view src/gpf3/ccd/hl_flag.c @ 516:1ed9de6c90bd

src/g23m-gsm/sms/sms_for.c: bogus malloc removed The new error handling code that was not present in TCS211 blob version contains a malloc call that is bogus for 3 reasons: 1) The memory allocation in question is not needed in the first place; 2) libc malloc is used instead of one of the firmware's proper ways; 3) The memory allocation is made inside a function and then never freed, i.e., a memory leak. This bug was caught in gcc-built FreeCalypso fw projects (Citrine and Selenite) because our gcc environment does not allow any use of libc malloc (any reference to malloc produces a link failure), but this code from TCS3.2 is wrong even for Magnetite: if this code path is executed repeatedly over a long time, the many small allocations made by this malloc call without a subsequent free will eventually exhaust the malloc heap provided by the TMS470 environment, malloc will start returning NULL, and the bogus code will treat it as an error. Because the memory allocation in question is not needed at all, the fix entails simply removing it.
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 22 Jul 2018 06:04:49 +0000
parents c41a534f33c6
children
line wrap: on
line source

/* 
+----------------------------------------------------------------------------- 
|  Project :  
|  Modul   : hl_flag.c
+----------------------------------------------------------------------------- 
|  Copyright 2002 Texas Instruments Inc. 
|                 All rights reserved. 
| 
|                 This file is confidential and a trade secret of Texas 
|                 Instruments Berlin, AG 
|                 The receipt of or possession of this file does not convey 
|                 any rights to reproduce or disclose its contents or to 
|                 manufacture, use, or sell anything it may describe, in 
|                 whole, or in part, without the specific written consent of 
|                 Texas Instruments Berlin, AG. 
+----------------------------------------------------------------------------- 
|  Purpose :  Definition of encoding and decoding functions for HL_FLAG elements 
+----------------------------------------------------------------------------- 
*/ 


/*
 * standard definitions like GLOBAL, UCHAR, ERROR etc.
 */
#include "typedefs.h"
#include "header.h"

/*
 * Prototypes of ccd (USE_DRIVER EQ undef) for prototypes only
 * look at ccdapi.h
 */
#undef USE_DRIVER
#include "ccdapi.h"

/*
 * Types and functions for bit access and manipulation
 */
#include "ccd_globs.h"
#include "bitfun.h"

/*
 * Prototypes of ccd internal functions
 */
#include "ccd.h"

/*
 * Declaration of coder/decoder tables
 */
#include "ccdtable.h"
#include "ccddata.h"


#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)               MODULE  : CDC_GSM               |
| STATE   : code                     ROUTINE : cdc_hl_flag_decode    |
+--------------------------------------------------------------------+

  PURPOSE : Decoding of the GSM Type HL_FLAG element. This element
            consists of a single bit only. The decoded value will be 0
            if the encoded value is L respectively 1 if the encoded
            value is H.
            
*/

SHORT cdc_hl_flag_decode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs)
{
  ULONG repeat, max_rep;
  BOOL  is_variable = FALSE;
  ULONG cix_ref, num_prolog_steps, prolog_step_ref;

#ifdef DEBUG_CCD
  #ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "cdc_hl_flag_decode()");
  #else
  TRACE_CCD (globs, "cdc_hl_flag_decode() %s", ccddata_get_alias((USHORT) e_ref, 1));
  #endif
#endif

  globs->SeekTLVExt = FALSE;
  cix_ref = melem[e_ref].calcIdxRef;
  num_prolog_steps = calcidx[cix_ref].numPrologSteps;
  prolog_step_ref  = calcidx[cix_ref].prologStepRef;
  repeat     = 1;
  
  if (cix_ref != 0)
  {
    /*
     * if this element is conditional, check the condition
     */
    if (calcidx[cix_ref].numCondCalcs NEQ 0
    AND ! ccd_conditionOK (e_ref, globs))
      return 1;

    /*
     * if this element have a defined Prolog
     * we have to process it before decoding the bitstream
     */
    if (num_prolog_steps)
    {
      ccd_performOperations (num_prolog_steps, prolog_step_ref, globs);
    }
    if (melem[e_ref].repType NEQ ' ')
    {
      is_variable = ccd_calculateRep (e_ref, &repeat, &max_rep, globs);
    }
  }
    /*
     * Element is not a SPARE. Setup the struct pointer
     */
    globs->pstructOffs = melem[e_ref].structOffs;

      
      if (melem[e_ref].optional)
      {
        /*
         * for optional elements we must set the valid-flag
         * ??.
         * Therefore we store the address of the valid flag.
         */
        *(globs->pstruct + globs->pstructOffs++) = TRUE;

      }

  globs->pstruct[globs->pstructOffs++] = (UBYTE) (bf_readBit(globs) == GET_HL_PREV(1));
#ifdef DEBUG_CCD
#ifdef CCD_SYMBOLS
  TRACE_CCD (globs, "decoding var %s",ccddata_get_alias((USHORT) e_ref, 1));
#else
  TRACE_CCD (globs, "decoding var %d", melem[e_ref].elemRef);
#endif
#endif

  return 1;
}
#endif /* !RUN_INT_RAM */

#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)              MODULE  : CDC_GSM                |
| STATE   : code                    ROUTINE : cdc_hl_flag_encode     |
+--------------------------------------------------------------------+

  PURPOSE : Encoding of the GSM Type HL_FLAG element. This element
            consists of a single bit only. If the element is set to 1
            a H bit will be coded. Otherwise a L bit will be coded if 
            the element value to encode is set to 0.

*/

SHORT cdc_hl_flag_encode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs)
{
  ULONG  repeat=1, amount=1;
  USHORT cSize = 0, startOffset;
  ULONG  i;
  ULONG  cix_ref, num_prolog_steps, prolog_step_ref;

#ifdef DEBUG_CCD
  #ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "cdc_hl_flag_encode()");
  #else
  TRACE_CCD (globs, "cdc_hl_flag_encode() %s", ccddata_get_alias((USHORT) e_ref, 1));
  #endif
#endif

  cix_ref = melem[e_ref].calcIdxRef;
  num_prolog_steps = calcidx[cix_ref].numPrologSteps;
  prolog_step_ref  = calcidx[cix_ref].prologStepRef;

  if (cix_ref != 0)
  {
    /*
     * if this element is conditional, check the condition
     */
    if (calcidx[cix_ref].numCondCalcs NEQ 0
    AND ! ccd_conditionOK (e_ref, globs))
      return 1;

    /*
     * if this element have a defined Prolog
     * we have to process it before decoding the bitstream
     */
    if (num_prolog_steps)
    {
      ccd_performOperations (num_prolog_steps, prolog_step_ref, globs);
    }
  }

  if (melem[e_ref].elemType NEQ 'S')
  {
    /*
     * Element is not a SPARE.
     * Setup the offset into the C-structure for this element
     */
    globs->pstructOffs = melem[e_ref].structOffs;

    if (melem[e_ref].optional)
    {
      /*
       * for optional elements check the valid-flag in the C-struct.
       * Spare elements does not have a corresponding valid flag.
       */
      if (globs->pstruct[globs->pstructOffs++] == FALSE)
      {
        /*
         * element is invalid so we must code a 0 bit
         */
        bf_writeBit (GET_HL(0), globs);

        return 1;
      }
      
      else
      {
#ifdef DEBUG_CCD
        if (globs->pstruct [melem[e_ref].structOffs] != TRUE)
        {
          TRACE_CCD (globs, "Ambiguous value for valid flag!\n...assumed 1 for ccdID=%d",
                     e_ref);
        }
#endif
        /*
         * element is valid so we must code a 1 bit
         */
        bf_writeBit (GET_HL(1), globs);
      }
    }

    if (melem[e_ref].repType NEQ ' ')
    {
      /* As a default amount =1 due to initialization. */
      if (melem[e_ref].repType EQ 'i')
      {
        /*
         * for variable repeatable elements read the amount
         * of repeats out of the C-Structure (c_xxx).
         * If the number of repeats given by the C-Structure 
         * exceeds the allowed value CCD gives a warning!
         */
        if (melem[e_ref].maxRepeat > 255)
        {
          ULONG count = (ULONG) (* (USHORT *)(globs->pstruct + globs->pstructOffs++));
          repeat = MINIMUM (count, (ULONG) melem[e_ref].maxRepeat);
          if (repeat < count) 
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        else
        {
          repeat = (ULONG) MINIMUM (globs->pstruct[globs->pstructOffs], 
                                    melem[e_ref].maxRepeat);
          if ( repeat < (ULONG)(globs->pstruct[globs->pstructOffs]) ) 
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        globs->pstructOffs++;
      }
      else
      if (melem[e_ref].repType EQ 'v')
      {
        /*
         * for variable repeatable elements read the amount
         * of repeats out of the C-Structure (c_xxx).
         * If the number of repetitions given by the C-Structure 
         * exceeds the allowed value (maxRepeat) CCD gives a warning!
         */
        if (melem[e_ref].maxRepeat > 255)
        {
          ULONG count = (ULONG) (* (USHORT *)(globs->pstruct + globs->pstructOffs++));
          amount = MINIMUM (count, (ULONG) melem[e_ref].maxRepeat);
          if (amount < count) 
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        else
        {
          amount = (ULONG) MINIMUM (globs->pstruct[globs->pstructOffs], 
                                    melem[e_ref].maxRepeat);
          if ( amount < (ULONG) (globs->pstruct[globs->pstructOffs]) )
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        globs->pstructOffs++;
      }
      else
      if (melem[e_ref].repType EQ 'c')
      {
        amount = (ULONG) melem[e_ref].maxRepeat;
      }

      if (melem[e_ref].repType EQ 'v' OR melem[e_ref].repType EQ 'i')
      {
        cSize = (USHORT)(((melem[e_ref].elemType EQ 'V')
                         ? mvar[melem[e_ref].elemRef].cSize
                         : mcomp[melem[e_ref].elemRef].cSize
                        ));
        startOffset = (USHORT) globs->pstructOffs;
      }
    }
  
    for (i=0; i < repeat; i++)
    {
      if (cSize)
      {
        /*
         * calculate the offset if it is an array
         */
        globs->pstructOffs = (USHORT)(startOffset + (i * cSize));
      }
      /*
       * encode the value
       */
      if (globs->pstruct[globs->pstructOffs++] EQ FALSE)
      {
        /*
         * element is 0 so we must signalize L
         */
        bf_writeBit (GET_HL(0), globs);
      }
      else
      {
        /*
         * element is 1 so we must signalize H
         */
        bf_writeBit (GET_HL(1), globs);
      }
      
      globs->pstructOffs += mvar[melem[e_ref].elemRef].cSize;
    }

    if (melem[e_ref].repType EQ 'i')
    {
      /*
       * for variable CNS1 fields we code a 0 flag to mark the end of the
       * arrays
       */
      bf_writeBit (GET_HL(0), globs);
    }
  }

  return 1;
}
#endif /* !RUN_INT_RAM */