view src/gpf3/ccd/asn1_seq.c @ 695:530f71d65c20

uartfax.c: pull from Tourmaline (GTM900 RI output) In addition to the primary intent of bringing in GTM900 RI output support, pulling uartfax.c wholesale from Tourmaline also changes the initial_time argument in the two NU_Create_Timer() calls from 0 to 1. This change is required for the new version of Nucleus used in Tourmaline and Selenite (and apparently also used by TI in LoCosto), and it is harmless (no effect) for the original TCS211 version of Nucleus used in Magnetite. The new philosophical model being adopted is that Tourmaline is our new development head firmware, whereas Magnetite will now be maintained similarly to how Linux maintainers treat stable kernels: changes will be backported from Tourmaline if they are deemed appropriate for stable modem firmware.
author Mychaela Falconia <falcon@freecalypso.org>
date Sat, 24 Oct 2020 17:33:10 +0000
parents c41a534f33c6
children
line wrap: on
line source

/* 
+----------------------------------------------------------------------------- 
|  Project :  
|  Modul   : asn1_seq.c
+----------------------------------------------------------------------------- 
|  Copyright 2002 Texas Instruments Berlin, AG 
|                 All rights reserved. 
| 
|                 This file is confidential and a trade secret of Texas 
|                 Instruments Berlin, AG 
|                 The receipt of or possession of this file does not convey 
|                 any rights to reproduce or disclose its contents or to 
|                 manufacture, use, or sell anything it may describe, in 
|                 whole, or in part, without the specific written consent of 
|                 Texas Instruments Berlin, AG. 
+----------------------------------------------------------------------------- 
|  Purpose :  Definition of encoding and decoding functions for ASN1_SEQUENCE
|             elements 
+----------------------------------------------------------------------------- 
*/ 

#define ASN1_SEQ_C

/*
 * Standard definitions like UCHAR, ERROR etc.
 */
#include "typedefs.h"
#include "header.h"

/*
 * Prototypes of ccd (USE_DRIVER EQ undef) for prototypes only
 * look at ccdapi.h
 */
#undef USE_DRIVER
#include "ccdapi.h"

/*
 * Types and functions for bit access and manipulation
 */
#include "ccd_globs.h"
#include "bitfun.h"

/*
 * Prototypes and constants in the common part of ccd
 */
#include "ccd.h"
#include "ccd_codingtypes.h"

/*
 * Declaration of coder/decoder tables
 */
#include "ccdtable.h"
#include "ccddata.h"

EXTERN T_FUNC_POINTER codec[MAX_CODEC_ID+1][2];

#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)              MODULE  : asn1_seq               |
| STATE   : code                    ROUTINE : Read_SEQ_BitMap        |
+--------------------------------------------------------------------+

  PURPOSE : Decode the bit-map preamble for OPTIONAL elements 
            or those with DEFAULT value.
*/
void Read_SEQ_BitMap (const ULONG first_elem, const ULONG last_elem, T_CCD_Globs *globs)
{
  ULONG elem = first_elem;
  while (elem < last_elem)
  {
    if (melem[elem].optional)
    {
      /* 
       * For optional elements read the corresponding bit in the preamble
       * and set the valid flag in the C-Structure to it.
       */             
      if (melem[elem].elemType < 'P' OR melem[elem].elemType > 'R')
      {
        globs->pstruct[melem[elem].structOffs] = (UBYTE) bf_readBit(globs);
      }
      else
      {
        if(bf_readBit(globs)) /*elemType P, Q or R*/
        {
          /*If present set the pointer to -1 (0xFFFF) - anything else than NULL, because the 
          element is present*/
          *(void**) &globs->pstruct[melem[elem].structOffs] = (void *) 0xFFFF;
        }
        else /*Not present set the pointer to NULL*/
          *(void**) &globs->pstruct[melem[elem].structOffs] = NULL;
      
      }
    }
    /* 
     * For optional elements read the corresponding bit in the preamble
     * and set the valid flag in the C-structure to it.
     */
    else if (melem[elem].codingType EQ CCDTYPE_ASN1_INTEGER)
    {       
      /* 
       * Check if this variable has a default value.
       * As long as the DEFAULT values are given with ranges it is right to
       * look for isDefault in the second entry in mval.cdg.
       * There is no valid flag for elements with default value. But we use
       * the first byte of this element within the C-structure for giving a
       * signal to this function. The only simple type which has DEFAULT is INTEGER.
       */
      if (mval[mvar[melem[elem].elemRef].valueDefs+1].isDefault EQ 2)
      {
        globs->pstruct[melem[elem].structOffs] = (UBYTE) bf_readBit(globs);
      }           
    }
    elem++;
  }
}
#endif /* !RUN_INT_RAM */

#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)              MODULE  : CDC_GSM                |
| STATE   : code                    ROUTINE : cdc_asn1_seq_decode    |
+--------------------------------------------------------------------+

  PURPOSE : Decoding of the SEQUENCE and SEQUENCE OF type for UMTS
            The element can be a field of fixed or variable length.
            It can contain OPTIONAL elements or integer elements with 
            a DEFAULT value. 
            A special case is when the element is a so called msg_data. 
            According to CCDDATA a message is made of a msg_type and 
            a msg_data part. If the msg_data has a coding type of 
            ASN1_SEQUENCE this function is called.
            In this case CCD needs to pass over the msg_type by 
            incrementing globs->pstruct. A msg_data sequence can not 
            be optional. Nor it can be an array of msg_data. 
            If the sequence is not a msg_data this function is called 
            as an equivalent to ccd_decodeComposition. Hence the 
            increment on globs->ccd_recurs_level. A non-msg_data 
            sequence can be optional or an array.    
*/ 
SHORT cdc_asn1_seq_decode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs)
{
  ULONG  repeat=1, max_rep=1; 
  ULONG  cSize, first_elem, last_elem, elem;
  UBYTE  *old_pstruct;
#ifdef DEBUG_CCD
	static S8 trace_nesting_level = -1;
#endif

#ifdef DEBUG_CCD
	#ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "cdc_asn1_seq_decode()");
	#else
	TRACE_CCD (globs, "cdc_asn1_seq_decode() %s", mcomp[melem[e_ref].elemRef].name);
	#endif
#endif

  /* 
   * This function is called as an equivalent to ccd_decodeComposition.  
   * Hence the increment on globs->ccd_recurs_level.
   */
  globs->ccd_recurs_level ++;

  /* 
   * Set pstrcutOffs and max_rep. 
   * Check the valid flag in case of optional elements.
   */
  if (PER_CommonBegin (e_ref, &max_rep, globs) NEQ ccdOK)
  {
    globs->ccd_recurs_level --;
    return 1;
  }

  /*
   * Prepare for decoding of the same sequence type up to max_rep times.
   * Set the upper and lower bound of elemRef for processing of each repeatition.
   * Read the C-size to go ahead in the C-structure after each repeatition.
   */
  switch (melem[e_ref].elemType)
  {
    case 'C':
    case 'D':
    case 'E':
    case 'P':
    case 'Q':
              elem       = (ULONG) melem[e_ref].elemRef;
              first_elem = (ULONG) mcomp[elem].componentRef;
              last_elem  = first_elem + mcomp[elem].numOfComponents;
              cSize      = (ULONG) mcomp[elem].cSize;
              break;
    case 'F':
    case 'R':
              first_elem = e_ref;
              last_elem  = e_ref + 1;
              cSize      = (ULONG) mvar[e_ref].cSize;
              break;
    default:
              ccd_setError (globs, ERR_DEFECT_CCDDATA, BREAK, 
                        (USHORT) (globs->bitpos), (USHORT) -1);
              return 1;
         
  };
  /*
   * Store the current value of the C-structure pointer.  
   * After decoding the SEQUENCE component we will set the pointer 
   * to this stored value. Then we will use pstructOffs for pointing   
   * to the next element.
   */
  old_pstruct = globs->pstruct;
#ifdef DYNAMIC_ARRAYS
  /*
   * Allocate memory for this whole composition, if elemType is
   * one of the pointer types.
   */
  if ( is_pointer_type(e_ref))
  {
    if ( PER_allocmem_and_update(e_ref, max_rep, globs) NEQ ccdOK )
    {
    /* No memory - Return.  Error already set in function call above. */
    globs->ccd_recurs_level --;
    return 1;
    }

  }
#endif
  globs->pstruct += globs->pstructOffs;

  /*
   * Decode all elements of the field.
   */
  while (repeat <= max_rep)
  {
    Read_SEQ_BitMap (first_elem, last_elem, globs);
    elem = first_elem;
    
    /*
     * Decode all elements of the array
     */
#ifdef DEBUG_CCD
		trace_nesting_level++;
#endif
    while (elem < last_elem)
    {
#ifdef ERR_TRC_STK_CCD
      /* 
       * Save the value for tracing in error case.
       */
      globs->error_stack[globs->ccd_recurs_level] = (USHORT) elem;
#endif /* ERR_TRC_STK_CCD */

#ifdef DEBUG_CCD
	#ifndef CCD_SYMBOLS
		TRACE_CCD (globs, "decoding level %d element %d", trace_nesting_level, elem - first_elem);
	#else
    TRACE_CCD (globs, "decoding level %d element %d '%s'",trace_nesting_level, elem - first_elem, ccddata_get_alias((USHORT) elem, 1));
	#endif
#endif

      /*
       * Use the jump-table for selecting the decode function.
       * Possible types are 0, ASN1_INTEGER, BITSTRING, ASN1_CHOICE and 
       * ASN1_SEQUENCE. In case of 0 function cdc_STD_decode will be called.
       */
			(void) codec[melem[elem].codingType][DECODE_FUN]
                                            (c_ref, elem, globs);
      elem ++;
    }
#ifdef DEBUG_CCD
		trace_nesting_level--;
#endif

    /*
     * Set the pointer of the C-structure on the next element.
     */
    globs->pstruct += cSize; 

    repeat ++;
  }

  /*
   * Prepare for decoding the next element.
   */
  globs->pstruct = old_pstruct;
  globs->ccd_recurs_level--;

  return 1;
}
#endif /* !RUN_INT_RAM */

#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)              MODULE  : asn1_seq               |
| STATE   : code                    ROUTINE : Write_SEQ_BitMap       |
+--------------------------------------------------------------------+

  PURPOSE : Encode the bit-map preamble for OPTIONAL elements 
            or those with DEFAULT value.
*/
void Write_SEQ_BitMap (const ULONG first_elem, const ULONG last_elem, T_CCD_Globs *globs)
{
  ULONG elem = first_elem;
    while (elem < last_elem)
    {
      if (melem[elem].optional)
      {
        /* 
         * For optional elements read the valid flag in the C-Structure  
         * and overwrite the corresponding bit in the preamble.
         */             

#if defined _TOOLS_
        int patch;
        U16 stelem;
        stelem = globs->error_stack[globs->ccd_recurs_level];
        globs->error_stack[globs->ccd_recurs_level] = (USHORT) elem;
        patch = ccd_patch (globs, 1);
        globs->error_stack[globs->ccd_recurs_level] = stelem;
        if (patch)
        {
          bf_writeBit(1, globs);
          elem++;
          continue;
        }
#endif /* _TOOLS_ */

#ifdef DYNAMIC_ARRAYS
	    if ( is_pointer_type(elem) )
      {
	      BOOL   present;
	      /*
	       * Check for NULL pointer (== notPresent/not valid) for this element.
	       */
	      present = (*(U8 **)(globs->pstruct + melem[elem].structOffs) NEQ NULL);
	      /*
	       * Double check for 'D' to 'F' types. Both NULL pointer and
	       * valid flag. (Strictly not necessary, but may catch uninitialized
	       * flags/pointers).
	       */
	      if (present AND (melem[elem].elemType >= 'D' AND
			       melem[elem].elemType <= 'F')) 
        {
	        present = (BOOL)globs->pstruct[melem[elem].structOffs];
	      }
	      bf_writeBit(present, globs);
	    } 
      else
#endif
	      bf_writeBit((BOOL)globs->pstruct[melem[elem].structOffs], globs);
      }
      else if (melem[elem].codingType EQ CCDTYPE_ASN1_INTEGER)
      {       
        /* 
         * Check if this variable has a default value.
         * As long as the DEFAULT values are given with ranges it is right to
         * look for isDefault in the second entry in mval.cdg.
         * There is no valid flag for elements with default value. So we need
         * to read the value from C-structure and compare it with the DEFAULT 
         * value given in the mval table. The only simple type which has 
         * DEFAULT is INTEGER. 
         */
        if (mval[mvar[melem[elem].elemRef].valueDefs+1].isDefault EQ 2)
        {
          U32 value=0;
          UBYTE *p;
          /*
           * setup the read pointer to the element in the C-structure
           */
#ifdef DYNAMIC_ARRAYS
          if ( is_pointer_type(elem) )
          {
            /*
             * NULL pointers should be caught as part of the optionality
             * check in PER_CommonBegin()
             */
            p = *(U8 **)(globs->pstruct + globs->pstructOffs);
            if (ccd_check_pointer(p) != ccdOK)
            {
               ccd_recordFault (globs, ERR_INVALID_PTR, BREAK, (USHORT) elem, 
                                &globs->pstruct[globs->pstructOffs]);
               return;
            }
          }
          else
#endif
          p = globs->pstruct + melem[elem].structOffs;
          /*
           * Default values are all positive and small values (< 64K)
           * in the current version of umts. The cases 'L' and 'C' are added
           * to be ready for a future change where we need also a check of
           * possible errors through type casting.
           */
          switch (mvar[melem[elem].elemRef].cType)
          {
            case 'B':
                      value = (U32)*(UBYTE *) p;
                      break;
            case 'C':
                      value = (U32)(S32)*(S8 *) p;
                      break;
            case 'S':
                      value = (U32)(*(USHORT *) p);
                      break;
            case 'T':
                      value = (U32)(S32)*(S16 *) p;
                      break;
            case 'L':
                      value = (U32)*(S32 *) p;
                      break;
            case 'M':
                      value = (U32)*(U32 *) p;
                      break;
            default:
                      ccd_setError (globs, ERR_DEFECT_CCDDATA, BREAK, (USHORT) -1);
                      break;
          }
          /* 
           * Compare the value to be encoded with the default value. 
           * Write the presence flag into the preamble.
           */
          if (value EQ (U32)mval[mvar[melem[elem].elemRef].valueDefs+1].startValue)
          {
            bf_writeBit(0, globs);
          }
          else
          {
            bf_writeBit(1, globs);
          }
        }           
      }
      elem++;
    }
}
#endif /* !RUN_INT_RAM */

#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)              MODULE  : CDC_GSM                |
| STATE   : code                    ROUTINE : cdc_asn1_seq_encode    |
+--------------------------------------------------------------------+

  PURPOSE : Decoding of the SEQUENCE and SEQUENCE OF type for UMTS
            The element can be a field of fixed or variable length.
            It can contain OPTIONAL elements or integer elements with 
            a DEFAULT value. 
            A special case is when the element is a so called msg_data. 
            According to CCDDATA a message is made of a msg_type and 
            a msg_data part. If the msg_data has a coding type of 
            ASN1_SEQUENCE this function is called.
            In this case CCD needs to pass over the msg_type by 
            incrementing globs->pstruct. A msg_data sequence can not 
            be optional. Nor it can be an array of msg_data. 
            If the sequence is not a msg_data this function is called 
            as an equivalent to ccd_encodeComposition. Hence the 
            increment on globs->ccd_recurs_level. A non-msg_data 
            sequence can be optional or an array.
*/
SHORT cdc_asn1_seq_encode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs)
{
  ULONG  repeat=1, max_rep=1; 
  ULONG  cSize, first_elem, last_elem, elem;
  UBYTE  *old_pstruct;
#ifdef DEBUG_CCD
	static S8 trace_nesting_level = -1;
#endif

#ifdef DEBUG_CCD
	#ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "cdc_asn1_seq_encode()");
	#else
	TRACE_CCD (globs, "cdc_asn1_seq_encode() %s", mcomp[melem[e_ref].elemRef].name);
	#endif
#endif

  /* 
   * This function is called as an equivalent to ccd_encodeComposition.
   * Hence the increment on globs->ccd_recurs_level.
   */
  globs->ccd_recurs_level ++;

  /* 
   * Set pstrcutOffs and max_rep. 
   * Check the valid flag in case of optional elements.
   */
  if (PER_CommonBegin (e_ref, &max_rep, globs) NEQ ccdOK)
  {
    globs->ccd_recurs_level --;
    return 1;
  }

  /*
   * Prepare for encoding of the same sequence type up to max_rep times.
   * Set the upper and lower bound of elemRef for processing of each repeatition.
   * Read the C-size to go ahead in the C-structure after each repeatition.
   */ 
  switch (melem[e_ref].elemType)
  {
    case 'C':
    case 'D':
    case 'E':
    case 'P':
    case 'Q':
    {
              elem       = (ULONG) melem[e_ref].elemRef;
              first_elem = (ULONG) mcomp[elem].componentRef;
              last_elem  = first_elem + mcomp[elem].numOfComponents;
              cSize      = (ULONG) mcomp[elem].cSize;
              break;
    }
    case 'F':
    case 'R':
    {
              first_elem = e_ref;
              last_elem  = e_ref + 1;           
              cSize      = (ULONG) mvar[e_ref].cSize;
              break;
    }
    default:
              ccd_setError (globs, ERR_DEFECT_CCDDATA, BREAK, 
                        (USHORT) (globs->bitpos), (USHORT) -1);
              return 1;
         
  }
  /*
   * Store the current value of the C-structure pointer.  
   * After encoding the SEQUENCE component we will set the pointer 
   * to this stored value. Then we will use pstructOffs for pointing
   * to the next element.  
   */  
  old_pstruct = globs->pstruct;
  globs->pstruct += globs->pstructOffs;

#ifdef DYNAMIC_ARRAYS
  if ( is_pointer_type(e_ref) ) {
    if (ccd_check_pointer(*(U8 **)globs->pstruct) == ccdOK)
    {
      globs->pstruct = *(U8 **) globs->pstruct;
    }
    else
    {
       ccd_recordFault (globs, ERR_INVALID_PTR, BREAK, (USHORT) e_ref, 
                        &globs->pstruct[globs->pstructOffs]);
       return 1;
    }
  }
#endif


  /*
   * Encode all elements of the field.
   */
  while (repeat <= max_rep)
  { 
    Write_SEQ_BitMap (first_elem, last_elem, globs); 

    /*
     * Encode all elements
     */
#ifdef DEBUG_CCD
		trace_nesting_level++;
#endif

    elem = first_elem;
    while (elem < last_elem)
    {
#ifdef ERR_TRC_STK_CCD
      /* 
       * Save the value for tracing in error case.
       */
      globs->error_stack[globs->ccd_recurs_level] = (USHORT) elem;
#endif /* ERR_TRC_STK_CCD */    
#ifdef DEBUG_CCD
	#ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "encoding level %d element %d", trace_nesting_level, elem - first_elem);
	#else
    TRACE_CCD (globs, "encoding level %d element %d '%s'", trace_nesting_level, elem - first_elem ,ccddata_get_alias((USHORT) elem, 1));
	#endif
#endif

#if defined _TOOLS_
      if (!ccd_patch (globs, 0))
#endif /* _TOOLS_ */
      /*
       * Use the jump-table for selecting the code function.
       * Possible types are 0, ASN1_INTEGER, BITSTRING, ASN1_CHOICE and 
       * ASN1_SEQUENCE. In case of 0 function cdc_STD_encode will be called.
       */
      (void) codec[melem[elem].codingType][ENCODE_FUN]
                                            (c_ref, elem, globs);
      /*
       * Set the elemRef to the next element.
       */
      elem ++;
    }
#ifdef DEBUG_CCD
		trace_nesting_level--;
#endif
    /*
     * Set the pointer of the C-structure on the next element.
     */ 
    globs->pstruct += cSize;

    repeat ++;
  }

  /*
   * Prepare for encoding the next element.
   */
  globs->pstruct = old_pstruct;
  globs->ccd_recurs_level--;
  return 1;
}
#endif /* !RUN_INT_RAM */