct_Count==13984 */ typedef struct { U16 len; /*< 0: 2> Length of buffer */ U8 zzz_align0; /*< 2: 1> alignment */ U8 zzz_align1; /*< 3: 1> alignment */ U32 buf; /*< 4: 4> Pointer to the data in buffer */ } T_CIPH_in_data; #endif /* * Stucture containing length and pointer to the data * CCDGEN:WriteStruct_Count==13988 */ #ifndef __T_CIPH_out_data__ #define __T_CIPH_out_data__ typedef T_CIPH_in_data T_CIPH_out_data; #endif #ifndef __T_CIPH_cipher_req_parms__ #define __T_CIPH_cipher_req_parms__ /* * Ciphering algorithm parameters. * CCDGEN:WriteStruct_Count==13990 */ typedef union { T_CIPH_gprs_parameters gprs_parameters; /*< 0: 12> Structure containing LLC parameters */ T_CIPH_umts_parameters umts_parameters; /*< 0: 16> Structure containing umts parameters */ } T_CIPH_cipher_req_parms; #endif #ifndef __T_CIPH_in_data_list__ #define __T_CIPH_in_data_list__ /* * Structure containing a list of in_data elements * CCDGEN:WriteStruct_Count==13994 */ typedef struct { T_CIPH_in_data *ptr_in_data; /*< 0: 4> pointer to Structure containing length and pointer to the data */ U16 c_in_data; /*< 4: 2> Number of elements */ U8 zzz_align0; /*< 6: 1> alignment */ U8 zzz_align1; /*< 7: 1> alignment */ } T_CIPH_in_data_list; #endif #endif /* TI_PS_OP_CIPH_DRIVER */ /* --------------------------------------------------------------------------------- */ #ifndef __T_kc__ #define __T_kc__ typedef struct { U8 key[8]; /*< 0: 8> ciphering key content */ } T_kc; #endif #ifndef __T_CCI_CIPHER_REQ__ #define __T_CCI_CIPHER_REQ__ typedef struct { U8 pm; /*< 0: 1> protected mode */ U8 ciphering_algorithm; /*< 16: 1> ciphering algorithm */ U8 direction; /*< 17: 1> ciphering transfer direction */ U8 attached_counter; /*< 29: 1> attached to primitive data counter */ U32 ciphering_input; /*< 4: 4> frame-dependent ciphering input */ T_kc kc; /*< 8: 8> ciphering key */ U32 reference1; /*< 32: 4> frame reference number */ U16 header_size; /*< 36: 2> frame header size */ U8 zzz_align0; /*< 38: 1> alignment */ U8 zzz_align1; /*< 39: 1> alignment */ T_sdu sdu; /*< 40: ? > service data unit */ } T_CCI_CIPHER_REQ; #endif #ifndef __T_CCI_DECIPHER_REQ__ #define __T_CCI_DECIPHER_REQ__ typedef struct { U8 pm; /*< 0: 1> protected mode */ U8 ciphering_algorithm; /*< 1: 1> ciphering algorithm */ U8 direction; /*< 16: 1> ciphering transfer direction */ U8 zzz_align0; /*< 30: 1> alignment */ T_kc kc; /*< 4: 8> ciphering key */ U32 ciphering_input; /*< 12: 4> frame-dependent ciphering input */ U32 reference1; /*< 20: 4> frame reference number */ U32 reference2; /*< 24: 4> second frame reference number */ U16 header_size; /*< 28: 2> frame header size */ U8 zzz_align1; /*< 30: 1> alignment */ U8 zzz_align2; /*< 31: 1> alignment */ T_desc_list desc_list; /*< 32: ? > list of generic data descriptors */ } T_CCI_DECIPHER_REQ; #endif #ifndef __T_CCI_RESET_REQ__ #define __T_CCI_RESET_REQ__ typedef struct { U8 dummy; /*< 0: 1> no parameters */ } T_CCI_RESET_REQ; #endif #ifndef __T_CCI_CIPHER_DESC_REQ__ #define __T_CCI_CIPHER_DESC_REQ__ typedef struct { U8 pm; /*< 0: 1> protected mode */ U8 ciphering_algorithm; /*< 16: 1> ciphering algorithm */ U8 direction; /*< 17: 1> ciphering transfer direction */ U8 attached_counter; /*< 29: 1> attached to primitive data counter */ U32 ciphering_input; /*< 4: 4> frame-dependent ciphering input */ T_kc kc; /*< 8: 8> ciphering key */ U32 reference1; /*< 32: 4> frame reference number */ U16 header_size; /*< 36: 2> frame header size */ U8 zzz_align0; /*< 38: 1> alignment */ U8 zzz_align1; /*< 39: 1> alignment */ T_desc_list3 desc_list3; /*< 40: 8> List of generic data descriptors */ } T_CCI_CIPHER_DESC_REQ; #endif /* --------------------------------------------------------------------------------- */ /* * LLC global typedefs */ typedef UBYTE T_BIT_INT; typedef T_BIT_INT T_BIT; /* * T_FRAME_NUM must be unsigned! */ typedef USHORT T_FRAME_NUM; /* * FRAME_NUM_VALID(a, b, c) equal to ETSI: a <= b <= c */ #define FRAME_NUM_VALID(a,b,c) ( (((T_FRAME_NUM)((b)-(a)))%(MAX_SEQUENCE_NUMBER+1)) <= \ (((T_FRAME_NUM)((c)-(a)))%(MAX_SEQUENCE_NUMBER+1)) ) /* * FRAME_WIN_VALID(a, b, k) equal to ETSI: a < b + k */ #define FRAME_WIN_VALID(a,b,k) ( (((T_FRAME_NUM)((a)-(b)))%(MAX_SEQUENCE_NUMBER+1)) < (k) ) /* * FRAME_NUM_DISTANCE(a,b) equal to b - a for frame nums */ #define FRAME_NUM_DISTANCE(a,b) ((T_FRAME_NUM)((b)-(a))%(MAX_SEQUENCE_NUMBER+1)) typedef struct { UBYTE data[S_FRAME_SACK_MAX_CTRL_OCTETS]; } T_SACK_BITMAP; typedef enum { ABIT_NO_REQ, ABIT_SET_REQ } T_ABIT_REQ_TYPE; typedef enum { IQ_NO_FRAME, /* return code only */ IQ_NEW_FRAME, /* new in the queue */ IQ_RETR_FRAME, /* ITX - marked for retransmission */ IQ_W4ACK_FRAME, /* ITX - is send, but no ack up to now */ IQ_IS_ACK_FRAME /* ITX - is ack and waiting for to be next in sequence */ } T_IQ_STATUS; typedef enum { NS_EQUAL_VR, NS_NO_SEQUENCE_ERROR, NS_EQUAL_VR_PLUS_1, NS_IN_RANGE_VR_KU } T_LAST_NS_TYPE; typedef enum { I_FRAME = I_FRAME_ID, S_FRAME = S_FRAME_ID, UI_FRAME = UI_FRAME_ID, U_FRAME = U_FRAME_ID } T_PDU_TYPE; typedef enum { /* * The values are chosen to correspond with the Sx and Mx bits in the frame * control field. Thus these commands can be used to build the header of a * frame. * NOTE: * Some I and U frame commands have the same value. */ #ifdef REL99 U_NULL = U_FRAME_NULL, #endif /* REL99 */ I_RR = I_FRAME_RR, I_ACK = I_FRAME_ACK, I_RNR = I_FRAME_RNR, I_SACK = I_FRAME_SACK, U_SABM = U_FRAME_SABM, U_DISC = U_FRAME_DISC, U_UA = U_FRAME_UA, U_DM = U_FRAME_DM, U_FRMR = U_FRAME_FRMR, U_XID = U_FRAME_XID } T_COMMAND; typedef enum { NO_SERVICE, SERVICE_LLME, SERVICE_ITX, SERVICE_IRX, SERVICE_UITX, SERVICE_UIRX, SERVICE_U, SERVICE_TX, SERVICE_RX, SERVICE_T200 } T_SERVICE; typedef enum { PRIM_DATA, PRIM_UNITDATA, PRIM_REMOVED, NO_PRIM } T_PRIM_TYPE; typedef enum { EXPIRY_TIMED, EXPIRY_REQUESTED } T_EXPIRY_MODE_TYPE; /* * Don't use enum for SAPI, because that's larger in size than UBYTE. */ typedef UBYTE T_SAPI; #define SAPI_1 LL_SAPI_1 #define SAPI_2 LL_SAPI_INVALID #define SAPI_3 LL_SAPI_3 #define SAPI_4 LL_SAPI_INVALID #define SAPI_5 LL_SAPI_5 #define SAPI_6 LL_SAPI_INVALID #define SAPI_7 LL_SAPI_7 #define SAPI_8 LL_SAPI_INVALID #define SAPI_9 LL_SAPI_9 #define SAPI_10 LL_SAPI_INVALID #define SAPI_11 LL_SAPI_11 #define SAPI_12 LL_SAPI_INVALID #define SAPI_13 LL_SAPI_INVALID #define SAPI_14 LL_SAPI_INVALID #define SAPI_15 LL_SAPI_INVALID /* * Indicates which primitive to use after successful (re-)establishment: * LL_ESTABLISH_IND/CNF */ typedef UBYTE T_ESTABLISHMENT; #define IND_ESTABLISHMENT 1 #define CNF_ESTABLISHMENT 2 /* * Local TX transmit queue. * NOTE: * The ph_* variables must exactly match the types of T_GRLC_DATA_REQ / * T_GRLC_UNITDATA_REQ. */ typedef struct T_TX_QUEUE_ELEMENT { struct T_TX_QUEUE_ELEMENT *next; /* pointer to next element */ ULONG primitive; /* stored primitive */ ULONG reference; /* entry reference number */ T_PRIM_TYPE prim_type; /* primitive type */ UBYTE ph_sapi; /* primitive header: sapi */ ULONG ph_tlli; /* tlli */ UBYTE ph_grlc_qos_peak; /* grlc_qos.peak */ UBYTE ph_radio_prio; /* radio_prio */ UBYTE ph_cause; /* cause */ T_SERVICE rx_service; /* flow control service */ BOOL remove_frame; /* TRUE: frame has to remove */ #ifdef REL99 UBYTE ph_pkt_flow_id; /* packet flow identifier */ #endif /* REL99 */ } T_TX_QUEUE; typedef struct T_ITX_I_QUEUE_ENTRY { struct T_ITX_I_QUEUE_ENTRY *next; /* pointer to next element */ #ifdef LL_DESC T_LL_DESC_REQ* frame; /* pointer to L3 prim */ #else T_LL_DATA_REQ* frame; /* pointer to L3 prim */ #endif USHORT n_retr; /* retransmission counter */ T_IQ_STATUS status; /* status flag */ T_FRAME_NUM ns; /* send sequence number N(S) */ ULONG oc_i_tx; /* OC to use for this N(S) */ /* * Copy of original LL_DATA_REQ parameter for attached_counter handling */ #ifdef LL_2to1 T_PS_qos_r97 ll_qos; /* quality of service */ T_LL_reference1 reference; /* ciphering indicator */ #else T_ll_qos ll_qos; /* quality of service */ T_reference1 reference; /* ciphering indicator */ #endif #ifdef REL99 UBYTE pkt_flow_id; /*Packet Flow Identifier */ #endif /* REL99 */ #ifdef LL_DESC USHORT offset; /* Offset of buffer */ USHORT len; /* Length of buffer */ #else USHORT sdu_o_buf; /* Offset of SDU data */ USHORT sdu_l_buf; /* Length of SDU data */ #endif UBYTE radio_prio; /* Radio Priority */ UBYTE seg_pos; /* First and/or last seg? */ } T_ITX_I_QUEUE_ENTRY; typedef struct { struct T_ITX_I_QUEUE_ENTRY *first; /* pointer to first element */ USHORT entries; /* number of Queue enties */ } T_ITX_I_QUEUE; typedef struct T_ITX_S_QUEUE_ENTRY { struct T_ITX_S_QUEUE_ENTRY *next; /* pointer to next element */ T_COMMAND sx; /* Supervisiory command Sx */ T_ABIT_REQ_TYPE rt; /* A bit request flag */ T_FRAME_NUM nr; /* N(R) of command */ T_SACK_BITMAP bitmap; /* SACK bitmap */ } T_ITX_S_QUEUE_ENTRY; typedef struct T_IRX_QUEUE { struct T_IRX_QUEUE *next; /* pointer to next element */ T_LL_UNITDATA_IND* frame; /* pointer to L3 prim */ T_FRAME_NUM ns; /* received frame number N(S) */ } T_IRX_QUEUE; typedef struct T_UIRX_QUEUE { struct T_UIRX_QUEUE *next; /* pointer to next element */ T_LL_UNITDATA_IND* frame; /* pointer to L3 prim */ } T_UIRX_QUEUE; typedef struct /* T_XID_PARAMETERS */ { struct /* Version */ { BOOL valid; UBYTE value; } version; struct /* IOV-UI */ { BOOL valid; ULONG value; } iov_ui; struct /* IOV-I */ { BOOL valid; ULONG value; } iov_i; struct /* T200 */ { BOOL valid; USHORT value; } t200; struct /* N200 */ { BOOL valid; UBYTE value; } n200; struct /* N201-U */ { BOOL valid; USHORT value; } n201_u; struct /* N201-I */ { BOOL valid; USHORT value; } n201_i; struct /* mD */ { BOOL valid; USHORT value; } md; struct /* mU */ { BOOL valid; USHORT value; } mu; struct /* kD */ { BOOL valid; UBYTE value; } kd; struct /* kU */ { BOOL valid; UBYTE value; } ku; struct /* Reset */ { BOOL valid; } reset; } T_XID_PARAMETERS; typedef struct /* T_FFS_XID_PARAMETERS */ { struct /* T200 */ { BOOL valid; USHORT value; } t200[UNACKNOWLEDGED_INC]; struct /* N200 */ { BOOL valid; UBYTE value; } n200[UNACKNOWLEDGED_INC]; struct /* N201-U */ { BOOL valid; USHORT value; } n201_u[UNACKNOWLEDGED_INC]; struct /* N201-I */ { BOOL valid; USHORT value; } n201_i[ACKNOWLEDGED_INC]; struct /* mD */ { BOOL valid; USHORT value; } md[ACKNOWLEDGED_INC]; struct /* mU */ { BOOL valid; USHORT value; } mu[ACKNOWLEDGED_INC]; struct /* kD */ { BOOL valid; UBYTE value; } kd[ACKNOWLEDGED_INC]; struct /* kU */ { BOOL valid; UBYTE value; } ku[ACKNOWLEDGED_INC]; } T_FFS_XID_PARAMETERS; typedef struct /* T_LLME_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif } T_LLME_DATA; typedef struct /* T_U_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif /* * TLLI of current transaction (is set with incoming primitives, time-outs, * and signals with primitive payload). */ ULONG current_tlli; /* * Number of retransmissions per sent command frame. */ UBYTE retransmission_counter; /* * If LLC receives an release request from Layer 3 and is not able to confirm * the request immediately, release_requested has to be set to TRUE. */ UBYTE release_requested; /* * Send LL_ESTABLISH_IND/CNF after successful establishment. */ T_ESTABLISHMENT ind_cnf_establishment; /* * Indicates if XID command has been sent. */ BOOL xid_pending; /* * Indicates that an LL_XID_IND has been sent. */ BOOL ll_xid_resp_pending; /* * Reason of frame rejection condition. */ UBYTE frmr_reason; /* * Used to tag parameters for the next XID response. This is done by * setting the corresponding bit (with the definitions from llc_uf.h) to 1. * This variable is initialised by llme_init(), and with every call of * u_eval_xid(). */ ULONG xid_tag; /* * Tags parameters for further negotiation that have not been included in * the XID command but are included in the XID response. These parameters * have to be included in every XID response until the parameter has been * explicitly negotiated, either by responding to an XID command that * included the parameter, or by explicitly including the parameter * the next time an XID command is transmitted. * <R.LLC.XIDNEG_R.A.015> * This variable is initialised by llme_init(). */ ULONG xid_tag_negotiate; /* * Used to tag parameters that have actually been sent in the last command * or response frame. It is used for collision checks and the like. * This variable is initialised by llme_init(), and with every call of * u_insert_xid(). */ ULONG xid_tag_sent; /* * Structure to contain XID parameters that are requested to be negotiated. * Valid flags are initialised by llme_init(), and are being reset when * the parameter has explicitly been included in a response. */ T_XID_PARAMETERS requested_xid; } T_U_DATA; typedef struct /* T_ITX_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif BOOL tx_waiting; BOOL buffer_was_full; /* * I frame buffer size variables: Total length of * transmitted and not acknowlegded information fields. */ ULONG B_tx; /* * Local transmit queues for I- and S frames */ T_ITX_I_QUEUE i_queue; T_ITX_S_QUEUE_ENTRY *s_queue; /* * T201 Data */ T_ITX_I_QUEUE_ENTRY *t201_entry; USHORT n_pb_retr; } T_ITX_DATA; typedef struct /* T_IRX_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif /* * I frame buffer size variables: Total length of * stored information fields. */ ULONG B_rx; /* * Next frame number to forward to L3 */ T_FRAME_NUM vf; /* * L3 ready to receive a data indication flag */ BOOL ll_send_ready; T_LAST_NS_TYPE last_ns; T_IRX_QUEUE *queue; } T_IRX_DATA; typedef struct /* T_UITX_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif /* * Unacknowledged send sequence number */ T_FRAME_NUM vu; } T_UITX_DATA; typedef struct /* T_UIRX_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif /* * Bit field for received N(U) values, relative to V(UR). */ ULONG last_32_frames_bitfield; T_UIRX_QUEUE *queue; } T_UIRX_DATA; typedef struct /* T_T200_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif /* * Length of timer T200 in milliseconds (is negotiated in 0.1s!). * LLC layer parameter. */ T_TIME length; /* * The frame which is associated with the timer, the RLC/MAC cause of the * frame, and the service that started the timer. This is the t200_data * array of SDL. */ #ifdef LL_DESC T_LL_UNITDESC_REQ *frame; #else T_LL_UNITDATA_REQ *frame; #endif UBYTE cause; T_SERVICE originator; } T_T200_DATA; typedef struct /* T_TX_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif /* * Local transmit queue (single-linked dynamic list). */ T_TX_QUEUE *queue; /* * Counter of available space for UITX primitives in the queue. */ UBYTE queue_counter_itx[ITX_NUM_INC]; UBYTE queue_counter_uitx[UITX_NUM_INC]; } T_TX_DATA; typedef struct /* T_RX_DATA */ { UBYTE state; /* * Required for state traces. */ #ifndef NTRACE char *name; char *state_name; #endif } T_RX_DATA; typedef struct /* T_SAPI_DATA */ { /* * Unacknowledged receive sequence numbers (0..511) */ T_FRAME_NUM vur; T_FRAME_NUM last_vur; /* * Acknowledged mode frame numbers (0..511) */ T_FRAME_NUM vr; T_FRAME_NUM va; T_FRAME_NUM vs; /* * Binary overflow counters for acknowledged/unacknowledged mode and * uplink/downlink. These variables are initialised with llme_init(), * and the unacknowledged OCs are reset when XID reset has been received. */ ULONG oc_ui_tx; ULONG oc_ui_rx; ULONG oc_i_tx; ULONG oc_i_rx; /* * pbit_outstanding set to TRUE indicates that a frame with P bit set to 1 * is currently outstanding */ BOOL pbit_outstanding; } T_SAPI_DATA; typedef struct /* Layer 3 */ { BOOL valid; UBYTE length; #ifdef LL_2to1 UBYTE value[LL_MAX_L3_XID_LEN]; #else UBYTE value[LLC_MAX_L3_XID_LEN]; #endif } T_L3_XID; /* * CCI global typedefs */ typedef enum { CIPHER_REQ, DECIPHER_REQ, NO_REQ } T_CCI_PRIM_TYPE; /* CCI data base */ typedef struct /*T_FBS_SERVICE */ { UBYTE state; #ifndef NTRACE char *name; char *state_name; #endif USHORT volatile *cntl_reg; USHORT volatile *status_reg; USHORT volatile *status_irq_reg; USHORT volatile *conf_ul_reg1; USHORT volatile *conf_ul_reg2; USHORT volatile *conf_ul_reg3; USHORT volatile *conf_ul_reg4; USHORT volatile *conf_ul_reg5; USHORT volatile *conf_dl_reg1; USHORT volatile *conf_dl_reg2; USHORT volatile *conf_dl_reg3; USHORT volatile *conf_dl_reg4; USHORT volatile *conf_dl_reg5; USHORT volatile *kc_reg1; USHORT volatile *kc_reg2; USHORT volatile *kc_reg3; USHORT volatile *kc_reg4; USHORT volatile *fcs_ul_reg1; USHORT volatile *fcs_ul_reg2; USHORT volatile *fcs_dl_reg1; USHORT volatile *fcs_dl_reg2; #if (BOARD == 61 OR BOARD == 71) /* G-Sample or I-Sample */ USHORT volatile *switch_reg; #endif USHORT volatile *data16_reg; UBYTE volatile *data8_reg; #ifdef _GEA_SIMULATION_ UBYTE *simulated_reg; UBYTE *simulated_reg_buffer; #endif /*primitives should also be defined as global */ #ifdef LL_DESC T_CCI_CIPHER_DESC_REQ *cci_cipher_req; #else T_CCI_CIPHER_REQ *cci_cipher_req; #endif T_CCI_DECIPHER_REQ *cci_decipher_req; #ifndef TI_PS_OP_CIPH_DRIVER T_CIPH_init_cipher_req_parms ciph_params; BOOL initialized; #endif ULONG cci_freed_partition; BOOL cci_info_trace; } T_FBS_DATA; typedef struct /* T_LLC_DATA */ { /* * Indicates LLC is suspended or not (default). * This variable is initialised by llme_init(). */ BOOL suspended; /* * Indicates LLC that GRLC is suspended or not (default). * This variable is initialised by llme_init(). */ BOOL grlc_suspended; /* * Current SAPI number. This is used for outgoing primitives. It is set * with each external event, like an incoming primitive or a time-out. */ T_SAPI current_sapi; /* * TLLI New and TLLI Old. These are set by GMM via LLGMM_ASSIGN_REQ. * TLLI New is used for sending primitives (if the upper layer did not * already specify the TLLI). TLLI Old is currently unused. * Both variables are initialised by llme_init(). */ ULONG tlli_new; ULONG tlli_old; /* * LLC layer parameters (according to GSM 04.64, Version 6.4.0). These * parameters are initialised by llc_init_parameters(). */ UBYTE version; ULONG iov_ui; ULONG iov_i_base[ACKNOWLEDGED_INC]; ULONG *iov_i; /* * T200 and T201 values are defined in the respective service data arrays. */ UBYTE n200_base[UNACKNOWLEDGED_INC]; UBYTE *n200; USHORT n201_u_base[UNACKNOWLEDGED_INC]; USHORT n201_i_base[ACKNOWLEDGED_INC]; USHORT *n201_u; USHORT *n201_i; USHORT md_base[ACKNOWLEDGED_INC]; USHORT mu_base[ACKNOWLEDGED_INC]; USHORT *md; USHORT *mu; UBYTE kd_base[ACKNOWLEDGED_INC]; UBYTE ku_base[ACKNOWLEDGED_INC]; UBYTE *kd; UBYTE *ku; T_L3_XID requested_l3_xid_base[ACKNOWLEDGED_INC]; T_L3_XID *requested_l3_xid; /* * Structure to contain decoded XID parameters. * Valid flags are initialized by u_check_xid() each time received XID * is checked. */ T_XID_PARAMETERS decoded_xid; T_L3_XID decoded_l3_xid; /* * LLC layer variables needed for ciphering (see services TX/RX). These * variables are set with LLGMM_ASSIGN_REQ by GMM. */ #ifdef LL_2to1 T_LLGMM_llgmm_kc kc; #else T_llgmm_kc kc; #endif UBYTE ciphering_algorithm; /* * Service data structures. * * Services with multiple incarnations require an array of structures * named xxx_base[] with xxx = service abbrevation, and additionally a * pointer named *xxx, which will be accessed instead of xxx_base. * * Services with only one incarnation just have to declare one structure * named xxx (no need for xxx_base[] and *xxx). * * The differentiation between the two access possibilites is made with * the defines of the service names above (LLC_SERVICE_XXX). */ T_LLME_DATA llme; T_SAPI_DATA sapi_base[MAX_SAPI_INC]; T_SAPI_DATA *sapi; T_U_DATA u_base[U_NUM_INC]; T_U_DATA *u; T_ITX_DATA itx_base[ITX_NUM_INC]; T_IRX_DATA irx_base[IRX_NUM_INC]; T_ITX_DATA *itx; T_IRX_DATA *irx; T_UITX_DATA uitx_base[UITX_NUM_INC]; T_UIRX_DATA uirx_base[UIRX_NUM_INC]; T_UITX_DATA *uitx; T_UIRX_DATA *uirx; T_T200_DATA t200_base[T200_NUM_INC]; T_T200_DATA *t200; T_TX_DATA tx; T_RX_DATA rx; T_FBS_DATA fbs; #ifdef _SIMULATION_ /* * Structure to contain XID parameters that are configured in ffs. */ T_FFS_XID_PARAMETERS ffs_xid; #endif /*Number of milliseconds to delay after sending reset_ind to SNDCP*/ USHORT millis; #ifdef REL99 U16 cur_pfi; /* current packet flow identifier */ #endif T_ll_qos cur_qos; /* quality of service R97 */ U8 cur_radio_prio; /* T_PS_radio_prio, Radio priority */ } T_LLC_DATA; /*==== EXPORT =====================================================*/ /* * Entity data base */ #ifdef LLC_PEI_C T_LLC_DATA llc_data_base, *llc_data; #else EXTERN T_LLC_DATA llc_data_base, *llc_data; #endif #define ENTITY_DATA llc_data /* * Communication handles (see also LLC_PEI.C) */ #define hCommGMM llc_hCommGMM #define hCommSNDCP llc_hCommSNDCP #ifdef LL_2to1 #define hCommMM llc_hCommMM #else #define hCommGSMS llc_hCommGSMS #endif #define hCommGRLC llc_hCommGRLC #ifdef LLC_PEI_C T_HANDLE hCommGMM = VSI_ERROR; T_HANDLE hCommSNDCP = VSI_ERROR; #ifdef LL_2to1 T_HANDLE hCommMM = VSI_ERROR; #else T_HANDLE hCommGSMS = VSI_ERROR; #endif T_HANDLE hCommGRLC = VSI_ERROR; T_HANDLE LLC_handle; /* * make the pei_create function unique */ #define pei_create llc_pei_create #else EXTERN T_HANDLE hCommGMM; EXTERN T_HANDLE hCommSNDCP; #ifdef LL_2to1 EXTERN T_HANDLE hCommMM; #else EXTERN T_HANDLE hCommGSMS; #endif EXTERN T_HANDLE hCommGRLC; EXTERN T_HANDLE LLC_handle; #endif /* LLC_PEI_C */ #endif /* LLC_H */