line source
/************* Revision Controle System Header *************
* GSM Layer 1 software
* L1_CTL.C
*
* Filename l1_ctl.c
* Copyright 2003 (C) Texas Instruments
*
************* Revision Controle System Header *************/
#define L1_CTL_C
#include "l1_macro.h"
#include "l1_confg.h"
#if (CODE_VERSION == SIMULATION)
#include <string.h>
#include "l1_types.h"
#include "sys_types.h"
#include "l1_const.h"
#include "l1_time.h"
#include "l1_signa.h"
#if TESTMODE
#include "l1tm_defty.h"
#endif
#if (AUDIO_TASK == 1)
#include "l1audio_const.h"
#include "l1audio_cust.h"
#include "l1audio_signa.h"
#include "l1audio_defty.h"
#include "l1audio_msgty.h"
#endif
#if (L1_GTT == 1)
#include "l1gtt_const.h"
#include "l1gtt_defty.h"
#endif
#if (L1_MP3 == 1)
#include "l1mp3_defty.h"
#endif
#if (L1_MIDI == 1)
#include "l1midi_defty.h"
#endif
//ADDED FOR AAC
#if (L1_AAC == 1)
#include "l1aac_defty.h"
#endif
#include "l1_defty.h"
#include "cust_os.h"
#include "l1_msgty.h"
#include "l1_varex.h"
#include "l1_proto.h"
#include "l1_mftab.h"
#include "l1_tabs.h"
#include "l1_ver.h"
#if L2_L3_SIMUL
#include "hw_debug.h"
#endif
#if TESTMODE
#include "l1tm_msgty.h"
#include "l1tm_varex.h"
#endif
#include "l1_ctl.h"
#ifdef _INLINE
#define INLINE static inline // Inline functions when -v option is set
#else // when the compiler is ivoked.
#define INLINE
#endif
#else
#include <string.h>
#include "l1_types.h"
#include "sys_types.h"
#include "l1_const.h"
#include "l1_time.h"
#include "l1_signa.h"
#if (RF_FAM == 61)
#include "tpudrv61.h"
#endif
#if TESTMODE
#include "l1tm_defty.h"
#endif
#if (AUDIO_TASK == 1)
#include "l1audio_const.h"
#include "l1audio_cust.h"
#include "l1audio_defty.h"
#endif
#if (L1_GTT == 1)
#include "l1gtt_const.h"
#include "l1gtt_defty.h"
#endif
#if (L1_MP3 == 1)
#include "l1mp3_defty.h"
#endif
#if (L1_MIDI == 1)
#include "l1midi_defty.h"
#endif
//ADDED FOR AAC
#if (L1_AAC == 1)
#include "l1aac_defty.h"
#endif
#include "l1_defty.h"
#include "cust_os.h"
#include "l1_msgty.h"
#include "l1_varex.h"
#include "l1_proto.h"
#include "l1_tabs.h"
#include "l1_ctl.h"
#if L2_L3_SIMUL
#include "hw_debug.h"
#endif
#if TESTMODE
#include "l1tm_msgty.h"
#include "l1tm_varex.h"
#endif
#ifdef _INLINE
#define INLINE static inline // Inline functions when -v option is set
#else // when the compiler is ivoked.
#define INLINE
#endif
#endif
#if(RF_FAM == 61)
#include "l1_rf61.h"
#endif
#if (TRACE_TYPE == 1) || (TRACE_TYPE == 4)
#include "l1_trace.h"
#endif
extern SYS_UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq);
#if(RF_FAM == 61)
extern WORD16 drp_gain_correction(UWORD16 arfcn, UWORD8 lna_off, UWORD16 agc);
#endif
#define LNA_OFF 1
#define LNA_ON 0
/************************************/
/* Automatic frequency compensation */
/************************************/
/*
* FreeCalypso TCS211 reconstruction: the following 3 functions
* have been added in the LoCosto version of this module.
* We have conditioned them out in order to match the original
* TCS211 object; their uses have been conditioned out as well.
*
* These functions will need to re-enabled when their uses are
* re-enabled.
*/
#if 0
#define L1_WORD16_POS_MAX (32767)
#define L1_WORD16_NEG_MAX (-32768)
#define L1_WORD32_POS_MAX ((unsigned long)(1<<31)-1)
#define L1_WORD32_NEG_MAX (-(unsigned long)(1<<31))
INLINE WORD16 Add_Sat_sign_16b(WORD16 val1, WORD16 val2)
{
WORD32 temp;
WORD16 result;
temp = (WORD32)((WORD32)val1 + (WORD32)val2);
if(temp > L1_WORD16_POS_MAX)
{
temp = L1_WORD16_POS_MAX;
}
if(temp < L1_WORD16_NEG_MAX)
{
temp = L1_WORD16_NEG_MAX;
}
result = (WORD16)((temp)&(0x0000FFFF));
return(result);
}
INLINE WORD32 Add_Sat_sign_32b(WORD32 val1, WORD32 val2)
{
WORD32 temp_high_high;
UWORD32 temp_low_low;
UWORD16 carry;
WORD32 result;
WORD16 high_val1, high_val2;
UWORD16 low_val1, low_val2;
high_val1 = (WORD16)(val1>>16);
high_val2 = (WORD16)(val2>>16);
low_val1 = (UWORD16)(val1&0x0000FFFF);
low_val2 = (UWORD16)(val2&0x0000FFFF);
temp_high_high = (WORD32)high_val1 + (WORD32)high_val2;
temp_low_low = (UWORD32)low_val1 + (UWORD32)low_val2;
carry = (UWORD16)(temp_low_low >> 16);
temp_high_high = temp_high_high + (UWORD32)(carry);
result = val1 + val2;
if(temp_high_high > L1_WORD16_POS_MAX)
{
result = L1_WORD32_POS_MAX;
}
if(temp_high_high < L1_WORD16_NEG_MAX)
{
result = L1_WORD32_NEG_MAX;
}
return(result);
}
INLINE WORD32 Sat_Mult_20sign_16unsign(WORD32 val1, UWORD32 val2)
{
WORD32 result;
result = val1 * val2;
if(val1>0) /* val2 is > 0*/
{
if(result < 0) /* overflow */
{
result = L1_WORD32_POS_MAX;
}
}
if(val1<0) /* val2 is > 0*/
{
if(result > 0) /* overflow */
{
result = L1_WORD32_NEG_MAX;
}
}
return(result);
}
#endif
INLINE WORD32 Add_40b( WORD32 guard1guard2, WORD32 lvar1, WORD32 lvar2, WORD16 *guardout )
{
WORD32 result, temp, carry, Lvar1, Lvar2;
WORD16 guard1,guard2;
guard1=(WORD16) ((WORD32) guard1guard2>>16);
guard2=(WORD16) guard1guard2;
/* lvar1 and lvar2 are both 48 bits variables */
/* We 1st add the low parts of lvar1 and lvar2 and we give */
/* a 32 bits result and a carry if needed */
Lvar1 = (UWORD16)lvar1;
Lvar2 = (UWORD16)lvar2;
temp = Lvar1 + Lvar2;
carry = temp >> 16;
result = temp & 0x0000ffffL;
/* We now add the two high parts of var1 and var2 (scaled */
/* to a 16 bits format) and carry (if any) and we give a */
/* 48 bits results. */
Lvar1 = (UWORD32)lvar1 >> 16;
Lvar2 = (UWORD32)lvar2 >> 16;
temp = Lvar1 + Lvar2 + carry;
carry = (UWORD32)temp >> 16;
temp = (UWORD32)temp << 16;
result = result | temp;
temp = guard1 + guard2 + carry;
*guardout = (WORD16)temp;
return( result );
}
INLINE WORD32 Mult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout)
{
WORD32 mult,guard1guard2;
WORD32 aux1;
UWORD32 aux2;
WORD16 neg_flag=0;
WORD32 var1_low_nosign,var2_nosign;
if (var2<0)
{
var2=-var2;
neg_flag=1;
}
/*aux1 = AccHigh(var1)*var2 */
aux1 = (WORD32)(var1>>16) * (WORD32)var2;
/* 16 bits * 16 bits -> 32 bits result */
/*aux2 = AccLow(var1)*var2 (unsigned multiplication) */
/* Performs the sign suppression of the words */
var1_low_nosign = (UWORD16)var1;
var2_nosign = (UWORD16) var2;
aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign;
/*Shift aux1=F48 of 16 bit left */
guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/
/*guard2=0x0000 */
aux1=aux1<<16;
/* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */
/* aux1 and aux2 are both 48 bits variables */
/* We first add the low pats of aux1 and aux2 and we give*/
/* a 32 bits result and a carry if needed */
mult=Add_40b(guard1guard2,aux1,aux2,guardout );
if (neg_flag)
{
mult=-mult;
if (*guardout!=0)
*guardout=-(*guardout)-1;
else
*guardout=-1;
}
return(mult);
}
/***********************************************************************/
/* This function allows to multiply a WORD32 and a WORD16, both POSITIVE, */
/* variables. Result is WORD32. */
/***********************************************************************/
INLINE WORD32 UMult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout)
{
WORD32 mult,guard1guard2;
UWORD32 aux1,aux2;
WORD32 var1_high_nosign,var1_low_nosign,var2_nosign;
/*aux1 = AccHigh(var1)*var2 (unsigned multiplication) */
/* Performs the sign suppression of the words */
var1_high_nosign = (UWORD32)var1>>16;
var2_nosign = (UWORD16) var2;
aux1 = (UWORD32)var1_high_nosign * (UWORD32)var2_nosign;
/*aux2 = AccLow(var1)*var2 (unsigned multiplication) */
/* Performs the sign suppression of the words */
var1_low_nosign = (WORD32)((UWORD16)var1);
aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign;
/*Shift aux1=F48 of 16 bit left */
guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/
/*guard2=0x0000 */
aux1=aux1<<16;
/* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */
mult=Add_40b(guard1guard2,aux1,aux2,guardout);
return(mult);
}
/*-------------------------------------------------------*/
/* l1ctl_afc() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if (VCXO_ALGO == 0)
WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq)
#else
WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq, UWORD32 l1_mode)
#endif
{
/*************************/
/* Variables declaration */
/*************************/
WORD16 i=0;
UWORD32 denom; /* F12.20 */
WORD32 var_32,num,Phi_32=0,var1,var2,guard1guard2;
static UWORD32 P=C_cov_start; /* F12.20 */
static WORD32 Psi=0; /* F13.19 */
static WORD16 Psi_quant[C_N_del+1]; /* F13.3 */
WORD16 var_16;
WORD16 Phi=0; /* F1.15 */
WORD16 quotient,guard1,guard2,guardout;
UWORD32 LGuard;
WORD16 denomH,denomH_3msb;
UWORD32 K=0; /* algo 1 */
static WORD16 old_Psi_quant[C_N_del+1];
static WORD32 old_Psi=0;
#if (VCXO_ALGO == 1)
static WORD32 psi_past[C_N_del+1]; /* F13.19 */
static WORD16 psi_quant; /* F13.3 */
static WORD16 quant_avg;
static UWORD32 M_Count;
static WORD32 psi_avg[C_PSI_AVG_SIZE_D+1]; // Data history array
static WORD16 B_Count; // Counter for consecutive SNR below C_thr_snr
#if 0 /* LoCosto added var */
UWORD16 L = 10433; // Gain algo2
#endif
static UWORD16 first_avg;
static UWORD16 good_snr;
/* to be able to keep in memory the old AFC variables in case of spurious
FB detection */
static WORD32 old_psi_past[C_N_del+1]; /* F13.19 */
static WORD16 old_psi_quant; /* F13.3 */
#endif
#if (L1_FF_MULTIBAND == 1)
UWORD8 physical_band_id;
#endif
#if 0 /* LoCosto added var init */
//Set AFC close loop gain for ALGO_AFC_LQG_PREDICTOR.
if(l1_mode==I_MODE)//MS is in Idle mode
L = 41732; //F0.20 L=41732/2^20 = 0.04
else //All other modes than Idle
L = 10433; //F0.20 L=10433/2^20 = 0.01
#endif
#if (L1_FF_MULTIBAND == 0)
if (((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) &&
#if (VCXO_ALGO == 1)
((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)))
#else
(phase != AFC_INIT))
#endif
{
if (radio_freq >= l1_config.std.first_radio_freq_band2)
{
angle = (angle + 1) >> 1;
}
}
else if (((l1_config.std.id == DCS1800) || (l1_config.std.id == PCS1900)) &&
#if (VCXO_ALGO == 1)
((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)))
#else
(phase != AFC_INIT))
#endif
{
angle = (angle + 1) >> 1;
}
#else // L1_FF_MULTIBAND = 1 below
#if (VCXO_ALGO == 1)
if((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))
#else
if(phase != AFC_INIT)
#endif
{
physical_band_id = l1_multiband_radio_freq_convert_into_physical_band_id(radio_freq);
if( (multiband_rf[physical_band_id].gsm_band_identifier == DCS1800) || (multiband_rf[physical_band_id].gsm_band_identifier == PCS1900))
{
angle = (angle + 1) >> 1;
}
}
#endif // #if (L1_FF_MULTIBAND == 1) else
/*********************************/
/* frequency offset compensation */
/*********************************/
/* Initialization */
#if (VCXO_ALGO == 1)
switch (l1_config.params.afc_algo)
{
/* algo1 only: */
case ALGO_AFC_KALMAN:
{
#endif
#if (VCXO_ALGO == 0)
if (phase==AFC_INIT)
{
// WARNING
// In this case, "angle" variable contains EEPROM_AFC initialization value
// directly loaded from EEPROM, and "snr" variable is not meaningful.
/* Static variables initialisation */
P=C_cov_start;
Psi=0;
if (angle>C_max_step)
Psi_quant[C_N_del]=C_max_step;
else
if(angle<C_min_step)
Psi_quant[C_N_del]=C_min_step;
else Psi_quant[C_N_del]=angle;
Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */
} /* end AFC_INIT*/
else
{
if (phase==AFC_OPEN_LOOP)
{
/* delay line for Psi_quant values */
for (i=1;i<=C_N_del;i++)
Psi_quant[i-1]=Psi_quant[i];
var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4;
/*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */
#if(RF_FAM == 61)
/* In order to implement the NINT function for a F16.0, we check */
/* if var_32 + 0.5*2**18 is a multiple of 2**18 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
var_16=quotient*4;
#else
/* In order to implement the NINT function for a F16.0, we check */
/* if var_32 + 0.5*2**19 is a multiple of 2**19 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
var_16=quotient*8;
#endif
if (var_16>C_max_step)
Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step);
else
if(var_16<C_min_step)
Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step);
else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */
Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */
}/*end if AFC_OPEN_LOOP*/
else
{
/* delay line for Psi_quant values */
for (i=1;i<=C_N_del;i++)
Psi_quant[i-1]=Psi_quant[i];
/********************/
/* Filter algorithm */
/********************/
/* Covariance error is increased of C_Q */
P=P+(*frame_count)*C_Q;
/* Clipping of P */
if (P>C_thr_P) P=C_thr_P;
if (snr>=C_thr_snr)
{
/* Clipping of error angle */
if (angle>C_thr_phi)
angle=C_thr_phi;
if (angle<-C_thr_phi)
angle=-C_thr_phi;
/* Kalman gain */
/*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */
/*C_a0_kalman=0.01 */
/*C_g_kalman =0.05 */
num=(C_g_kalman/snr)+P+C_a0_kalman;
/* (F2.30 / F6.10) = F 12.20 */
/* denom = P << 19 = F 1.39 */
/* extension of denom=P to a 40 bits variable */
/* denom (F12.20) << 16 = F 4.36 */
guard1=(WORD16)((WORD32)P>>16);
/* denom = P<<16 = (F4.36) << 3 = F 1.39 */
denomH=(UWORD16)P;
/* Low part of denom is equal to 0, because P has been 16 */
/* bits left shifted previously. */
denomH_3msb=(denomH>>13)&0x0007;
guard1=(guard1<<3)|denomH_3msb;
denomH<<=3;
denom=(UWORD32)denomH<<16;
/* num + guard1 are a 40 bits representation of P */
/* In order to compute P(F1.39)/num, we sample P in guard1 */
/* (scaled to a 32 bits number) and num (32 bits number) */
/* K = ((guard1<<24)/num)<<8 + (denom/num) */
var1=(WORD32)guard1<<24;
var1=var1/num;
var1=(WORD32)var1<<8;
/* var2 is an unsigned variable, var1 contains signed guard*/
/* bits. */
var2=denom/num;
K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */
/* F13.19 << 1 = F12.20 */
/* Clipping of the Kalman gain */
if (K>=C_thr_K)
K=C_thr_K;
/*******************************************************/
/* P=(1-K)*P = 0.8 * 0.5 at maximum */
/*******************************************************/
/* Perform a positive variable F12.20 multiplication by*/
/* positive variable F12.20 */
var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */
guard1=0; /* positive variable */
var1=UMult_40b(P,var_16,&guard1);
var_16=(WORD16)((1048576L-K)>>16);
/* acchigh(1-K) = F12.20 */
var2=P*var_16; /* var2 = 0x80000 * 0xc */
/* at maximum, so result */
/* is 32 bits WORD32 and */
/* equal 0x600000 */
/* extension of var2 to a 40 bits variable : var2<<16 */
guard2=(WORD16)((WORD32)var2>>16);
guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL);
var2=var2<<16;
var_32=Add_40b(guard1guard2,var1,var2,&guardout);
/* var_32 (F8.40) >> 16 = F8.24 */
LGuard=(WORD32)guardout<<16;
var1=(UWORD32)var_32>>16;
/* var_32 >> 4 = F12.20 */
P=(var1+LGuard)>>4;
Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout);
/* F0.32 * F13.3 = F5.35 */
LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */
/* F13.19 */
var1=(UWORD32)Phi_32>>16;
Phi_32=Psi-(LGuard+var1); /* F13.19 */
/*Phi=angle-Phi_32*/
Phi_32=((WORD32)angle<<4)-Phi_32;
/* F1.15 * 4 = F13.19 */
Phi=(WORD16)(Phi_32>>4); /* F17.15 */
/*var1=K*Phi F12.20 * F1.15 = 13.35 */
guard1=0;
var1=Mult_40b(K,Phi,&guard1);
/* var1 (F13.35) >> 16 */
/* F13.19 */
LGuard=(WORD32)guard1<<16;
var1=(UWORD32)var1>>16;
Psi+=var1+LGuard;
}/*if snr */
var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout);
/* F13.19 * C = F13.19 */
#if(RF_FAM == 61)
/* In order to implement the NINT function for a F13.3, we check */
/* if var_32 + 0.5*2**18 is a multiple of 2**18 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
var_16=quotient*4;
#else
/* In order to implement the NINT function for a F13.3, we check */
/* if var_32 + 0.5*2**19 is a multiple of 2**19 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
var_16=quotient*8;
#endif
if (var_16>C_max_step)
Psi_quant[C_N_del]=C_max_step;
else
if(var_16<C_min_step)
Psi_quant[C_N_del]=C_min_step;
else Psi_quant[C_N_del]=var_16; /* F13.3 */
}/*end AFC_CLOSE_LOOP*/
} /* end else AFC_INIT*/
*frame_count=0;
return(Psi_quant[C_N_del]>>3); /* F16.0 */
#else
} /* end case algo 1 */
/* algo2 + init + estimator/predictor */
case ALGO_AFC_LQG_PREDICTOR:
{
/******************************************************************/
/* (New) VCXO Algorithm */
/******************************************************************/
switch (phase) {
case AFC_INIT_CENTER :
case AFC_INIT_MAX :
case AFC_INIT_MIN :
quant_avg = 0;
M_Count = 0;
#if 0 /* present in LoCosto but not in TCS211 */
for (i = 0; i <= C_PSI_AVG_SIZE_D ; i++) //omaps00090550
psi_avg[i] = 0;
#endif
first_avg = 1;
good_snr = 0;
// DAC search algorithm is as follows - up to 12 attempts are made
// DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min ->
// The first four attempts are made on DAC_center
// The next four attempts are made on DAC_max
// The last four attempts are made on DAC_min
// There are statistical reasons for trying four times
switch (phase)
{
case AFC_INIT_CENTER:
psi_quant = l1_config.params.afc_dac_center;
break;
case AFC_INIT_MAX:
psi_quant = l1_config.params.afc_dac_max;
break;
case AFC_INIT_MIN:
psi_quant = l1_config.params.afc_dac_min;
break;
default :
break;
}
/* F0.32 * F13.3 = F5.35 */
psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout);
/* (F13.3<<16 )+(F5.35>>16) = F13.19 */
psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16);
break;
case AFC_OPEN_LOOP :
{
/* VCXO changes for spurious FB detection */
if (l1s.spurious_fb_detected == TRUE)
{
psi_quant = old_psi_quant;
for(i=0;i<C_N_del+1;i++)
psi_past[i] = old_psi_past[i];
/* reset the spurious_fb_detected_flag */
l1s.spurious_fb_detected = FALSE;
} /* end of spuriousFB detected */
/* save in memory the old AFC related values */
old_psi_quant = psi_quant;
for(i=0;i<C_N_del+1;i++)
old_psi_past[i] = psi_past[i];
/* delay line for psi_quant values */
for (i = 1; i <= C_N_del; i++)
psi_past[i-1] = psi_past[i];
/* (F16.0 * F1.15 = F17.15) << 4 = F13.19 */
var_32 = (WORD32) ((WORD32)angle * l1_config.params.psi_sta_inv) << 4;
#if(RF_FAM == 61)
/* In order to implement the NINT function for a F16.0,*/
/*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */
var_16 = (WORD16)
((WORD32) (((WORD32)(var_32 + (1<<17))) / (1<<18)));
var_16 = var_16 * 4;
#else
/* In order to implement the NINT function for a F16.0,*/
/*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */
var_16 = (WORD16)
((WORD32) (((WORD32)(var_32 + (1<<18))) / (1<<19)));
var_16 = var_16 * 8;
#endif
#if 0 /* LoCosto code with saturation */
if (var_16 > C_max_step)
psi_quant = Add_Sat_sign_16b(psi_quant,C_max_step);
else if (var_16 < C_min_step)
psi_quant = Add_Sat_sign_16b(psi_quant,C_min_step);
else psi_quant = Add_Sat_sign_16b(psi_quant,var_16); /* F13.3 */
#else /* matching TCS211 */
if (var_16 > C_max_step)
psi_quant += C_max_step;
else if (var_16 < C_min_step)
psi_quant += C_min_step;
else psi_quant += var_16; /* F13.3 */
#endif
/* F0.32 * F13.3 = F5.35 */
psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout);
/* (F13.3<<16 )+(F5.35>>16) = F13.19 */
psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16);
}
break;
case AFC_CLOSED_LOOP :
/* delay line for psi_quant values */
for (i = 1; i <= C_N_del; i++)
psi_past[i-1] = psi_past[i];
/************************************/
/* Estimation */
/************************************/
if ( (l1_config.params.rgap_algo != 0) &&
((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
#if L1_GPRS
|| l1_mode==PACKET_TRANSFER_MODE
#endif
))
{
M_Count += *frame_count;
if (snr >= l1_config.params.afc_snr_thr) {
// Accumulate average over N TDMA frames
psi_avg[0] += psi_past[C_N_del];
// Count number of good snr's within window_avg_size chunks
good_snr++;
}
// M_Count >= M ?
if (M_Count >= l1_config.params.afc_win_avg_size_M) {
// M_Count counts how far we have reached in the window_avg_size blocks
// Scale estimate relative to good snr - Don't divide by zero in case of bad measurements
if (good_snr > 0)
psi_avg[0] /= good_snr;
// We now have an estimation over window_avg_size TDMA frames in psi_avg[0]
if (first_avg == 1) {
first_avg = 0;
// Use first estimation as best guess for the other avg values
// This is used both at initialisation and when returning from reception gap
for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++)
psi_avg[i] = psi_avg[0];
}
// Estimation 1st order
// Use biggest window to reduce noise effects signal in psi values
// NOTE: Due to performance issues division by MSIZE is in predictor
if (l1_config.params.rgap_algo >= 1) {
quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]);
}
for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--)
psi_avg[i+1] = psi_avg[i];
psi_avg[0] = 0;
M_Count = 0;
good_snr = 0;
}
} else {
// No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset!
first_avg = 1;
M_Count = 0;
good_snr = 0;
psi_avg[0] = 0;
}
if (snr >= l1_config.params.afc_snr_thr) {
/********************/
/* Filter algorithm */
/********************/
/* No prediction during normal operation */
B_Count= 0;
/* Clip error angle */
if (angle > C_thr_phi)
angle = C_thr_phi;
if (angle < -C_thr_phi)
angle = -C_thr_phi;
Phi_32 = psi_past[C_N_del] - psi_past[0]; /* F13.19 */
/* Phi = angle - Phi_32*/
Phi_32 = ((WORD32) angle << 4) - Phi_32;
/* F1.15 * 4 = F13.19 */
#if 0 /* LoCosto code */
Phi = (WORD16)((WORD32)((WORD32)(Phi_32 + (1<<3)))/ (1<<4)); /* F17.15 */
#else /* TCS211 reconstruction */
Phi = Phi_32 >> 4;
#endif
/* (F0.20 * F1.15) >> 16 = F13.19 */
#if 0 /* LoCosto code with saturation and L */
var_32 = (L * Phi + (1<<15)) >> 16;
psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],var_32);
#else /* matching TCS211 */
psi_past[C_N_del] += (10433 * Phi) >> 16;
#endif
}
else
{
/************************************/
/* Prediction */
/************************************/
// Only predict in dedicated mode
// NO prediction in idle mode
// l1a_l1s_com.dedic_set.SignalCode = NULL
if ( (l1_config.params.rgap_algo != 0) &&
((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
#if L1_GPRS
|| l1_mode==PACKET_TRANSFER_MODE
#endif
))
{
/* Prediction of psi during reception gaps */
B_Count
+= *frame_count;
/* Predict psi ONLY when we have sufficient measurements available */
/* If we don't have enough measurements we don't do anything (= 0th order estimation)*/
// Was the consecutive bad SNRs threshold value exceeded?
if (B_Count>= l1_config.params.rgap_bad_snr_count_B) {
// Predict with 0th order estimation is the default
// Predict with 1st order estimation
if (l1_config.params.rgap_algo >= 1)
{
#if 0 /* LoCosto code with saturation */
psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],
((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE))
);
#else /* matching TCS211 */
psi_past[C_N_del] +=
((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE));
#endif
}
B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B;
// Indicate by raising first_avg flag that a reception gap has occurred
// I.e. the psi_avg table must be reinitialised after leaving reception gap
first_avg = 1;
// Counters in estimation part must also be reset
M_Count = 0;
good_snr = 0;
psi_avg[0] = 0;
}
}
}
/* Quantize psi value */
/* F0.19 * 16.0 = F16.19 */
#if 0 /* LoCosto code */
var_32 = Sat_Mult_20sign_16unsign(psi_past[C_N_del],l1_config.params.psi_st_inv);
#else /* TCS211 reconstruction */
var_32 = psi_past[C_N_del] * l1_config.params.psi_st_inv;
#endif
#if(RF_FAM == 61)
/* In order to implement the NINT function for a F13.3,*/
/*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */
var_16 = (WORD16)
((WORD32)((WORD32)(var_32 + (1<<17))) / (1<<18));
var_16 = var_16 * 4;
#else
/* In order to implement the NINT function for a F13.3,*/
/*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */
var_16 = (WORD16)
((WORD32)((WORD32)(var_32 + (1<<18))) / (1<<19));
var_16 = var_16 * 8;
#endif
if (var_16 > C_max_step)
psi_quant = C_max_step;
else if (var_16 < C_min_step)
psi_quant = C_min_step;
else
psi_quant = var_16; /* F13.3 */
break;
} // switch phase
*frame_count = 0;
return (psi_quant >> 3); /* F16.0 */
} /* end case algo 2 */
/* algo1 + init + estimator/predictor */
case ALGO_AFC_KALMAN_PREDICTOR:
{
if ((phase==AFC_INIT_CENTER) || (phase==AFC_INIT_MAX) || (phase==AFC_INIT_MIN))
{
// WARNING
// In this case, "angle" variable contains EEPROM_AFC initialization value
// directly loaded from EEPROM, and "snr" variable is not meaningful.
/* Static variables initialisation */
quant_avg = 0;
M_Count = 0;
#if 0 /* present in LoCosto but not in TCS211 */
for (i = 0; i <=C_PSI_AVG_SIZE_D ; i++) //omaps00090550
psi_avg[i] = 0;
#endif
first_avg = 1;
good_snr = 0;
// DAC search algorithm is as follows - up to 12 attempts are made
// DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min ->
// The first four attempts are made on DAC_center
// The next four attempts are made on DAC_max
// The last four attempts are made on DAC_min
// There are statistical reasons for trying four times
switch (phase) {
case AFC_INIT_CENTER:
Psi_quant[C_N_del] = l1_config.params.afc_dac_center;
break;
case AFC_INIT_MAX:
Psi_quant[C_N_del] = l1_config.params.afc_dac_max;
break;
case AFC_INIT_MIN:
Psi_quant[C_N_del] = l1_config.params.afc_dac_min;
break;
default :
break;
}
P=C_cov_start;
Psi=0;
if (angle>C_max_step)
Psi_quant[C_N_del]=C_max_step;
else
if(angle<C_min_step)
Psi_quant[C_N_del]=C_min_step;
else Psi_quant[C_N_del]=angle;
/* F0.32 * F13.3 = F5.35 */
Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout);
/* (F13.3<<16 )+(F5.35>>16) = F13.19 */
Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16);
} /* end AFC_INIT*/
else
{
if (phase==AFC_OPEN_LOOP)
{
/* relaod last good values in the ALGO */
if (l1s.spurious_fb_detected == TRUE)
{
for(i=0;i<C_N_del+1;i++)
Psi_quant[i] = old_Psi_quant[i];
Psi = old_Psi;
l1s.spurious_fb_detected = FALSE;
}
/* Save the old values in memory */
for(i=0;i<C_N_del+1;i++)
old_Psi_quant[i] = Psi_quant[i];
old_Psi = Psi;
/* delay line for Psi_quant values */
for (i=1;i<=C_N_del;i++)
Psi_quant[i-1]=Psi_quant[i];
var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4;
/*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */
#if(RF_FAM == 61)
/* In order to implement the NINT function for a F16.0, we check */
/* if var_32 + 0.5*2**18 is a multiple of 2**18 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
var_16=quotient*4;
#else
/* In order to implement the NINT function for a F16.0, we check */
/* if var_32 + 0.5*2**19 is a multiple of 2**19 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
var_16=quotient*8;
#endif
#if 0 /* LoCosto code with saturation */
if (var_16>C_max_step)
Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step);
else if (var_16<C_min_step)
Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step);
else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */
#else /* matching TCS211 */
if (var_16>C_max_step)
Psi_quant[C_N_del] += C_max_step;
else if (var_16<C_min_step)
Psi_quant[C_N_del] += C_min_step;
else Psi_quant[C_N_del] += var_16; /* F13.3 */
#endif
/* F0.32 * F13.3 = F5.35 */
Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout);
/* (F13.3<<16 )+(F5.35>>16) = F13.19 */
Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16);
}/*end if AFC_OPEN_LOOP*/
else
{
/* delay line for Psi_quant values */
for (i=1;i<=C_N_del;i++)
Psi_quant[i-1]=Psi_quant[i];
/************************************/
/* Estimation */
/************************************/
if ( (l1_config.params.rgap_algo != 0) &&
((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
#if L1_GPRS
|| l1_mode==PACKET_TRANSFER_MODE
#endif
))
{
M_Count += *frame_count;
if (snr >= l1_config.params.afc_snr_thr) {
// Accumulate average over N TDMA frames
psi_avg[0] += psi_past[C_N_del];
// Count number of good snr's within window_avg_size chunks
good_snr++;
}
// M_Count >= M ?
if (M_Count >= l1_config.params.afc_win_avg_size_M) {
// M_Count counts how far we have reached in the window_avg_size blocks
// Scale estimate relative to good snr - Don't divide by zero in case of bad measurements
if (good_snr > 0)
psi_avg[0] /= good_snr;
// We now have an estimation over window_avg_size TDMA frames in psi_avg[0]
if (first_avg == 1) {
first_avg = 0;
// Use first estimation as best guess for the other avg values
// This is used both at initialisation and when returning from reception gap
for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++)
psi_avg[i] = psi_avg[0];
}
// Estimation 1st order
// Use biggest window to reduce noise effects signal in psi values
// NOTE: Due to performance issues division by MSIZE is in predictor
if (l1_config.params.rgap_algo >= 1) {
quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]);
}
for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--)
psi_avg[i+1] = psi_avg[i];
psi_avg[0] = 0;
M_Count = 0;
good_snr = 0;
}
} else {
// No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset!
first_avg = 1;
M_Count = 0;
good_snr = 0;
psi_avg[0] = 0;
}
/********************/
/* Filter algorithm */
/********************/
/* Covariance error is increased of C_Q */
P=P+(*frame_count)*C_Q;
/* Clipping of P */
if (P>C_thr_P) P=C_thr_P;
if (snr>=C_thr_snr)
{
/* Clipping of error angle */
if (angle>C_thr_phi)
angle=C_thr_phi;
if (angle<-C_thr_phi)
angle=-C_thr_phi;
/* Kalman gain */
/*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */
/*C_a0_kalman=0.01 */
/*C_g_kalman =0.05 */
num=(C_g_kalman/snr)+P+C_a0_kalman;
/* (F2.30 / F6.10) = F 12.20 */
/* denom = P << 19 = F 1.39 */
/* extension of denom=P to a 40 bits variable */
/* denom (F12.20) << 16 = F 4.36 */
guard1=(WORD16)((WORD32)P>>16);
/* denom = P<<16 = (F4.36) << 3 = F 1.39 */
denomH=(UWORD16)P;
/* Low part of denom is equal to 0, because P has been 16 */
/* bits left shifted previously. */
denomH_3msb=(denomH>>13)&0x0007;
guard1=(guard1<<3)|denomH_3msb;
denomH<<=3;
denom=denomH<<16; //(UWORD32) removed typecast omaps00090550
/* num + guard1 are a 40 bits representation of P */
/* In order to compute P(F1.39)/num, we sample P in guard1 */
/* (scaled to a 32 bits number) and num (32 bits number) */
/* K = ((guard1<<24)/num)<<8 + (denom/num) */
var1=(WORD32)guard1<<24;
var1=var1/num;
var1=(WORD32)var1<<8;
/* var2 is an unsigned variable, var1 contains signed guard*/
/* bits. */
#if 0 /* fixed LoCosto code */
var2= ((WORD32)(denom)/(num)); //omaps00090550
#else /* matching TCS211 */
var2= denom / num;
#endif
K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */
/* F13.19 << 1 = F12.20 */
/* Clipping of the Kalman gain */
if (K>=C_thr_K)
K=C_thr_K;
/*******************************************************/
/* P=(1-K)*P = 0.8 * 0.5 at maximum */
/*******************************************************/
/* Perform a positive variable F12.20 multiplication by*/
/* positive variable F12.20 */
var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */
guard1=0; /* positive variable */
var1=UMult_40b(P,var_16,&guard1);
var_16=(WORD16)((1048576L-K)>>16);
/* acchigh(1-K) = F12.20 */
var2=P*var_16; /* var2 = 0x80000 * 0xc */
/* at maximum, so result */
/* is 32 bits WORD32 and */
/* equal 0x600000 */
/* extension of var2 to a 40 bits variable : var2<<16 */
guard2=(WORD16)((WORD32)var2>>16);
guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL);
var2=var2<<16;
var_32=Add_40b(guard1guard2,var1,var2,&guardout);
/* var_32 (F8.40) >> 16 = F8.24 */
LGuard=(WORD32)guardout<<16;
var1=(UWORD32)var_32>>16;
/* var_32 >> 4 = F12.20 */
P=(var1+LGuard)>>4;
Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout);
/* F0.32 * F13.3 = F5.35 */
LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */
/* F13.19 */
var1=(UWORD32)Phi_32>>16;
Phi_32=Psi-(LGuard+var1); /* F13.19 */
/*Phi=angle-Phi_32*/
Phi_32=((WORD32)angle<<4)-Phi_32;
/* F1.15 * 4 = F13.19 */
Phi=(WORD16)(Phi_32>>4); /* F17.15 */
/*var1=K*Phi F12.20 * F1.15 = 13.35 */
guard1=0;
var1=Mult_40b(K,Phi,&guard1);
/* var1 (F13.35) >> 16 */
/* F13.19 */
LGuard=(WORD32)guard1<<16;
var1=(UWORD32)var1>>16;
Psi+=var1+LGuard;
} else {
/************************************/
/* Prediction */
/************************************/
// Only predict in dedicated mode
// NO prediction in idle mode
// l1a_l1s_com.dedic_set.SignalCode = NULL
if ( (l1_config.params.rgap_algo != 0) &&
((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
#if L1_GPRS
|| l1_mode==PACKET_TRANSFER_MODE
#endif
))
{
/* Prediction of psi during reception gaps */
B_Count+= *frame_count;
/* Predict psi ONLY when we have sufficient measurements available */
/* If we don't have enough measurements we don't do anything (= 0th order estimation)*/
// Was the consecutive bad SNRs threshold value exceeded?
if (B_Count>= l1_config.params.rgap_bad_snr_count_B) {
// Predict with 0th order estimation is the default
// Predict with 1st order estimation
if (l1_config.params.rgap_algo >= 1)
Psi += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE));
B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B;
// Indicate by raising first_avg flag that a reception gap has occurred
// I.e. the psi_avg table must be reinitialised after leaving reception gap
first_avg = 1;
// Counters in estimation part must also be reset
M_Count = 0;
good_snr = 0;
psi_avg[0] = 0;
}
}
}
/* Quantize psi value */
var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout);
/* F13.19 * C = F13.19 */
#if(RF_FAM == 61)
/* In order to implement the NINT function for a F13.3, we check */
/* if var_32 + 0.5*2**18 is a multiple of 2**18 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
var_16=quotient*4;
#else
/* In order to implement the NINT function for a F13.3, we check */
/* if var_32 + 0.5*2**19 is a multiple of 2**19 */
quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
var_16=quotient*8;
#endif
if (var_16>C_max_step)
Psi_quant[C_N_del]=C_max_step;
else
if(var_16<C_min_step)
Psi_quant[C_N_del]=C_min_step;
else Psi_quant[C_N_del]=var_16; /* F13.3 */
}/*end AFC_CLOSE_LOOP*/
} /* end else AFC_INIT*/
*frame_count = 0;
return(Psi_quant[C_N_del]>>3); /* F16.0 */
} /* end case algo 3 */
#endif
#if (VCXO_ALGO == 1)
default:
return 0;
//omaps00090550 break;
} // end of Switch
#endif
} /* end l1ctl_afc */
/************************************/
/* Automatic timing control (TOA) */
/************************************/
#if (TOA_ALGO == 2)
#define TOA_DEBUG_ENABLE 0
#if (TOA_DEBUG_ENABLE == 1)
#define TOA_MAKE_ZERO 0
#define TOA_LOG_BUFFER_LENGTH 4096
typedef struct
{
UWORD16 SNR_val;
UWORD16 TOA_val;
UWORD16 l1_mode;
UWORD16 toa_frames_counter;
UWORD16 fn_mod42432;
}T_TOA_log_debug;
T_TOA_log_debug toa_log_debug[TOA_LOG_BUFFER_LENGTH];
UWORD32 toa_log_index;
UWORD32 toa_make_zero_f;
#endif
/*-------------------------------------------------------*/
/* l1ctl_toa() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
WORD16 l1ctl_toa (UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val)
{
WORD16 TOA_period_len = TOA_PERIOD_LEN [l1_mode];
WORD16 TOA_SHIFT=ISH_INVALID;
UWORD16 cumul_abs;
WORD16 cumul_sign;
WORD32 prod_tmp, div_tmp,prod_sign;
WORD32 toa_update_flag=0;
WORD16 cumul;
UWORD16 cumul_counter;
#if (NEW_TOA_ALGO == 1)
UWORD16 Trans_active;
static WORD16 cumul_noTrans =0;
static UWORD16 period_counter_noTrans =0;
if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
#if L1_GPRS
|| l1_mode==PACKET_TRANSFER_MODE
#endif
)
Trans_active=TRUE;
else Trans_active=FALSE;
#endif
if (phase==TOA_INIT)
{
#if (NEW_TOA_ALGO == 1)
cumul_noTrans =0;
period_counter_noTrans =0;
#endif
l1s.toa_var.toa_frames_counter=0;
l1s.toa_var.toa_accumul_counter=0;
l1s.toa_var.toa_accumul_value=0;
#if (TOA_DEBUG_ENABLE == 1)
toa_log_index = 0;
#if (TOA_MAKE_ZERO == 1)
toa_make_zero_f = 1;
#else
toa_make_zero_f = 0;
#endif
#endif
return (TOA_SHIFT);
}
cumul = l1s.toa_var.toa_accumul_value;
cumul_counter = l1s.toa_var.toa_accumul_counter;
#if (TOA_DEBUG_ENABLE == 1)
toa_log_debug[toa_log_index].SNR_val = SNR_val;
toa_log_debug[toa_log_index].TOA_val = TOA_val;
toa_log_debug[toa_log_index].l1_mode = l1_mode;
toa_log_debug[toa_log_index].toa_frames_counter = l1s.toa_var.toa_frames_counter;
toa_log_debug[toa_log_index].fn_mod42432 = l1s.actual_time.fn_mod42432;
toa_log_index++;
if(toa_log_index == TOA_LOG_BUFFER_LENGTH)
{
toa_log_index = 0;
}
#endif /* #if (TOA_DEBUG_ENABLE == 1) */
#if (TRACE_TYPE == 5)
trace_toa_sim_ctrl(SNR_val, TOA_val, l1_mode, l1s.toa_var.toa_frames_counter,
l1s.toa_var.toa_accumul_counter, l1s.toa_var.toa_accumul_value);
#endif
l1s.toa_var.toa_frames_counter++;
{
/* Fix for TOA */
#define DSP_CALC_NO_TABS_HO 0x3CA4
UWORD16 *toa_ho_fix;
toa_ho_fix=(UWORD16 *)API_address_dsp2mcu(DSP_CALC_NO_TABS_HO);
if ((TOA_val >= 22) || (TOA_val <= 6)) {
*toa_ho_fix = 1;
}
if (*toa_ho_fix == 1) {
if((TOA_val <= 18) && (TOA_val >= 10)) {
*toa_ho_fix = 0;
}
} else {
*toa_ho_fix = 0;
}
}
#if (NEW_TOA_ALGO == 1)
if (Trans_active)
{
#endif
if (SNR_val>= L1_TOA_SNR_THRESHOLD)
{
cumul_counter++;
prod_tmp = L1_TOA_LAMBDA * cumul;
prod_tmp = prod_tmp + ((0x00004000)); // basically for rounding
div_tmp = ((prod_tmp >> 15) & (0x0000FFFF));
cumul = div_tmp;
// implemented below is
// cumul = cumul + (L1_TOA_ONE_MINUS_LAMBDA * signum(TOA_Val - L1_TOA_EXPECTED_TOA))
if(TOA_val > L1_TOA_EXPECTED_TOA) {
cumul = cumul + L1_TOA_ONE_MINUS_LAMBDA;
}
else if (TOA_val < L1_TOA_EXPECTED_TOA) {
cumul = cumul - L1_TOA_ONE_MINUS_LAMBDA;
}
} // End if SNR_val
if(l1s.toa_var.toa_update_flag == TRUE)
{
toa_update_flag = 1;
}
if (toa_update_flag)
{
cumul_sign = (cumul>0)? 1: -1;
cumul_abs = cumul_sign*cumul;
if(cumul_counter <= 5)
{
TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_15)? 0: cumul_sign;
}
else if(cumul_counter == 6)
{
TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_20)? 0: cumul_sign;
}
else if(cumul_counter == 7)
{
TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_25)? 0: cumul_sign;
}
else if(cumul_counter >= 8)
{
TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_30)? 0: cumul_sign;
}
#if (TRACE_TYPE==1) || (TRACE_TYPE==4)
trace_info.toa_trace_var.toa_accumul_value = cumul;
trace_info.toa_trace_var.toa_accumul_counter = cumul_counter;
trace_info.toa_trace_var.toa_frames_counter = l1s.toa_var.toa_frames_counter;
#endif
cumul = 0;
cumul_counter = 0;
l1s.toa_var.toa_frames_counter = 0;
l1s.toa_var.toa_update_flag = FALSE;
#if (TOA_DEBUG_ENABLE == 1)
#if (TOA_MAKE_ZERO == 1)
if (toa_make_zero_f == 1)
{
TOA_SHIFT=0;
}
#endif /*#if (TOA_DEBUG_ENABLE == 1)*/
#endif /*#if (TOA_MAKE_ZERO == 1)*/
} // end of if toa_update_flag
#if (NEW_TOA_ALGO == 1)
}
else
{
period_counter_noTrans++;
if (SNR_val>= L1_TOA_SNR_THRESHOLD)
{
cumul_noTrans = cumul_noTrans + TOA_val - L1_TOA_EXPECTED_TOA;
} // End if SNR_val
if (l1s.toa_var.toa_update_flag == TRUE)
{
switch (period_counter_noTrans)
{
case 2:
if (cumul_noTrans>=0)
TOA_SHIFT = (cumul_noTrans+1) >>1 ;
else
TOA_SHIFT = (cumul_noTrans) >>1 ;
break;
case 3: /* Not fully accurate rounding*/
if (cumul_noTrans>=0)
TOA_SHIFT = (cumul_noTrans+2)/3 ;
else
TOA_SHIFT = (cumul_noTrans-2)/3 ;
break;
case 4:
if (cumul_noTrans>=0)
TOA_SHIFT = (cumul_noTrans+2) >>2 ;
else
TOA_SHIFT = (cumul_noTrans+1) >>2 ;
break;
default:
TOA_SHIFT = cumul_noTrans;
break;
} /* end switch*/
if (TOA_SHIFT>8)
TOA_SHIFT =8;
if (TOA_SHIFT<-8)
TOA_SHIFT =-8;
#if (TRACE_TYPE==1) || (TRACE_TYPE==4)
trace_info.toa_trace_var.toa_accumul_value = cumul_noTrans;
trace_info.toa_trace_var.toa_accumul_counter = period_counter_noTrans;
trace_info.toa_trace_var.toa_frames_counter = period_counter_noTrans;
#endif
cumul_noTrans = 0;
period_counter_noTrans = 0;
l1s.toa_var.toa_update_flag = FALSE;
#if (TOA_DEBUG_ENABLE == 1)
#if (TOA_MAKE_ZERO == 1)
if (toa_make_zero_f == 1)
{
TOA_SHIFT=0;
}
#endif /*#if (TOA_DEBUG_ENABLE == 1)*/
#endif /*#if (TOA_MAKE_ZERO == 1)*/
} // end if update_flag
}
#endif
// error a TOA is waiting to be updated in the TPU and will be erased
#if (TRACE_TYPE==1) || (TRACE_TYPE==4)
if (l1s.toa_var.toa_shift != ISH_INVALID)
{
l1_trace_toa_not_updated (); // should not occur!!
}
#endif
if (TOA_SHIFT != ISH_INVALID) // new TOA => set the mask frames
{
// Set mask counter to 2 (2 frames masked).
l1s.toa_var.toa_snr_mask = 2;
}
l1s.toa_var.toa_accumul_value = cumul;
l1s.toa_var.toa_accumul_counter = cumul_counter;
return(TOA_SHIFT);
} // l1ctl_toa
#else
/*-------------------------------------------------------*/
/* l1ctl_toa_update() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
WORD16 l1ctl_toa_update(UWORD32 *TOASP, UWORD32 l1_mode)
{
static UWORD16 Old_TOA_estimated=12; //unit is Qbit
UWORD32 TOAMAX;
WORD16 IZW,ISH,i;
UWORD32 TOA_estimated=0; //unit is Qbit
UWORD16 Trans_active;
if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
#if L1_GPRS
|| l1_mode==PACKET_TRANSFER_MODE
#endif
)
Trans_active=TRUE;
else Trans_active=FALSE;
/* TOA offset computation and clock adjustement */
TOAMAX=0;
for (i=1;i<TOA_HISTO_LEN;i++)
{
if (TOASP[i]>TOAMAX)
TOAMAX=TOASP[i];
}
TOAMAX >>= C_RED;
i=1;IZW=0;
while (i<TOA_HISTO_LEN && IZW==0)
{
if (TOASP[i]>=TOAMAX)
IZW=i;
i++;
}
/* Estimated TOA calculation */
if (TOASP[IZW-1]<(2*TOAMAX/3))
{
TOA_estimated=IZW;
TOA_estimated *= 4; // unit in QBit
}
else
{
#if 0 /* fix added in LoCosto, not present in TCS211 */
UWORD32 TOA_divisor;
#endif
TOA_estimated=(TOASP[IZW]*IZW)+(TOASP[IZW-1]*(IZW-1)>>C_GEW);
TOA_estimated *= 8; //F13.3 in order to have qBit precision
#if 0
TOA_divisor = TOASP[IZW]+(TOASP[IZW-1] >> C_GEW);
if (TOA_divisor!=0)
#endif
{
TOA_estimated /= TOASP[IZW]+(TOASP[IZW-1] >> C_GEW);
TOA_estimated /= 2; // unit in QBit ("/8" then "*4" = "/2")
}
#if 0
else
{
TOA_estimated = 0;
}
#endif
}
if (Trans_active)
TOA_estimated=(TOA_estimated+(Old_TOA_estimated+4)) / 2;
/* Offset calculation*/
if (TOA_estimated>=17 || TOA_estimated<=15)
ISH=TOA_estimated - 16;
else
ISH=0;
if (Trans_active)
{
if (ISH>1) ISH=1;
if (ISH<-1) ISH=-1;
}
else
{
if (ISH>8) ISH=8;
if (ISH<-8) ISH=-8;
}
Old_TOA_estimated = TOA_estimated - ISH - 4;
return (ISH);
}
/*-------------------------------------------------------*/
/* l1ctl_toa() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : generate an histogram of TOA weighted */
/* with SNR */
/*-------------------------------------------------------*/
WORD16 l1ctl_toa(UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val, BOOL *toa_update, UWORD16 *toa_period_count
#if (FF_L1_FAST_DECODING == 1)
, UWORD8 skipped_values
#endif
)
{
// xSignalHeaderRec *msg;
UWORD16 i;
WORD16 TOA_period_len = TOA_PERIOD_LEN[l1_mode];
static UWORD32 histo[TOA_HISTO_LEN];
static WORD16 period_counter=0;
UWORD32 SNR_ZW;
WORD16 ISH=ISH_INVALID;
UWORD8 histo_center;
#if 0
if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE))
histo_center=4;
else
histo_center=5;
#else
histo_center=4;
#endif
if (phase==TOA_INIT)
{
period_counter=0;
for (i=0;i<TOA_HISTO_LEN;i++)
histo[i]=0;
histo[histo_center]=128; //F6.10
return(ISH);
}
#if (FF_L1_FAST_DECODING == 1)
/* Manage any missing bursts due to fast decoding */
period_counter += skipped_values;
#endif
period_counter++;
/* Filter update */
if (SNR_val>=C_SNRGR)
{
if (SNR_val>C_SNR_THR)
SNR_ZW=C_SNR_THR;
else
SNR_ZW=SNR_val;
histo[TOA_val+1]+=SNR_ZW; /* if TOA=0 histo[1]++ */
/* if TOA=1 histo[2]++ */
/* ... */
/* if TOA=9 histo[10]++ */
/* histo[0] is reserved for computation */
}
#if L1_GPRS
if (l1_mode==PACKET_TRANSFER_MODE)
{
if (*toa_update)
{
// Get ISH.
ISH = l1ctl_toa_update(histo, l1_mode);
//reset TOA period length counter
period_counter=0;
//reset histogram
for (i=0;i<TOA_HISTO_LEN;i++)
histo[i]=0;
histo[histo_center]=128; //F6.10
*toa_update = FALSE; // reset TOA update flag
*toa_period_count = 0; // reset TOA period counter
}
}
else
#endif
if (period_counter>=TOA_period_len)
// It is time to compute a new ISH and to reset the histogram.
// Rem: ">=" is very important since a "l1 mode" change can give
// a "TOA_period_len" smaller than the previous one an
// therefore a "period_counter" may be already higher than
// the new "TOA_period_len".
{
// Get ISH.
ISH = l1ctl_toa_update(histo, l1_mode);
//reset TOA period length counter
period_counter=0;
//reset histogram
for (i=0;i<TOA_HISTO_LEN;i++)
histo[i]=0;
histo[histo_center]=128; //F6.10
}
// error a TOA is waiting to be updated in the TPU and will be erased
#if (TRACE_TYPE==1) || (TRACE_TYPE==4)
if (l1s.toa_shift != ISH_INVALID)
{
l1_trace_toa_not_updated(); // should not occur !!
}
#endif
if (ISH != ISH_INVALID) // new TOA => set the mask frames
{
// Set mask counter to 2 (2 frames masked).
l1s.toa_snr_mask = 2;
}
return(ISH);
}
#endif
/*-------------------------------------------------------*/
/* l1ctl_txpwr() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
UWORD8 l1ctl_txpwr(UWORD8 target_txpwr, UWORD8 current_txpwr)
{
if(target_txpwr > current_txpwr)
{
current_txpwr ++; // Increase TX power by 2 dB.
}
else
if(target_txpwr < current_txpwr)
{
current_txpwr --; // Decrease TX power by 2 dB.
}
return(current_txpwr);
}
/************************************/
/* Automatic Gain Control */
/************************************/
/*-------------------------------------------------------*/
/* l1ctl_encode_delta1() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if(L1_FF_MULTIBAND == 0)
WORD8 l1ctl_encode_delta1(UWORD16 radio_freq)
{
WORD8 freq_band;
switch(l1_config.std.id)
{
case GSM:
case GSM_E:
case DCS1800:
case PCS1900:
case GSM850:
freq_band = l1_config.std.cal_freq1_band1;
break;
case DUAL:
case DUALEXT:
case DUAL_US:
if(radio_freq >= l1_config.std.first_radio_freq_band2)
freq_band = l1_config.std.cal_freq1_band2;
else
freq_band = l1_config.std.cal_freq1_band1;
break;
}
return(freq_band);
}
#endif
/*-------------------------------------------------------*/
/* l1ctl_encode_lna() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if (L1_FF_MULTIBAND == 0)
void l1ctl_encode_lna( UWORD8 input_level,
UWORD8 *lna_state,
UWORD16 radio_freq)
{
/*** LNA Hysteresis is implemented as following :
|
On|---<>----+-------+
| | |
LNA | | |
| ^ v
| | |
| | |
Off| +-------+----<>-----
+--------------------------------
50 40 30 20 input_level /-dBm
THR_HIGH THR_LOW ***/
if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) ||(l1_config.std.id == DUAL_US)) &&
(radio_freq >= l1_config.std.first_radio_freq_band2))
{
if ( input_level > l1_config.std.lna_switch_thr_high_band2 ) // < -40dBm ?
{
*lna_state = LNA_ON; // lna_off = FALSE
}
else if ( input_level < l1_config.std.lna_switch_thr_low_band2 ) // > -30dBm ?
{
*lna_state = LNA_OFF; // lna off = TRUE
}
}
else
{
if ( input_level > l1_config.std.lna_switch_thr_high_band1 ) // < -40dBm ?
{
*lna_state = LNA_ON; // lna_off = FALSE
}
else if ( input_level < l1_config.std.lna_switch_thr_low_band1 ) // > -30dBm ?
{
*lna_state = LNA_OFF; // lna off = TRUE
}
}
}
#endif
/*-------------------------------------------------------*/
/* l1ctl_csgc() */
/*-------------------------------------------------------*/
/* Description: */
/* ============ */
/* If we are running the first pass of a measurement */
/* session, we use the HIGH_AGC default agc setting to */
/* compute the input level from the measured power from */
/* the DSP. If this input level is saturated we set a */
/* saturation flag, otherwise we validate the measure and*/
/* store, for the considered carrier, the input level. */
/* When all the carriers have been scanned and some have */
/* been flagged "saturated", we measure them with the */
/* LOW_AGC agc setting, then store, for the considered */
/* carrier, the input level. */
/*-------------------------------------------------------*/
UWORD8 l1ctl_csgc(UWORD8 pm, UWORD16 radio_freq)
{
WORD16 current_IL, current_calibrated_IL;
WORD8 delta1_freq, delta2_freq;
WORD16 delta_drp_gain=0;
UWORD32 index;
UWORD16 g_magic;
#if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0)
UWORD16 arfcn;
#endif
UWORD16 dco_algo_ctl_pw_temp = 0;
UWORD8 if_ctl = 0;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
#endif
#if (L1_FF_MULTIBAND == 0)
// initialize index
index = radio_freq - l1_config.std.radio_freq_index_offset;
#else
index =
l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq);
#endif /*if(L1_FF_MULTIBAND == 0)*/
delta1_freq = l1ctl_encode_delta1(radio_freq);
delta2_freq = l1ctl_encode_delta2(radio_freq);
g_magic = l1ctl_get_g_magic(radio_freq);
#if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0)
arfcn = Convert_l1_radio_freq(radio_freq);
#endif
if (l1a_l1s_com.full_list.meas_1st_pass_read)
{
// We validate or not power measure (pm) for the considered carrier
// with measurement achieved with HIGH_AGC setting. We are working
// with non calibrated IL to avoid saturation
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
#if (PWMEAS_IF_MODE_FORCE == 0)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID ,
0,
radio_freq,if_threshold);
#else
if_ctl = IF_120KHZ_DSP;
dco_algo_ctl_pw_temp = DCO_IF_0KHZ;
#endif
#if (L1_FF_MULTIBAND == 0)
delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format
#else
delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format
#endif // MULTIBAND == 0 else
if(if_ctl == IF_100KHZ_DSP){
delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
if (0==pm) // Check and filter illegal pm value by using last valid IL
current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level);
else
{
#if TESTMODE
if (!l1_config.agc_enable)
current_IL = (WORD16)(-(pm - ( (l1_config.tmode.rx_params.agc << 1) - delta_drp_gain ) - g_magic));
else
#endif
current_IL = (WORD16)(-(pm - ( (l1_config.params.high_agc <<1) - delta_drp_gain) - g_magic));
// for array index purpose, we work with positive IL
}
// NOTE: lna_value do not appear in this formula because lna is ALWAYS ON for
// ---- this algorithm, so lna_value=lna_off*l1_config.params.lna_att_gsm=0
if ((current_IL<l1_config.params.high_agc_sat_thr) // Warning : we are working with positive IL
// for IL_2_AGC_xx index purpose.
#if TESTMODE
&& (l1_config.agc_enable)
#endif
)
{
// pm is saturated so measure is not valid
l1a_l1s_com.full_list.nbr_sat_carrier_ctrl++;
l1a_l1s_com.full_list.nbr_sat_carrier_read++;
l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 1;
}
else
{
current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
#if TESTMODE
// When running with fixed AGC setting saturated carriers may occur:
// protect against negative IL;
if ((!l1_config.agc_enable) && (current_calibrated_IL < 0))
{
current_calibrated_IL=0;
current_IL=0;
}
#endif
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
if (current_IL>INDEX_MAX)
current_IL=INDEX_MAX;
// we validate the measure and save input_level and lna_off fields.
l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
&(l1a_l1s_com.last_input_level[index].lna_off),
radio_freq);
l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL +
l1ctl_get_lna_att(radio_freq) *
l1a_l1s_com.last_input_level[index].lna_off;
l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0;
}
}
else // 2nd pass if any.
{
// we validate the measure and save input_level and lna_off(always 0)
// fields.
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID,
0,radio_freq,if_threshold);
#if (L1_FF_MULTIBAND == 0)
delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format
#else
delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format
#endif
if(if_ctl == IF_100KHZ_DSP){
delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
if (0==pm) // Check and filter illegal pm value by using last valid IL
current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level);
else
current_IL = (WORD16)(-(pm - ( (l1_config.params.low_agc << 1) - delta_drp_gain ) - g_magic));
current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
if (current_IL>INDEX_MAX)
current_IL=INDEX_MAX;
l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
&(l1a_l1s_com.last_input_level[index].lna_off),
radio_freq);
l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL +
l1ctl_get_lna_att(radio_freq) *
l1a_l1s_com.last_input_level[index].lna_off;
l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0;
}
return((UWORD8)current_calibrated_IL);
}
/*-------------------------------------------------------*/
/* l1ctl_pgc() */
/*-------------------------------------------------------*/
/* Description : For a given radio_freq, last_known_agc is */
/* ============ based on a prior knowledge (the last */
/* stored input_level for the considered */
/* carrier). From the power measurement on */
/* this carrier (pm), we update the */
/* input_level for this carrier, for the */
/* next task to control. */
/*-------------------------------------------------------*/
UWORD8 l1ctl_pgc(UWORD8 pm, UWORD8 last_known_il,
UWORD8 lna_off, UWORD16 radio_freq)
{
WORD32 last_known_agc;
WORD32 current_IL, current_calibrated_IL;
WORD8 delta1_freq, delta2_freq;
WORD16 delta_drp_gain=0;
WORD32 index, lna_value;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD16 arfcn;
#endif
UWORD16 dco_algo_ctl_pw_temp = 0;
UWORD8 if_ctl = 0;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
#endif
#if (L1_FF_MULTIBAND == 0)
// initialize index
index = radio_freq - l1_config.std.radio_freq_index_offset;
#else
index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq);
#endif // #if (L1_FF_MULTIBAND == 0) else
delta1_freq = l1ctl_encode_delta1(radio_freq);
delta2_freq = l1ctl_encode_delta2(radio_freq);
lna_value = lna_off * l1ctl_get_lna_att(radio_freq);
last_known_agc = (Cust_get_agc_from_IL(radio_freq, last_known_il >> 1, PWR_ID)) << 1;
// F7.1 in order to be compatible with
// pm and IL formats [-20,+140 in F7.1]
// contain the input_level value we use
// in the associated CTL task to build
// the agc used in this CTL.
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
#if (L1_FF_MULTIBAND == 0)
arfcn = Convert_l1_radio_freq(radio_freq);
#else
arfcn = radio_freq;
#endif
#endif
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
#if (PWMEAS_IF_MODE_FORCE == 0)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
last_known_il,
radio_freq,if_threshold);
#else
if_ctl = IF_120KHZ_DSP;
dco_algo_ctl_pw_temp = DCO_IF_0KHZ;
#endif
delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
if(if_ctl == IF_100KHZ_DSP){
delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
if (0==pm) // Check and filter illegal pm value by using last valid IL
current_IL = l1a_l1s_com.last_input_level[index].input_level - lna_value;
else
current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
if (current_IL>INDEX_MAX)
current_IL=INDEX_MAX;
// we validate the measure and save input_level and lna_off fields
l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
&(l1a_l1s_com.last_input_level[index].lna_off),
radio_freq);
l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL +
l1ctl_get_lna_att(radio_freq) *
l1a_l1s_com.last_input_level[index].lna_off;
return((UWORD8)current_calibrated_IL);
}
/*-------------------------------------------------------*/
/* l1ctl_pgc2() */
/*-------------------------------------------------------*/
/* Description : */
/* ============= */
/* from power measurement pm_high_agc, */
/* achieve with an HIGH_AGC setting, and pm_low_agc */
/* achieve with a LOW_AGC seeting, we deduce the new */
/* AGC to apply in the next CTL task. */
/*-------------------------------------------------------*/
void l1ctl_pgc2(UWORD8 pm_high_agc, UWORD8 pm_low_agc, UWORD16 radio_freq)
{
UWORD8 pm;
WORD32 IL_high_agc, IL_low_agc, new_IL, current_calibrated_IL;
WORD8 delta1_freq, delta2_freq;
WORD16 delta_high_drp_gain=0;
WORD16 delta_low_drp_gain=0;
WORD32 index;
UWORD16 g_magic;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD16 arfcn;
#endif
UWORD16 dco_algo_ctl_pw_temp = 0;
UWORD8 if_ctl = 0;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
#endif
#if (L1_FF_MULTIBAND == 0)
// initialize index
index = radio_freq - l1_config.std.radio_freq_index_offset;
#else
index =
l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq);
#endif // #if (L1_FF_MULTIBAND == 0) else
delta1_freq = l1ctl_encode_delta1(radio_freq);
delta2_freq = l1ctl_encode_delta2(radio_freq);
g_magic = l1ctl_get_g_magic(radio_freq);
// lna_off was set to 0 during CTRL, so lna_value = 0 do not appear in the following
// formula.
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
#if (L1_FF_MULTIBAND == 0)
arfcn = Convert_l1_radio_freq(radio_freq);
#else
arfcn = radio_freq;
#endif
#endif
if ((0==pm_high_agc) || (0==pm_low_agc)) // Check and filter illegal pm value(s) by using last valid IL
new_IL = l1a_l1s_com.last_input_level[index].input_level;
else
{
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
#if (PWMEAS_IF_MODE_FORCE == 0)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID ,
0,
radio_freq,if_threshold);
#else
if_ctl = IF_120KHZ_DSP;
dco_algo_ctl_pw_temp = DCO_IF_0KHZ;
#endif
delta_high_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format
delta_low_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format
if(if_ctl == IF_100KHZ_DSP){
delta_high_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
delta_low_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_high_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
delta_low_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
IL_high_agc = -(pm_high_agc - ((l1_config.params.high_agc << 1) - delta_high_drp_gain) - g_magic);
IL_low_agc = -(pm_low_agc - ((l1_config.params.low_agc << 1) - delta_low_drp_gain) - g_magic);
// HIGH_AGC and LOW_AGC are formatted to F7.1 in order to be compatible with
// pm and IL formats
if (IL_low_agc>=l1_config.params.low_agc_noise_thr)
// pm_low_agc was on the noise floor, so not valid
{
// whatever the value of pm_high_agc, we consider it
// as the right setting
new_IL = IL_high_agc;
pm = pm_high_agc;
}
else
{
// pm_low_agc is valid.
if (IL_high_agc<=l1_config.params.high_agc_sat_thr)
{
// pm_high_agc is not valid, it's saturated.
new_IL = IL_low_agc;
pm = pm_low_agc;
}
else
{
// both pm_low_agc and pm_high_agc are valid, so we test the one that
// gives the maximum input level and consider it as the right setting.
if (IL_high_agc<=IL_low_agc)
{
new_IL = IL_high_agc;
pm = pm_high_agc;
}
else
{
new_IL = IL_low_agc;
pm = pm_low_agc;
}
}
}
}
#if (TRACE_TYPE == 1) || (TRACE_TYPE == 4)
RTTL1_FILL_MON_MEAS(pm_high_agc, IL_high_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq)
RTTL1_FILL_MON_MEAS(pm_low_agc, IL_low_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq)
#endif
current_calibrated_IL = new_IL - delta1_freq - delta2_freq;
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
if (new_IL>INDEX_MAX)
new_IL=INDEX_MAX;
// Updating of input_level and lna_off fields in order to correctly
// setting the AGC for the next task.
l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
&(l1a_l1s_com.last_input_level[index].lna_off),
radio_freq);
l1a_l1s_com.last_input_level[index].input_level = (UWORD8)new_IL +
l1ctl_get_lna_att(radio_freq) *
l1a_l1s_com.last_input_level[index].lna_off;
}
/*-------------------------------------------------------*/
/* l1ctl_find_max() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
UWORD8 l1ctl_find_max(UWORD8 *buff, UWORD8 buffer_len)
{
// WARNING: for array index purpose we work with POSITIVE input level
// so maximum search for negative numbers is equivalent to
// minimum search for positive numbers!!!!!!
// (-30 > -120 but 30 < 120)
UWORD8 maximum = 240;
UWORD8 i;
for (i=0; i<buffer_len; i++)
{
if (buff[i]<maximum)
maximum=buff[i];
}
return(maximum);
}
/*-------------------------------------------------------*/
/* l1ctl_pagc() */
/*-------------------------------------------------------*/
/* Description : */
/* =========== */
/* We deduce the last_known_agc from the last stored */
/* input_level for the considered carrier. We use this */
/* agc value to "build" the input level linked to the pm */
/* we have just read. */
/* This input level is used to feed a fifo of 4 elements */
/* and then compute an input_level maximum. This value is*/
/* used to update the input_level for this carrier. This */
/* input_level will be used for the next task to control.*/
/*-------------------------------------------------------*/
UWORD8 l1ctl_pagc(UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr)
{
WORD8 delta1_freq, delta2_freq;
WORD16 delta_drp_gain=0;
WORD32 last_known_agc;
UWORD8 IL_max;
WORD32 current_IL, current_calibrated_IL;
UWORD8 i;
WORD32 lna_value;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD16 arfcn;
#endif
UWORD8 lna_off;
UWORD16 dco_algo_ctl_pw_temp = 0;
UWORD8 if_ctl = 0;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
#endif
delta1_freq = l1ctl_encode_delta1(radio_freq);
delta2_freq = l1ctl_encode_delta2(radio_freq);
// Update fifo
for (i=3;i>0;i--)
l1a_l1s_com.Scell_info.buff_beacon[i]=l1a_l1s_com.Scell_info.buff_beacon[i-1];
// from the lna state (ON/OFF) we compute the attenuation
// that was applied to signal when performing the power
// measure.
lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq);
// Compute applied agc for this pm
last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1;
// F7.1 in order to be compatible
// with pm and IL formats
// contain the input_level value we use
// in the associated CTL task to build
// the agc used in this CTL.
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
#if (L1_FF_MULTIBAND == 0)
arfcn = Convert_l1_radio_freq(radio_freq);
#else
arfcn = radio_freq;
#endif
#endif
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
l1a_l1s_com.Scell_used_IL_dd.input_level,
radio_freq,if_threshold);
lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off;
delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
if(if_ctl == IF_100KHZ_DSP){
delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
if (0==pm) // Check and filter illegal pm value by using last valid IL
current_IL = IL_info_ptr->input_level - lna_value;
else
current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
if (current_IL>INDEX_MAX)
current_IL=INDEX_MAX;
l1a_l1s_com.Scell_info.buff_beacon[0] = (UWORD8)current_IL;
IL_max = l1ctl_find_max(&(l1a_l1s_com.Scell_info.buff_beacon[0]),4);
//input levels are always stored with lna_on
l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1),
&(IL_info_ptr->lna_off),
radio_freq );
IL_info_ptr->input_level = IL_max + l1ctl_get_lna_att(radio_freq) *
IL_info_ptr->lna_off;
#if L2_L3_SIMUL
#if (DEBUG_TRACE==BUFFER_TRACE_PAGC)
buffer_trace(4,IL_info_ptr->input_level,last_known_agc,
l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, IL_max >> 1, MAX_ID));
#endif
#endif
return((UWORD8)current_calibrated_IL);
}
/*-------------------------------------------------------*/
/* l1ctl_dpagc() */
/*-------------------------------------------------------*/
/* Description : */
/* =========== */
/* Based on the same principle as the one used for PAGC */
/* algorithm except that we feed 3 different fifo: */
/* 1) one is dedicated to BCCH carrier */
/* 2) another one is dedicated to all the other type of */
/* bursts */
/* 3) the last one is dedicated to non DTX influenced */
/* bursts */
/*-------------------------------------------------------*/
UWORD8 l1ctl_dpagc(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr)
{
UWORD8 av_G_all, av_G_DTX;
UWORD8 max_G_all, max_G_DTX;
WORD32 last_known_agc, new_IL, current_calibrated_IL;
WORD8 delta1_freq, delta2_freq;
WORD16 delta_drp_gain=0;
UWORD8 i;
UWORD8 *tab_ptr;
T_DEDIC_SET *aset;
WORD32 lna_value;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD16 arfcn;
#endif
UWORD8 lna_off;
UWORD16 dco_algo_ctl_pw_temp = 0;
UWORD8 if_ctl = 0;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
#endif
delta1_freq = l1ctl_encode_delta1(radio_freq);
delta2_freq = l1ctl_encode_delta2(radio_freq);
aset = l1a_l1s_com.dedic_set.aset;
if (beacon)
tab_ptr = l1a_l1s_com.Scell_info.buff_beacon;
else
tab_ptr = aset->G_all;
// Update fifo
for (i=DPAGC_FIFO_LEN-1;i>0;i--)
tab_ptr[i]=tab_ptr[i-1];
#if TESTMODE
if (!l1_config.agc_enable)
{
// AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero)
// corresponds to the lna_off bit
last_known_agc = (l1_config.tmode.rx_params.agc) << 1;
lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq);
}
else
#endif
{
#if DPAGC_MAX_FLAG
last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1;
// F7.1 in order to be compatible with pm and IL formats
#else
last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1;
// F7.1 in order to be compatible with pm and IL formats
#endif
// input_level_dd : contain the input_level value we use
// in the associated CTL task to build the agc used in this CTL.
lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq);
}
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
#if (L1_FF_MULTIBAND == 0)
arfcn = Convert_l1_radio_freq(radio_freq);
#else
arfcn = radio_freq;
#endif
#endif
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
l1a_l1s_com.Scell_used_IL_dd.input_level,
radio_freq,if_threshold);
lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off;
delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
if(if_ctl == IF_100KHZ_DSP){
delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
if (0==pm) // Check and filter illegal pm value by using last valid IL
new_IL = IL_info_ptr->input_level - lna_value;
else
new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
current_calibrated_IL = new_IL - delta1_freq - delta2_freq;
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
#if TESTMODE
if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1
{
// Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0)
for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--)
{
l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1];
}
l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1
l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1
}
#endif
if (new_IL>INDEX_MAX)
new_IL=INDEX_MAX;
tab_ptr[0] = (UWORD8)new_IL;
if (dtx_on && !beacon)
{
// Update DTX fifo
for (i=DPAGC_FIFO_LEN-1;i>0;i--)
aset->G_DTX[i]=aset->G_DTX[i-1];
aset->G_DTX[0]=tab_ptr[0];
}
/* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */
#if DPAGC_MAX_FLAG
max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN);
if (!beacon)
{
max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN);
// WARNING: for array index purpose we work with POSITIVE input level
// so maximum search for negative numbers is equivalent to
// minimum search for positive numbers!!!!!!
// (-30 > -120 but 30 < 120)
if (max_G_all <= max_G_DTX)
new_IL = max_G_all;
else
new_IL = max_G_DTX;
}
else
new_IL = max_G_all;
#else
av_G_all=av_G_DTX=0;
for (i=0;i<DPAGC_FIFO_LEN;i++)
av_G_all += tab_ptr[i];
av_G_all /= DPAGC_FIFO_LEN;
if (!beacon)
{
for (i=0;i<DPAGC_FIFO_LEN;i++)
av_G_DTX += aset->G_DTX[i];
av_G_DTX /= DPAGC_FIFO_LEN;
if (av_G_all >= av_G_DTX)
new_IL = av_G_all;
else
new_IL = av_G_DTX;
}
else
new_IL = av_G_all;
#endif
// Updating of input_level and lna_off fields in order to correctly
// setting the AGC for the next task.
// input_level is always store with lna_on
l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1),
&(IL_info_ptr->lna_off),
radio_freq );
IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) *
IL_info_ptr->lna_off;
#if L2_L3_SIMUL
#if (DEBUG_TRACE==BUFFER_TRACE_DPAGC)
buffer_trace(4,IL_info_ptr->input_level,last_known_agc,
l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID));
#endif
#endif
return((UWORD8)current_calibrated_IL);
}
#if (AMR == 1)
/*-------------------------------------------------------*/
/* l1ctl_dpagc_amr() */
/*-------------------------------------------------------*/
/* Description : */
/* =========== */
/* Based on the same principle as the one used for DPAGC */
/* algorithm except that the way to feed the G_dtx is */
/* different */
/*-------------------------------------------------------*/
UWORD8 l1ctl_dpagc_amr(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr)
{
UWORD8 av_G_all, av_G_DTX;
UWORD8 max_G_all, max_G_DTX, max_il;
WORD32 last_known_agc, new_IL, current_calibrated_IL;
WORD8 delta1_freq, delta2_freq;
WORD16 delta_drp_gain=0;
UWORD8 i;
UWORD8 *tab_ptr, *tab_amr_ptr;
T_DEDIC_SET *aset;
WORD32 lna_value;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD16 arfcn;
#endif
UWORD8 lna_off;
UWORD16 dco_algo_ctl_pw_temp = 0;
UWORD8 if_ctl = 0;
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
#endif
delta1_freq = l1ctl_encode_delta1(radio_freq);
delta2_freq = l1ctl_encode_delta2(radio_freq);
aset = l1a_l1s_com.dedic_set.aset;
if (beacon)
tab_ptr = l1a_l1s_com.Scell_info.buff_beacon;
else
tab_ptr = aset->G_all;
// Update fifo
for (i=DPAGC_FIFO_LEN-1;i>0;i--)
tab_ptr[i]=tab_ptr[i-1];
tab_amr_ptr = aset->G_amr;
for (i=DPAGC_AMR_FIFO_LEN-1;i>0;i--)
tab_amr_ptr[i]=tab_amr_ptr[i-1];
#if TESTMODE
if (!l1_config.agc_enable)
{
// AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero)
// corresponds to the lna_off bit
last_known_agc = (l1_config.tmode.rx_params.agc) << 1;
lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq);
}
else
#endif
{
#if DPAGC_MAX_FLAG
last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1;
// F7.1 in order to be compatible with pm and IL formats
#else
last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1;
// F7.1 in order to be compatible with pm and IL formats
#endif
// input_level_dd : contain the input_level value we use
// in the associated CTL task to build the agc used in this CTL.
lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq);
}
#if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
#if (L1_FF_MULTIBAND == 0)
arfcn = Convert_l1_radio_freq(radio_freq);
#else
arfcn = radio_freq;
#endif
#endif
#if(RF_FAM == 61)
#if (CODE_VERSION != SIMULATION)
cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
l1a_l1s_com.Scell_used_IL_dd.input_level,
radio_freq,if_threshold);
lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off;
delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
if(if_ctl == IF_100KHZ_DSP){
delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
}
else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
}
#endif
#endif
if (0==pm) // Check and filter illegal pm value by using last valid IL
new_IL = IL_info_ptr->input_level - lna_value;
else
new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
current_calibrated_IL = new_IL - delta1_freq - delta2_freq;
// Protect IL stores against overflow
if (current_calibrated_IL>INDEX_MAX)
current_calibrated_IL=INDEX_MAX;
#if TESTMODE
if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1
{
// Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0)
for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--)
{
l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1];
}
l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1
l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1
}
#endif
if (new_IL>INDEX_MAX)
new_IL=INDEX_MAX;
tab_ptr[0] = (UWORD8)new_IL;
tab_amr_ptr[0] = (UWORD8)new_IL;
if (dtx_on && !beacon)
{
// a new AMR block is received, feed the G_dtx with the max_il of the block
for (i=DPAGC_FIFO_LEN-1;i>0;i--)
aset->G_DTX[i]=aset->G_DTX[i-1];
if (l1a_l1s_com.dedic_set.aset->achan_ptr->mode == TCH_AHS_MODE)
{
// Keep the max_il between the last 2 bursts
if (aset->G_amr[0] > aset->G_amr[1])
max_il = aset->G_amr[0];
else
max_il = aset->G_amr[1];
}
else
{
// Keep the max_il between the last 4 bursts
max_il = l1ctl_find_max(&aset->G_amr[0], DPAGC_AMR_FIFO_LEN);
}
aset->G_DTX[0]= max_il;
}
/* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */
#if DPAGC_MAX_FLAG
max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN);
if (!beacon)
{
max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN);
// WARNING: for array index purpose we work with POSITIVE input level
// so maximum search for negative numbers is equivalent to
// minimum search for positive numbers!!!!!!
// (-30 > -120 but 30 < 120)
if (max_G_all <= max_G_DTX)
new_IL = max_G_all;
else
new_IL = max_G_DTX;
}
else
new_IL = max_G_all;
#else
av_G_all=av_G_DTX=0;
for (i=0;i<DPAGC_FIFO_LEN;i++)
av_G_all += tab_ptr[i];
av_G_all /= DPAGC_FIFO_LEN;
if (!beacon)
{
for (i=0;i<DPAGC_FIFO_LEN;i++)
av_G_DTX += aset->G_DTX[i];
av_G_DTX /= DPAGC_FIFO_LEN;
if (av_G_all >= av_G_DTX)
new_IL = av_G_all;
else
new_IL = av_G_DTX;
}
else
new_IL = av_G_all;
#endif
// Updating of input_level and lna_off fields in order to correctly
// setting the AGC for the next task.
// input_level is always store with lna_on
l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1),
&(IL_info_ptr->lna_off),
radio_freq );
IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) *
IL_info_ptr->lna_off;
#if L2_L3_SIMUL
#if (DEBUG_TRACE==BUFFER_TRACE_DPAGC)
buffer_trace(4,IL_info_ptr->input_level,last_known_agc,
l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID));
#endif
#endif
return((UWORD8)current_calibrated_IL);
}
#endif // AMR == 1
/*-------------------------------------------------------*/
/* l1ctl_get_g_magic() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if (L1_FF_MULTIBAND == 0)
UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq)
{
if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US))
{
if (radio_freq >= l1_config.std.first_radio_freq_band2)
return(l1_config.std.g_magic_band2);
else
return(l1_config.std.g_magic_band1);
}
else
return(l1_config.std.g_magic_band1);
}
#endif
/*-------------------------------------------------------*/
/* l1ctl_get_lna_att() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if (L1_FF_MULTIBAND == 0)
UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq)
{
if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US))
{
if (radio_freq >= l1_config.std.first_radio_freq_band2)
return(l1_config.std.lna_att_band2);
else
return(l1_config.std.lna_att_band1);
}
else
return(l1_config.std.lna_att_band1);
}
#endif
/*-------------------------------------------------------*/
/* l1ctl_update_TPU_with_toa() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
void l1ctl_update_TPU_with_toa(void)
{
#if (TOA_ALGO != 0)
WORD16 toa_shift;
#if (TOA_ALGO == 2)
toa_shift = l1s.toa_var.toa_shift;
#else
toa_shift = l1s.toa_shift;
#endif
if (toa_shift != ISH_INVALID)
// New ISH (TOA shift) has been stored in "l1s.toa_shift".
{
// NEW !!! For EOTD measurements in IDLE mode, cut AFC updates...
#if (L1_EOTD==1)
#if (L1_GPRS)
if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) ||
(l1a_l1s_com.mode == DEDIC_MODE)||
(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED))
#else
if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) ||
(l1a_l1s_com.mode == DEDIC_MODE))
#endif
{
// In dedicated or transfer modes we need to track an TOA
// updates to post correct th results, else E-OTD implementation
// has qb errors...
if( (l1a_l1s_com.nsync.eotd_meas_session == TRUE)
&& (l1a_l1s_com.nsync.eotd_toa_phase == 1) )
{
l1a_l1s_com.nsync.eotd_toa_tracking += toa_shift;
}
#endif
// Update tpu offset.
l1s.tpu_offset = (l1s.tpu_offset + TPU_CLOCK_RANGE + toa_shift) % TPU_CLOCK_RANGE;
#if (TRACE_TYPE==1) || (TRACE_TYPE==4)
#if (GSM_IDLE_RAM == 0)
l1_trace_new_toa();
#else
l1_trace_new_toa_intram();
#endif
#endif
#if (L1_EOTD==1)
}
#endif
#if (TRACE_TYPE == 5)
#if (TOA_ALGO == 2)
trace_toa_sim_update (toa_shift,l1s.tpu_offset);
#endif
#endif
// Reset ISH.
#if (TOA_ALGO == 2)
l1s.toa_var.toa_shift = ISH_INVALID; // Reset the ISH.
#else
l1s.toa_shift = ISH_INVALID; // Reset the ISH.
#endif
}
#endif
}
/*-------------------------------------------------------*/
/* l1ctl_saic() */
/*-------------------------------------------------------*/
/* Parameters : */
/* Return : */
/* Functionality : */
/*-------------------------------------------------------*/
#if (L1_SAIC != 0)
#define SWH_CHANTAP_INIT 0xFFD068CE
#if (NEW_SNR_THRESHOLD == 1)
UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode, UWORD8 task, UWORD8 * saic_flag)
#else
UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode)
#endif /* NEW_SNR_THRESHOLD */
{
UWORD16 SWH_flag = 0;
UWORD8 CSF_Filter_choice = L1_SAIC_HARDWARE_FILTER;
#if (NEW_SNR_THRESHOLD == 0)
volatile UWORD16 *ptr;
UWORD8 saic_flag;
#endif /* NEW_SNR_THRESHOLD */
#if (NEW_SNR_THRESHOLD == 0)
ptr = (volatile UWORD16 * ) (SWH_CHANTAP_INIT);
*ptr = 0;
saic_flag=1;
#else
*saic_flag=0;
#endif
switch (l1_mode)
{
case DEDIC_MODE: // GSM DEDICATED MODE
{
#if (NEW_SNR_THRESHOLD == 1)
*saic_flag=1;
#endif
if(IL_for_rxlev < L1_SAIC_GENIE_GSM_DEDIC_THRESHOLD)
{
SWH_flag=1;
}
break;
}
#if L1_GPRS
case PACKET_TRANSFER_MODE: // PACKET TRANSFER MODE
{
#if (NEW_SNR_THRESHOLD == 0)
#if (L1_SAIC == 1)
if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD)
{
*ptr = 4;
}
#endif /*#if (L1_SAIC == 3)*/
#endif
#if (L1_SAIC == 3)
if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD)
{
SWH_flag = 1;
}
#endif /*#if (L1_SAIC == 3)*/
break;
}
#endif /*#if L1_GPRS*/
default: /* GSM OR GPRS IDLE MODES */
{
#if ((L1_SAIC == 2)||(L1_SAIC == 3))
if(IL_for_rxlev < L1_SAIC_GENIE_GSM_GPRS_IDLE_THRESHOLD)
{
SWH_flag=1;
}
#endif
break;
}
}
l1ddsp_load_swh_flag (SWH_flag ,
#if (NEW_SNR_THRESHOLD == 0)
saic_flag
#else
*saic_flag
#endif
);
if(SWH_flag == 1)
{
CSF_Filter_choice = L1_SAIC_PROGRAMMABLE_FILTER;
}
#if (TRACE_TYPE == 1) || (TRACE_TYPE == 4)
l1_trace_saic(SWH_flag,
#if (NEW_SNR_THRESHOLD == 0)
saic_flag
#else
*saic_flag
#endif
);
#endif
#if (TRACE_TYPE == 5)
trace_saic_sim(IL_for_rxlev, l1_mode, SWH_flag);
#endif
return(CSF_Filter_choice);
}
#endif
#if (FF_L1_FAST_DECODING == 1)
/*-----------------------------------------------------------------*/
/* l1ctl_pagc_missing_bursts */
/*-----------------------------------------------------------------*/
/* */
/* Description: */
/* ------------ */
/* When fast decoding is active, fewer bursts are decoded. As a */
/* result, fewer gain values are available. The PAGC algo must */
/* be updated with the missed values. */
/* */
/* Input parameters: */
/* ----------------- */
/* UWORD8 skipped_values: the number of skipped bursts due to fast */
/* decoding. */
/* */
/* Input parameters from globals: */
/* ------------------------------ */
/* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */
/* l1_config.params.il_min: minimum level */
/* */
/* Output parameters: */
/* ------------------ */
/* none */
/* */
/* Modified parameters from globals: */
/* --------------------------------- */
/* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */
/* */
/*-----------------------------------------------------------------*/
void l1ctl_pagc_missing_bursts (UWORD8 skipped_values)
{
UWORD8 i = 0;
/* skipped_values cannot be greater than 3, otherwise this is an error
* and the PAGC algorithm mustn't be updated. */
if (skipped_values > 3)
{
return;
}
/* Update fifo by removing skipped_values of samples */
for (i = 3; i > (skipped_values - 1); i--)
{
l1a_l1s_com.Scell_info.buff_beacon[i] = l1a_l1s_com.Scell_info.buff_beacon[i-skipped_values];
}
/* Insert minimum IL level as many times a burst has been skipped */
for (i = 0; i < skipped_values; i++)
{
l1a_l1s_com.Scell_info.buff_beacon[i] = l1_config.params.il_min;
}
}
#endif /* #if (FF_L1_FAST_DECODING == 1) */