FreeCalypso > hg > fc-magnetite
view src/cs/drivers/drv_app/abb/board/abb_inth.c @ 629:3231dd9b38c1
armio.c: make GPIOs 8 & 13 outputs driving 1 on all "classic" targets
Calypso GPIOs 8 & 13 are pinmuxed with MCUEN1 & MCUEN2, respectively,
and on powerup these pins are MCUEN, i.e., outputs driving 1. TI's code
for C-Sample and earlier turns them into GPIOs configured as outputs also
driving 1 - so far, so good - but TI's code for BOARD 41 (which covers
D-Sample, Leonardo and all real world Calypso devices derived from the
latter) switches them from MCUEN to GPIOs, but then leaves them as inputs.
Given that the hardware powerup state of these two pins is outputs driving 1,
every Calypso board design MUST be compatible with such driving; typically
these GPIO signals will be either unused and unconnected or connected as
outputs driving some peripheral. Turning these pins into GPIO inputs will
result in floating inputs on every reasonably-wired board, thus I am
convinced that this configuration is nothing but a bug on the part of
whoever wrote this code at TI.
This floating input bug had already been fixed earlier for GTA modem and
FCDEV3B targets; the present change makes the fix unconditional for all
"classic" targets. The newly affected targets are D-Sample, Leonardo,
Tango and GTM900.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 02 Jan 2020 05:38:26 +0000 |
parents | 92dbfa906f66 |
children |
line wrap: on
line source
/**********************************************************************************/ /* TEXAS INSTRUMENTS INCORPORATED PROPRIETARY INFORMATION */ /* */ /* Property of Texas Instruments -- For Unrestricted Internal Use Only */ /* Unauthorized reproduction and/or distribution is strictly prohibited. This */ /* product is protected under copyright law and trade secret law as an */ /* unpublished work. Created 1987, (C) Copyright 1997 Texas Instruments. All */ /* rights reserved. */ /* */ /* */ /* Filename : abb_inth.c */ /* */ /* Description : Functions to manage the ABB device interrupt. */ /* The Serial Port Interface is used to connect the TI */ /* Analog BaseBand (ABB). */ /* It is assumed that the ABB is connected as the SPI */ /* device 0, and ABB interrupt is mapped as external IT. */ /* */ /* Author : Pascal PUEL */ /* */ /* Version number : 1.2 */ /* */ /* Date and time : 07/02/03 */ /* */ /* Previous delta : Creation */ /* */ /**********************************************************************************/ /* */ /* 17/12/03 */ /* The original abb_inth.c has been splitted between the actual abb_inth.c */ /* located in drv_apps directory and abb_inth_core.c located in drv_core */ /* directory. */ /* */ /**********************************************************************************/ #include "l1sw.cfg" #include "chipset.cfg" #include "swconfig.cfg" #include "sys.cfg" #include "fc-target.h" #include "l1_macro.h" #include "l1_confg.h" #include <string.h> #include "abb/abb_inth.h" #include "nucleus.h" #include "rv/rv_defined_swe.h" // for RVM_PWR_SWE #if (CHIPSET == 12) #include "sys_inth.h" #else #include "inth/iq.h" #endif #include "cust_os.h" #include "l1_signa.h" #include "abb/abb.h" #if defined (OP_WCP) #include "ffs/ffs.h" #include "ffs/board/ffspcm.h" #endif #include "rvm/rvm_use_id_list.h" // for SPI_USE_ID #include "spi/spi_env.h" #include "spi/spi_process.h" // for ABB_EXT_IRQ_EVT #include "kpd/kpd_power_api.h" // for kpd_power_key_pressed() #include "power/power.h" #ifdef RVM_LCC_SWE #include "lcc/lcc_api.h" #include "lcc/lcc_cfg_i.h" #include "lcc/lcc.h" #include "lcc/lcc_env.h" #endif #ifdef RVM_FCHG_SWE #include "fchg/fchg_struct.h" #include "fchg/fchg_messages.h" #endif /********************************************************************************/ /* */ /* Function Name: spi_abb_read_int_reg_callback */ /* */ /* Purpose: Callback function */ /* Called when an external interrupt has occured and the */ /* ABB interrupt register has been read. */ /* */ /********************************************************************************/ void spi_abb_read_int_reg_callback(SYS_UWORD16 *read_value) { SYS_UWORD16 loop_count; SYS_UWORD16 status_value; xSignalHeaderRec *adc_msg; volatile SYS_UWORD8 i; #if (defined(RVM_LCC_SWE) || defined(RVM_FCHG_SWE)) struct pwr_adc_ind_s *addr; extern T_PWR_CTRL_BLOCK *pwr_ctrl; #endif // check all the possible causes of the ABB IT if (*read_value & PUSHOFF_IT_STS) { /* Push Button from ON to OFF */ if (SPI_GBL_INFO_PTR->is_gsm_on == TRUE) { NU_Sleep(SHORT_OFF_KEY_PRESSED); // WCP Patch #if (OP_WCP == 1) // Backup of GSM FFS is remotely handled by MPU-S // we trigger the backup upon each ON->OFF transition ffs_backup (); #else /* Since this callback function is called from the SPI task it can't be interrupted by another task so we can directly access the SPI through the low-level driver */ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2)) status_value = (ABB_Read_Status() & ONREFLT); #elif (ANLG_FAM == 3) status_value = (ABB_Read_Register_on_page(PAGE1, VRPCCFG) & PWOND); #endif if (status_value == PWR_OFF_KEY_PRESSED) { /* Inform keypad that key ON/OFF has been pressed */ #ifndef CONFIG_TARGET_COMPAL kpd_power_key_pressed(); #endif loop_count = 0; /* Wait loop for Power-OFF */ while ((loop_count < OFF_LOOP_COUNT) && (status_value == PWR_OFF_KEY_PRESSED)) { NU_Sleep(SHORT_OFF_KEY_PRESSED); #if ((ANLG_FAM == 1) || (ANLG_FAM == 2)) status_value = (ABB_Read_Status() & ONREFLT); #elif (ANLG_FAM == 3) status_value = (ABB_Read_Register_on_page(PAGE1, VRPCCFG) & PWOND); #endif loop_count++; } if (status_value == PWR_OFF_KEY_PRESSED) /* Power-OFF request detected */ { rvf_send_trace("IQ EXT: Power Off request",25, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, SPI_USE_ID); Power_OFF_Button(); } } #endif //WCP } else /* GSM OFF */ { rvf_send_trace("IQ EXT: Power On request",24, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, SPI_USE_ID); Power_ON_Button(); } } else if (*read_value & REMOT_IT_STS) { rvf_send_trace("IQ EXT: Power Off remote request",32, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, SPI_USE_ID); /* 'Remote Power' from ON to OFF */ Power_OFF_Remote(); } else if (*read_value & ADCEND_IT_STS) { rvf_send_trace("IQ EXT: ADC End",15, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, SPI_USE_ID); /* ADC end of conversion */ ABB_Read_ADC(&SPI_GBL_INFO_PTR->adc_result[0]); adc_msg = os_alloc_sig(sizeof(T_CST_ADC_RESULT)); if(adc_msg != NULL) { adc_msg->SignalCode = CST_ADC_RESULT; for(i=0;i<MADC_NUMBER_OF_MEAS;i++) { ((T_CST_ADC_RESULT *)(adc_msg->SigP))->adc_result[i] = SPI_GBL_INFO_PTR->adc_result[i]; } os_send_sig(adc_msg, RRM1_QUEUE); #if (defined(RVM_LCC_SWE) || defined(RVM_FCHG_SWE)) // Send ADC measurement to PWR (LCC) task // NOTE that memory is allocated externally in the PWR task if (rvf_get_buf(pwr_ctrl->prim_id, sizeof(struct pwr_adc_ind_s), (void *)&addr) == RVF_RED) { rvf_send_trace("rvf_get_buf failed",18, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, LCC_USE_ID); /* Unmask External interrupt */ IQ_Unmask(IQ_EXT); // rvf_dump_mem(); return; } addr->header.msg_id = PWR_ADC_IND; addr->header.src_addr_id = SPI_GBL_INFO_PTR->addr_id; addr->header.dest_addr_id = pwr_ctrl->addr_id; addr->header.callback_func = NULL; // FIXME: memcpy from SPI_GBL_INFO_PTR->adc_result - make sure it has not been de-allocated memcpy(addr->data, SPI_GBL_INFO_PTR->adc_result, 8*2); addr->data[9] = ABB_Read_Status();; // Read & assign ITSTATREG status so we save the polling in PWR task!! if (rvf_send_msg(pwr_ctrl->addr_id, addr) != RV_OK) { rvf_send_trace("SPI FATAL: Send failed!",23, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, LCC_USE_ID); } #endif } } #if (defined(RVM_PWR_SWE) || defined(RVM_LCC_SWE) || defined(RVM_FCHG_SWE)) else if (*read_value & CHARGER_IT_STS) { /* Charger plug IN or OUT */ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2)) status_value = ABB_Read_Status(); #elif (ANLG_FAM == 3) status_value = ABB_Read_Register_on_page(PAGE1, VRPCCFG); #endif if (status_value & CHGPRES) { rvf_send_trace("IQ EXT: Charger Plug",20, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, SPI_USE_ID); #ifdef RVM_PWR_SWE PWR_Charger_Plug(); /* charger plugged IN */ #endif #if (defined(RVM_LCC_SWE) || defined(RVM_FCHG_SWE)) // Forward charger plug indication to PWR (LCC) task // NOTE that memory is allocated externally in the PWR task if (rvf_get_buf(pwr_ctrl->prim_id, sizeof(struct pwr_req_s), (void *)&addr) == RVF_RED) { rvf_send_trace("rvf_get_buf failed#1",20, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, LCC_USE_ID); rvf_dump_mem(); } addr->header.msg_id = PWR_CHARGER_PLUGGED_IND; addr->header.src_addr_id = SPI_GBL_INFO_PTR->addr_id; addr->header.dest_addr_id = pwr_ctrl->addr_id; addr->header.callback_func = NULL; if (rvf_send_msg(pwr_ctrl->addr_id, addr) != RV_OK) { rvf_send_trace("SPI FATAL: Send failed!",23, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, LCC_USE_ID); } #endif } else { rvf_send_trace("IQ EXT: Charger Unplug",22, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, SPI_USE_ID); #ifdef RVM_PWR_SWE PWR_Charger_Unplug(); /* charger plugged OUT */ #endif #if (defined(RVM_LCC_SWE) || defined(RVM_FCHG_SWE)) // Forward charger unplug indication to PWR (LCC) task // NOTE that memory is allocated externally in the PWR task if (rvf_get_buf(pwr_ctrl->prim_id, sizeof(struct pwr_req_s), (void *)&addr) == RVF_RED) { rvf_send_trace("rvf_get_buf failed#2",20, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, LCC_USE_ID); rvf_dump_mem(); } addr->header.msg_id = PWR_CHARGER_UNPLUGGED_IND; addr->header.src_addr_id = SPI_GBL_INFO_PTR->addr_id; addr->header.dest_addr_id = pwr_ctrl->addr_id; addr->header.callback_func = NULL; if (rvf_send_msg(pwr_ctrl->addr_id, addr) != RV_OK) { rvf_send_trace("SPI FATAL: Send failed!",23, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, LCC_USE_ID); } #endif } } #endif /* RVM_PWR_SWE || RVM_LCC_SWE */ /* Unmask External interrupt */ #if (CHIPSET == 12) // Unmask ABB ext interrupt F_INTH_ENABLE_ONE_IT(C_INTH_ABB_IRQ_IT); #else // Unmask external (ABB) interrupt IQ_Unmask(IQ_EXT); #endif }