FreeCalypso > hg > fc-magnetite
view src/cs/drivers/drv_app/pwr/pwr_disch.c @ 636:57e67ca2e1cb
pcmdata.c: default +CGMI to "FreeCalypso" and +CGMM to model
The present change has no effect whatsoever on Falconia-made and Openmoko-made
devices on which /pcm/CGMI and /pcm/CGMM files have been programmed in FFS
with sensible ID strings by the respective factories, but what should AT+CGMI
and AT+CGMM queries return when the device is a Huawei GTM900 or Tango modem
that has been converted to FreeCalypso with a firmware change? Before the
present change they would return compiled-in defaults of "<manufacturer>" and
"<model>", respectively; with the present change the firmware will self-identify
as "FreeCalypso GTM900-FC" or "FreeCalypso Tango" on the two respective targets.
This firmware identification will become important if someone incorporates an
FC-converted GTM900 or Tango modem into a ZeroPhone-style smartphone where some
high-level software like ofono will be talking to the modem and will need to
properly identify this modem as FreeCalypso, as opposed to some other AT command
modem flavor with different quirks.
In technical terms, the compiled-in default for the AT+CGMI query (which will
always be overridden by the /pcm/CGMI file in FFS if one is present) is now
"FreeCalypso" in all configs on all targets; the compiled-in default for the
AT+CGMM query (likewise always overridden by /pcm/CGMM if present) is
"GTM900-FC" if CONFIG_TARGET_GTM900 or "Tango" if CONFIG_TARGET_TANGO or the
original default of "<model>" otherwise.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 19 Jan 2020 20:14:58 +0000 |
parents | c93a236e0d50 |
children |
line wrap: on
line source
/******************************************************************************* * * pwr_disch.c * * Purpose: This file contains functions for battery discharge management. * * (C) Texas Instruments 2001 * ******************************************************************************/ #include "rv/rv_defined_swe.h" // for RVM_PWR_SWE #ifdef RVM_PWR_SWE #include "abb/abb.h" #include "rvm/rvm_use_id_list.h" #include "pwr/pwr_disch.h" #include "power/power.h" #include "spi/spi_task.h" #include "pwr/pwr_cust.h" #include "pwr/pwr_messages.h" #include "spi/spi_env.h" #include "pwr/pwr_env.h" /* Define a pointer to the PWR Environment control block. */ extern T_PWR_ENV_CTRL_BLK *pwr_env_ctrl_blk; /******************************************************************************* ** Function pwr_discharge_timer_process ** ** Description ** *******************************************************************************/ void pwr_discharge_timer_process(void) { rvf_send_trace("TIMER3", 6, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); if (SPI_GBL_INFO_PTR->is_gsm_on == TRUE) { pwr_handle_discharge(); /* battery discharge management */ } } /******************************************************************************* ** Function pwr_handle_discharge ** ** Description Compares the battery voltage with some thresholds and, if a ** threshold is passed, sends event(s) to the upper layer. ** Re-start the timer with a value depending on the discharge ** level. ** *******************************************************************************/ void pwr_handle_discharge(void) { UINT16 timer_value; UINT16 status; UINT16 bat_madc_voltage, bat_voltage; static T_PWR_PERCENT remain_capacity = 100; /* since this variable is declared as static */ /* it will keep its value from one function call to the other */ T_PWR_PERCENT current_capacity; if (SPI_GBL_INFO_PTR->is_adc_on == FALSE) { /* Start VBAT channel conversion by writing in the result register */ ABB_Write_Register_on_page(PAGE0, VBATREG, 0x0000); rvf_delay(RVF_MS_TO_TICKS(5)); bat_madc_voltage = ABB_Read_Register_on_page(PAGE0, VBATREG); rvf_send_trace("battery voltage (MADC code) ", 28, bat_madc_voltage, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); } else /* The L1 asks for ADC conversions */ { #ifndef _WINDOWS bat_madc_voltage = SPI_GBL_INFO_PTR->adc_result[0]; #else bat_madc_voltage = ABB_Read_Register_on_page(PAGE0, VBATREG); #endif } /* Find the remaining capacity in the battery corresponding to this new voltage */ bat_voltage = pwr_adc_to_mvolt(bat_madc_voltage); rvf_send_trace("battery voltage (mV) ", 21, bat_voltage, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); current_capacity = pwr_get_capacity_vs_voltage(bat_voltage); rvf_send_trace("current capacity (%) ", 21, current_capacity, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); status = ABB_Read_Status(); /* Determine if a threshold has been passed */ if (current_capacity != remain_capacity) { /* a new threshold has been passed */ remain_capacity = current_capacity; /* informs the upper layer */ pwr_send_bat_discharge_event(remain_capacity); if (status & CHGPRES) /* charger plugged */ { if (remain_capacity == CHARGE_START_AGAIN_CAPACITY) { PWR_Charger_Plug(); } } else /* charger not plugged */ { if(remain_capacity <= pwr_env_ctrl_blk->power_alert.remain_capa_threshold) { /* informs the upper layer that the battery is low */ pwr_send_low_bat_event(remain_capacity); timer_value = SPI_TIMER3_INTERVAL_BIS; /* 10 s */ } else { #ifndef _WINDOWS timer_value = SPI_TIMER3_INTERVAL; /* 1 minute */ #else timer_value = SPI_TIMER3_INTERVAL_BIS; /* 10 s */ #endif } /* Start timer with a value depending on the remaining capacity in the battery */ rvf_start_timer (SPI_TIMER3, RVF_MS_TO_TICKS (timer_value), FALSE); } } else /* the capacity has not changed */ { #ifndef _WINDOWS timer_value = SPI_TIMER3_INTERVAL; /* 1 minute */ #else timer_value = SPI_TIMER3_INTERVAL_BIS; /* 10 s */ #endif /* Start timer with a value depending on the remaining capacity in the battery */ rvf_start_timer (SPI_TIMER3, RVF_MS_TO_TICKS (timer_value), FALSE); } } #endif /* #ifdef RVM_PWR_SWE */