FreeCalypso > hg > fc-magnetite
view src/cs/layer1/cfile/l1_ctl.c @ 358:6b8e432a8cd9
!GPRS configs: TEST and DMEM pools moved into IRAM
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Mon, 25 Dec 2017 03:14:09 +0000 |
parents | af1bacf61dc6 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1_CTL.C * * Filename l1_ctl.c * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #define L1_CTL_C #include "l1_macro.h" #include "l1_confg.h" #if (CODE_VERSION == SIMULATION) #include <string.h> #include "l1_types.h" #include "sys_types.h" #include "l1_const.h" #include "l1_time.h" #include "l1_signa.h" #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_signa.h" #include "l1audio_defty.h" #include "l1audio_msgty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif //ADDED FOR AAC #if (L1_AAC == 1) #include "l1aac_defty.h" #endif #include "l1_defty.h" #include "cust_os.h" #include "l1_msgty.h" #include "l1_varex.h" #include "l1_proto.h" #include "l1_mftab.h" #include "l1_tabs.h" #include "l1_ver.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #if TESTMODE #include "l1tm_msgty.h" #include "l1tm_varex.h" #endif #include "l1_ctl.h" #ifdef _INLINE #define INLINE static inline // Inline functions when -v option is set #else // when the compiler is ivoked. #define INLINE #endif #else #include <string.h> #include "l1_types.h" #include "sys_types.h" #include "l1_const.h" #include "l1_time.h" #include "l1_signa.h" #if (RF_FAM == 61) #include "tpudrv61.h" #endif #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif //ADDED FOR AAC #if (L1_AAC == 1) #include "l1aac_defty.h" #endif #include "l1_defty.h" #include "cust_os.h" #include "l1_msgty.h" #include "l1_varex.h" #include "l1_proto.h" #include "l1_tabs.h" #include "l1_ctl.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #if TESTMODE #include "l1tm_msgty.h" #include "l1tm_varex.h" #endif #ifdef _INLINE #define INLINE static inline // Inline functions when -v option is set #else // when the compiler is ivoked. #define INLINE #endif #endif #if(RF_FAM == 61) #include "l1_rf61.h" #endif #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) #include "l1_trace.h" #endif extern SYS_UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq); #if(RF_FAM == 61) extern WORD16 drp_gain_correction(UWORD16 arfcn, UWORD8 lna_off, UWORD16 agc); #endif #define LNA_OFF 1 #define LNA_ON 0 /************************************/ /* Automatic frequency compensation */ /************************************/ /* * FreeCalypso TCS211 reconstruction: the following 3 functions * have been added in the LoCosto version of this module. * We have conditioned them out in order to match the original * TCS211 object; their uses have been conditioned out as well. * * These functions will need to re-enabled when their uses are * re-enabled. */ #if 0 #define L1_WORD16_POS_MAX (32767) #define L1_WORD16_NEG_MAX (-32768) #define L1_WORD32_POS_MAX ((unsigned long)(1<<31)-1) #define L1_WORD32_NEG_MAX (-(unsigned long)(1<<31)) INLINE WORD16 Add_Sat_sign_16b(WORD16 val1, WORD16 val2) { WORD32 temp; WORD16 result; temp = (WORD32)((WORD32)val1 + (WORD32)val2); if(temp > L1_WORD16_POS_MAX) { temp = L1_WORD16_POS_MAX; } if(temp < L1_WORD16_NEG_MAX) { temp = L1_WORD16_NEG_MAX; } result = (WORD16)((temp)&(0x0000FFFF)); return(result); } INLINE WORD32 Add_Sat_sign_32b(WORD32 val1, WORD32 val2) { WORD32 temp_high_high; UWORD32 temp_low_low; UWORD16 carry; WORD32 result; WORD16 high_val1, high_val2; UWORD16 low_val1, low_val2; high_val1 = (WORD16)(val1>>16); high_val2 = (WORD16)(val2>>16); low_val1 = (UWORD16)(val1&0x0000FFFF); low_val2 = (UWORD16)(val2&0x0000FFFF); temp_high_high = (WORD32)high_val1 + (WORD32)high_val2; temp_low_low = (UWORD32)low_val1 + (UWORD32)low_val2; carry = (UWORD16)(temp_low_low >> 16); temp_high_high = temp_high_high + (UWORD32)(carry); result = val1 + val2; if(temp_high_high > L1_WORD16_POS_MAX) { result = L1_WORD32_POS_MAX; } if(temp_high_high < L1_WORD16_NEG_MAX) { result = L1_WORD32_NEG_MAX; } return(result); } INLINE WORD32 Sat_Mult_20sign_16unsign(WORD32 val1, UWORD32 val2) { WORD32 result; result = val1 * val2; if(val1>0) /* val2 is > 0*/ { if(result < 0) /* overflow */ { result = L1_WORD32_POS_MAX; } } if(val1<0) /* val2 is > 0*/ { if(result > 0) /* overflow */ { result = L1_WORD32_NEG_MAX; } } return(result); } #endif INLINE WORD32 Add_40b( WORD32 guard1guard2, WORD32 lvar1, WORD32 lvar2, WORD16 *guardout ) { WORD32 result, temp, carry, Lvar1, Lvar2; WORD16 guard1,guard2; guard1=(WORD16) ((WORD32) guard1guard2>>16); guard2=(WORD16) guard1guard2; /* lvar1 and lvar2 are both 48 bits variables */ /* We 1st add the low parts of lvar1 and lvar2 and we give */ /* a 32 bits result and a carry if needed */ Lvar1 = (UWORD16)lvar1; Lvar2 = (UWORD16)lvar2; temp = Lvar1 + Lvar2; carry = temp >> 16; result = temp & 0x0000ffffL; /* We now add the two high parts of var1 and var2 (scaled */ /* to a 16 bits format) and carry (if any) and we give a */ /* 48 bits results. */ Lvar1 = (UWORD32)lvar1 >> 16; Lvar2 = (UWORD32)lvar2 >> 16; temp = Lvar1 + Lvar2 + carry; carry = (UWORD32)temp >> 16; temp = (UWORD32)temp << 16; result = result | temp; temp = guard1 + guard2 + carry; *guardout = (WORD16)temp; return( result ); } INLINE WORD32 Mult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) { WORD32 mult,guard1guard2; WORD32 aux1; UWORD32 aux2; WORD16 neg_flag=0; WORD32 var1_low_nosign,var2_nosign; if (var2<0) { var2=-var2; neg_flag=1; } /*aux1 = AccHigh(var1)*var2 */ aux1 = (WORD32)(var1>>16) * (WORD32)var2; /* 16 bits * 16 bits -> 32 bits result */ /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ /* Performs the sign suppression of the words */ var1_low_nosign = (UWORD16)var1; var2_nosign = (UWORD16) var2; aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; /*Shift aux1=F48 of 16 bit left */ guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ /*guard2=0x0000 */ aux1=aux1<<16; /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ /* aux1 and aux2 are both 48 bits variables */ /* We first add the low pats of aux1 and aux2 and we give*/ /* a 32 bits result and a carry if needed */ mult=Add_40b(guard1guard2,aux1,aux2,guardout ); if (neg_flag) { mult=-mult; if (*guardout!=0) *guardout=-(*guardout)-1; else *guardout=-1; } return(mult); } /***********************************************************************/ /* This function allows to multiply a WORD32 and a WORD16, both POSITIVE, */ /* variables. Result is WORD32. */ /***********************************************************************/ INLINE WORD32 UMult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout) { WORD32 mult,guard1guard2; UWORD32 aux1,aux2; WORD32 var1_high_nosign,var1_low_nosign,var2_nosign; /*aux1 = AccHigh(var1)*var2 (unsigned multiplication) */ /* Performs the sign suppression of the words */ var1_high_nosign = (UWORD32)var1>>16; var2_nosign = (UWORD16) var2; aux1 = (UWORD32)var1_high_nosign * (UWORD32)var2_nosign; /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */ /* Performs the sign suppression of the words */ var1_low_nosign = (WORD32)((UWORD16)var1); aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign; /*Shift aux1=F48 of 16 bit left */ guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/ /*guard2=0x0000 */ aux1=aux1<<16; /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */ mult=Add_40b(guard1guard2,aux1,aux2,guardout); return(mult); } /*-------------------------------------------------------*/ /* l1ctl_afc() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if (VCXO_ALGO == 0) WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq) #else WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq, UWORD32 l1_mode) #endif { /*************************/ /* Variables declaration */ /*************************/ WORD16 i=0; UWORD32 denom; /* F12.20 */ WORD32 var_32,num,Phi_32=0,var1,var2,guard1guard2; static UWORD32 P=C_cov_start; /* F12.20 */ static WORD32 Psi=0; /* F13.19 */ static WORD16 Psi_quant[C_N_del+1]; /* F13.3 */ WORD16 var_16; WORD16 Phi=0; /* F1.15 */ WORD16 quotient,guard1,guard2,guardout; UWORD32 LGuard; WORD16 denomH,denomH_3msb; UWORD32 K=0; /* algo 1 */ static WORD16 old_Psi_quant[C_N_del+1]; static WORD32 old_Psi=0; #if (VCXO_ALGO == 1) static WORD32 psi_past[C_N_del+1]; /* F13.19 */ static WORD16 psi_quant; /* F13.3 */ static WORD16 quant_avg; static UWORD32 M_Count; static WORD32 psi_avg[C_PSI_AVG_SIZE_D+1]; // Data history array static WORD16 B_Count; // Counter for consecutive SNR below C_thr_snr #if 0 /* LoCosto added var */ UWORD16 L = 10433; // Gain algo2 #endif static UWORD16 first_avg; static UWORD16 good_snr; /* to be able to keep in memory the old AFC variables in case of spurious FB detection */ static WORD32 old_psi_past[C_N_del+1]; /* F13.19 */ static WORD16 old_psi_quant; /* F13.3 */ #endif #if (L1_FF_MULTIBAND == 1) UWORD8 physical_band_id; #endif #if 0 /* LoCosto added var init */ //Set AFC close loop gain for ALGO_AFC_LQG_PREDICTOR. if(l1_mode==I_MODE)//MS is in Idle mode L = 41732; //F0.20 L=41732/2^20 = 0.04 else //All other modes than Idle L = 10433; //F0.20 L=10433/2^20 = 0.01 #endif #if (L1_FF_MULTIBAND == 0) if (((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) && #if (VCXO_ALGO == 1) ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) #else (phase != AFC_INIT)) #endif { if (radio_freq >= l1_config.std.first_radio_freq_band2) { angle = (angle + 1) >> 1; } } else if (((l1_config.std.id == DCS1800) || (l1_config.std.id == PCS1900)) && #if (VCXO_ALGO == 1) ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))) #else (phase != AFC_INIT)) #endif { angle = (angle + 1) >> 1; } #else // L1_FF_MULTIBAND = 1 below #if (VCXO_ALGO == 1) if((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)) #else if(phase != AFC_INIT) #endif { physical_band_id = l1_multiband_radio_freq_convert_into_physical_band_id(radio_freq); if( (multiband_rf[physical_band_id].gsm_band_identifier == DCS1800) || (multiband_rf[physical_band_id].gsm_band_identifier == PCS1900)) { angle = (angle + 1) >> 1; } } #endif // #if (L1_FF_MULTIBAND == 1) else /*********************************/ /* frequency offset compensation */ /*********************************/ /* Initialization */ #if (VCXO_ALGO == 1) switch (l1_config.params.afc_algo) { /* algo1 only: */ case ALGO_AFC_KALMAN: { #endif #if (VCXO_ALGO == 0) if (phase==AFC_INIT) { // WARNING // In this case, "angle" variable contains EEPROM_AFC initialization value // directly loaded from EEPROM, and "snr" variable is not meaningful. /* Static variables initialisation */ P=C_cov_start; Psi=0; if (angle>C_max_step) Psi_quant[C_N_del]=C_max_step; else if(angle<C_min_step) Psi_quant[C_N_del]=C_min_step; else Psi_quant[C_N_del]=angle; Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ } /* end AFC_INIT*/ else { if (phase==AFC_OPEN_LOOP) { /* delay line for Psi_quant values */ for (i=1;i<=C_N_del;i++) Psi_quant[i-1]=Psi_quant[i]; var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ #if(RF_FAM == 61) /* In order to implement the NINT function for a F16.0, we check */ /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); var_16=quotient*4; #else /* In order to implement the NINT function for a F16.0, we check */ /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); var_16=quotient*8; #endif if (var_16>C_max_step) Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); else if(var_16<C_min_step) Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */ }/*end if AFC_OPEN_LOOP*/ else { /* delay line for Psi_quant values */ for (i=1;i<=C_N_del;i++) Psi_quant[i-1]=Psi_quant[i]; /********************/ /* Filter algorithm */ /********************/ /* Covariance error is increased of C_Q */ P=P+(*frame_count)*C_Q; /* Clipping of P */ if (P>C_thr_P) P=C_thr_P; if (snr>=C_thr_snr) { /* Clipping of error angle */ if (angle>C_thr_phi) angle=C_thr_phi; if (angle<-C_thr_phi) angle=-C_thr_phi; /* Kalman gain */ /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ /*C_a0_kalman=0.01 */ /*C_g_kalman =0.05 */ num=(C_g_kalman/snr)+P+C_a0_kalman; /* (F2.30 / F6.10) = F 12.20 */ /* denom = P << 19 = F 1.39 */ /* extension of denom=P to a 40 bits variable */ /* denom (F12.20) << 16 = F 4.36 */ guard1=(WORD16)((WORD32)P>>16); /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ denomH=(UWORD16)P; /* Low part of denom is equal to 0, because P has been 16 */ /* bits left shifted previously. */ denomH_3msb=(denomH>>13)&0x0007; guard1=(guard1<<3)|denomH_3msb; denomH<<=3; denom=(UWORD32)denomH<<16; /* num + guard1 are a 40 bits representation of P */ /* In order to compute P(F1.39)/num, we sample P in guard1 */ /* (scaled to a 32 bits number) and num (32 bits number) */ /* K = ((guard1<<24)/num)<<8 + (denom/num) */ var1=(WORD32)guard1<<24; var1=var1/num; var1=(WORD32)var1<<8; /* var2 is an unsigned variable, var1 contains signed guard*/ /* bits. */ var2=denom/num; K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ /* F13.19 << 1 = F12.20 */ /* Clipping of the Kalman gain */ if (K>=C_thr_K) K=C_thr_K; /*******************************************************/ /* P=(1-K)*P = 0.8 * 0.5 at maximum */ /*******************************************************/ /* Perform a positive variable F12.20 multiplication by*/ /* positive variable F12.20 */ var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ guard1=0; /* positive variable */ var1=UMult_40b(P,var_16,&guard1); var_16=(WORD16)((1048576L-K)>>16); /* acchigh(1-K) = F12.20 */ var2=P*var_16; /* var2 = 0x80000 * 0xc */ /* at maximum, so result */ /* is 32 bits WORD32 and */ /* equal 0x600000 */ /* extension of var2 to a 40 bits variable : var2<<16 */ guard2=(WORD16)((WORD32)var2>>16); guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); var2=var2<<16; var_32=Add_40b(guard1guard2,var1,var2,&guardout); /* var_32 (F8.40) >> 16 = F8.24 */ LGuard=(WORD32)guardout<<16; var1=(UWORD32)var_32>>16; /* var_32 >> 4 = F12.20 */ P=(var1+LGuard)>>4; Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); /* F0.32 * F13.3 = F5.35 */ LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ /* F13.19 */ var1=(UWORD32)Phi_32>>16; Phi_32=Psi-(LGuard+var1); /* F13.19 */ /*Phi=angle-Phi_32*/ Phi_32=((WORD32)angle<<4)-Phi_32; /* F1.15 * 4 = F13.19 */ Phi=(WORD16)(Phi_32>>4); /* F17.15 */ /*var1=K*Phi F12.20 * F1.15 = 13.35 */ guard1=0; var1=Mult_40b(K,Phi,&guard1); /* var1 (F13.35) >> 16 */ /* F13.19 */ LGuard=(WORD32)guard1<<16; var1=(UWORD32)var1>>16; Psi+=var1+LGuard; }/*if snr */ var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); /* F13.19 * C = F13.19 */ #if(RF_FAM == 61) /* In order to implement the NINT function for a F13.3, we check */ /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); var_16=quotient*4; #else /* In order to implement the NINT function for a F13.3, we check */ /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); var_16=quotient*8; #endif if (var_16>C_max_step) Psi_quant[C_N_del]=C_max_step; else if(var_16<C_min_step) Psi_quant[C_N_del]=C_min_step; else Psi_quant[C_N_del]=var_16; /* F13.3 */ }/*end AFC_CLOSE_LOOP*/ } /* end else AFC_INIT*/ *frame_count=0; return(Psi_quant[C_N_del]>>3); /* F16.0 */ #else } /* end case algo 1 */ /* algo2 + init + estimator/predictor */ case ALGO_AFC_LQG_PREDICTOR: { /******************************************************************/ /* (New) VCXO Algorithm */ /******************************************************************/ switch (phase) { case AFC_INIT_CENTER : case AFC_INIT_MAX : case AFC_INIT_MIN : quant_avg = 0; M_Count = 0; #if 0 /* present in LoCosto but not in TCS211 */ for (i = 0; i <= C_PSI_AVG_SIZE_D ; i++) //omaps00090550 psi_avg[i] = 0; #endif first_avg = 1; good_snr = 0; // DAC search algorithm is as follows - up to 12 attempts are made // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> // The first four attempts are made on DAC_center // The next four attempts are made on DAC_max // The last four attempts are made on DAC_min // There are statistical reasons for trying four times switch (phase) { case AFC_INIT_CENTER: psi_quant = l1_config.params.afc_dac_center; break; case AFC_INIT_MAX: psi_quant = l1_config.params.afc_dac_max; break; case AFC_INIT_MIN: psi_quant = l1_config.params.afc_dac_min; break; default : break; } /* F0.32 * F13.3 = F5.35 */ psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); break; case AFC_OPEN_LOOP : { /* VCXO changes for spurious FB detection */ if (l1s.spurious_fb_detected == TRUE) { psi_quant = old_psi_quant; for(i=0;i<C_N_del+1;i++) psi_past[i] = old_psi_past[i]; /* reset the spurious_fb_detected_flag */ l1s.spurious_fb_detected = FALSE; } /* end of spuriousFB detected */ /* save in memory the old AFC related values */ old_psi_quant = psi_quant; for(i=0;i<C_N_del+1;i++) old_psi_past[i] = psi_past[i]; /* delay line for psi_quant values */ for (i = 1; i <= C_N_del; i++) psi_past[i-1] = psi_past[i]; /* (F16.0 * F1.15 = F17.15) << 4 = F13.19 */ var_32 = (WORD32) ((WORD32)angle * l1_config.params.psi_sta_inv) << 4; #if(RF_FAM == 61) /* In order to implement the NINT function for a F16.0,*/ /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ var_16 = (WORD16) ((WORD32) (((WORD32)(var_32 + (1<<17))) / (1<<18))); var_16 = var_16 * 4; #else /* In order to implement the NINT function for a F16.0,*/ /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ var_16 = (WORD16) ((WORD32) (((WORD32)(var_32 + (1<<18))) / (1<<19))); var_16 = var_16 * 8; #endif #if 0 /* LoCosto code with saturation */ if (var_16 > C_max_step) psi_quant = Add_Sat_sign_16b(psi_quant,C_max_step); else if (var_16 < C_min_step) psi_quant = Add_Sat_sign_16b(psi_quant,C_min_step); else psi_quant = Add_Sat_sign_16b(psi_quant,var_16); /* F13.3 */ #else /* matching TCS211 */ if (var_16 > C_max_step) psi_quant += C_max_step; else if (var_16 < C_min_step) psi_quant += C_min_step; else psi_quant += var_16; /* F13.3 */ #endif /* F0.32 * F13.3 = F5.35 */ psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout); /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16); } break; case AFC_CLOSED_LOOP : /* delay line for psi_quant values */ for (i = 1; i <= C_N_del; i++) psi_past[i-1] = psi_past[i]; /************************************/ /* Estimation */ /************************************/ if ( (l1_config.params.rgap_algo != 0) && ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) #if L1_GPRS || l1_mode==PACKET_TRANSFER_MODE #endif )) { M_Count += *frame_count; if (snr >= l1_config.params.afc_snr_thr) { // Accumulate average over N TDMA frames psi_avg[0] += psi_past[C_N_del]; // Count number of good snr's within window_avg_size chunks good_snr++; } // M_Count >= M ? if (M_Count >= l1_config.params.afc_win_avg_size_M) { // M_Count counts how far we have reached in the window_avg_size blocks // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements if (good_snr > 0) psi_avg[0] /= good_snr; // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] if (first_avg == 1) { first_avg = 0; // Use first estimation as best guess for the other avg values // This is used both at initialisation and when returning from reception gap for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) psi_avg[i] = psi_avg[0]; } // Estimation 1st order // Use biggest window to reduce noise effects signal in psi values // NOTE: Due to performance issues division by MSIZE is in predictor if (l1_config.params.rgap_algo >= 1) { quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); } for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) psi_avg[i+1] = psi_avg[i]; psi_avg[0] = 0; M_Count = 0; good_snr = 0; } } else { // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! first_avg = 1; M_Count = 0; good_snr = 0; psi_avg[0] = 0; } if (snr >= l1_config.params.afc_snr_thr) { /********************/ /* Filter algorithm */ /********************/ /* No prediction during normal operation */ B_Count= 0; /* Clip error angle */ if (angle > C_thr_phi) angle = C_thr_phi; if (angle < -C_thr_phi) angle = -C_thr_phi; Phi_32 = psi_past[C_N_del] - psi_past[0]; /* F13.19 */ /* Phi = angle - Phi_32*/ Phi_32 = ((WORD32) angle << 4) - Phi_32; /* F1.15 * 4 = F13.19 */ #if 0 /* LoCosto code */ Phi = (WORD16)((WORD32)((WORD32)(Phi_32 + (1<<3)))/ (1<<4)); /* F17.15 */ #else /* TCS211 reconstruction */ Phi = Phi_32 >> 4; #endif /* (F0.20 * F1.15) >> 16 = F13.19 */ #if 0 /* LoCosto code with saturation and L */ var_32 = (L * Phi + (1<<15)) >> 16; psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],var_32); #else /* matching TCS211 */ psi_past[C_N_del] += (10433 * Phi) >> 16; #endif } else { /************************************/ /* Prediction */ /************************************/ // Only predict in dedicated mode // NO prediction in idle mode // l1a_l1s_com.dedic_set.SignalCode = NULL if ( (l1_config.params.rgap_algo != 0) && ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) #if L1_GPRS || l1_mode==PACKET_TRANSFER_MODE #endif )) { /* Prediction of psi during reception gaps */ B_Count += *frame_count; /* Predict psi ONLY when we have sufficient measurements available */ /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ // Was the consecutive bad SNRs threshold value exceeded? if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { // Predict with 0th order estimation is the default // Predict with 1st order estimation if (l1_config.params.rgap_algo >= 1) { #if 0 /* LoCosto code with saturation */ psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del], ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)) ); #else /* matching TCS211 */ psi_past[C_N_del] += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); #endif } B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; // Indicate by raising first_avg flag that a reception gap has occurred // I.e. the psi_avg table must be reinitialised after leaving reception gap first_avg = 1; // Counters in estimation part must also be reset M_Count = 0; good_snr = 0; psi_avg[0] = 0; } } } /* Quantize psi value */ /* F0.19 * 16.0 = F16.19 */ #if 0 /* LoCosto code */ var_32 = Sat_Mult_20sign_16unsign(psi_past[C_N_del],l1_config.params.psi_st_inv); #else /* TCS211 reconstruction */ var_32 = psi_past[C_N_del] * l1_config.params.psi_st_inv; #endif #if(RF_FAM == 61) /* In order to implement the NINT function for a F13.3,*/ /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */ var_16 = (WORD16) ((WORD32)((WORD32)(var_32 + (1<<17))) / (1<<18)); var_16 = var_16 * 4; #else /* In order to implement the NINT function for a F13.3,*/ /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */ var_16 = (WORD16) ((WORD32)((WORD32)(var_32 + (1<<18))) / (1<<19)); var_16 = var_16 * 8; #endif if (var_16 > C_max_step) psi_quant = C_max_step; else if (var_16 < C_min_step) psi_quant = C_min_step; else psi_quant = var_16; /* F13.3 */ break; } // switch phase *frame_count = 0; return (psi_quant >> 3); /* F16.0 */ } /* end case algo 2 */ /* algo1 + init + estimator/predictor */ case ALGO_AFC_KALMAN_PREDICTOR: { if ((phase==AFC_INIT_CENTER) || (phase==AFC_INIT_MAX) || (phase==AFC_INIT_MIN)) { // WARNING // In this case, "angle" variable contains EEPROM_AFC initialization value // directly loaded from EEPROM, and "snr" variable is not meaningful. /* Static variables initialisation */ quant_avg = 0; M_Count = 0; #if 0 /* present in LoCosto but not in TCS211 */ for (i = 0; i <=C_PSI_AVG_SIZE_D ; i++) //omaps00090550 psi_avg[i] = 0; #endif first_avg = 1; good_snr = 0; // DAC search algorithm is as follows - up to 12 attempts are made // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min -> // The first four attempts are made on DAC_center // The next four attempts are made on DAC_max // The last four attempts are made on DAC_min // There are statistical reasons for trying four times switch (phase) { case AFC_INIT_CENTER: Psi_quant[C_N_del] = l1_config.params.afc_dac_center; break; case AFC_INIT_MAX: Psi_quant[C_N_del] = l1_config.params.afc_dac_max; break; case AFC_INIT_MIN: Psi_quant[C_N_del] = l1_config.params.afc_dac_min; break; default : break; } P=C_cov_start; Psi=0; if (angle>C_max_step) Psi_quant[C_N_del]=C_max_step; else if(angle<C_min_step) Psi_quant[C_N_del]=C_min_step; else Psi_quant[C_N_del]=angle; /* F0.32 * F13.3 = F5.35 */ Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); } /* end AFC_INIT*/ else { if (phase==AFC_OPEN_LOOP) { /* relaod last good values in the ALGO */ if (l1s.spurious_fb_detected == TRUE) { for(i=0;i<C_N_del+1;i++) Psi_quant[i] = old_Psi_quant[i]; Psi = old_Psi; l1s.spurious_fb_detected = FALSE; } /* Save the old values in memory */ for(i=0;i<C_N_del+1;i++) old_Psi_quant[i] = Psi_quant[i]; old_Psi = Psi; /* delay line for Psi_quant values */ for (i=1;i<=C_N_del;i++) Psi_quant[i-1]=Psi_quant[i]; var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4; /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */ #if(RF_FAM == 61) /* In order to implement the NINT function for a F16.0, we check */ /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); var_16=quotient*4; #else /* In order to implement the NINT function for a F16.0, we check */ /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); var_16=quotient*8; #endif #if 0 /* LoCosto code with saturation */ if (var_16>C_max_step) Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step); else if (var_16<C_min_step) Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step); else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */ #else /* matching TCS211 */ if (var_16>C_max_step) Psi_quant[C_N_del] += C_max_step; else if (var_16<C_min_step) Psi_quant[C_N_del] += C_min_step; else Psi_quant[C_N_del] += var_16; /* F13.3 */ #endif /* F0.32 * F13.3 = F5.35 */ Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout); /* (F13.3<<16 )+(F5.35>>16) = F13.19 */ Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16); }/*end if AFC_OPEN_LOOP*/ else { /* delay line for Psi_quant values */ for (i=1;i<=C_N_del;i++) Psi_quant[i-1]=Psi_quant[i]; /************************************/ /* Estimation */ /************************************/ if ( (l1_config.params.rgap_algo != 0) && ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) #if L1_GPRS || l1_mode==PACKET_TRANSFER_MODE #endif )) { M_Count += *frame_count; if (snr >= l1_config.params.afc_snr_thr) { // Accumulate average over N TDMA frames psi_avg[0] += psi_past[C_N_del]; // Count number of good snr's within window_avg_size chunks good_snr++; } // M_Count >= M ? if (M_Count >= l1_config.params.afc_win_avg_size_M) { // M_Count counts how far we have reached in the window_avg_size blocks // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements if (good_snr > 0) psi_avg[0] /= good_snr; // We now have an estimation over window_avg_size TDMA frames in psi_avg[0] if (first_avg == 1) { first_avg = 0; // Use first estimation as best guess for the other avg values // This is used both at initialisation and when returning from reception gap for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++) psi_avg[i] = psi_avg[0]; } // Estimation 1st order // Use biggest window to reduce noise effects signal in psi values // NOTE: Due to performance issues division by MSIZE is in predictor if (l1_config.params.rgap_algo >= 1) { quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]); } for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--) psi_avg[i+1] = psi_avg[i]; psi_avg[0] = 0; M_Count = 0; good_snr = 0; } } else { // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset! first_avg = 1; M_Count = 0; good_snr = 0; psi_avg[0] = 0; } /********************/ /* Filter algorithm */ /********************/ /* Covariance error is increased of C_Q */ P=P+(*frame_count)*C_Q; /* Clipping of P */ if (P>C_thr_P) P=C_thr_P; if (snr>=C_thr_snr) { /* Clipping of error angle */ if (angle>C_thr_phi) angle=C_thr_phi; if (angle<-C_thr_phi) angle=-C_thr_phi; /* Kalman gain */ /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */ /*C_a0_kalman=0.01 */ /*C_g_kalman =0.05 */ num=(C_g_kalman/snr)+P+C_a0_kalman; /* (F2.30 / F6.10) = F 12.20 */ /* denom = P << 19 = F 1.39 */ /* extension of denom=P to a 40 bits variable */ /* denom (F12.20) << 16 = F 4.36 */ guard1=(WORD16)((WORD32)P>>16); /* denom = P<<16 = (F4.36) << 3 = F 1.39 */ denomH=(UWORD16)P; /* Low part of denom is equal to 0, because P has been 16 */ /* bits left shifted previously. */ denomH_3msb=(denomH>>13)&0x0007; guard1=(guard1<<3)|denomH_3msb; denomH<<=3; denom=denomH<<16; //(UWORD32) removed typecast omaps00090550 /* num + guard1 are a 40 bits representation of P */ /* In order to compute P(F1.39)/num, we sample P in guard1 */ /* (scaled to a 32 bits number) and num (32 bits number) */ /* K = ((guard1<<24)/num)<<8 + (denom/num) */ var1=(WORD32)guard1<<24; var1=var1/num; var1=(WORD32)var1<<8; /* var2 is an unsigned variable, var1 contains signed guard*/ /* bits. */ #if 0 /* fixed LoCosto code */ var2= ((WORD32)(denom)/(num)); //omaps00090550 #else /* matching TCS211 */ var2= denom / num; #endif K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */ /* F13.19 << 1 = F12.20 */ /* Clipping of the Kalman gain */ if (K>=C_thr_K) K=C_thr_K; /*******************************************************/ /* P=(1-K)*P = 0.8 * 0.5 at maximum */ /*******************************************************/ /* Perform a positive variable F12.20 multiplication by*/ /* positive variable F12.20 */ var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */ guard1=0; /* positive variable */ var1=UMult_40b(P,var_16,&guard1); var_16=(WORD16)((1048576L-K)>>16); /* acchigh(1-K) = F12.20 */ var2=P*var_16; /* var2 = 0x80000 * 0xc */ /* at maximum, so result */ /* is 32 bits WORD32 and */ /* equal 0x600000 */ /* extension of var2 to a 40 bits variable : var2<<16 */ guard2=(WORD16)((WORD32)var2>>16); guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL); var2=var2<<16; var_32=Add_40b(guard1guard2,var1,var2,&guardout); /* var_32 (F8.40) >> 16 = F8.24 */ LGuard=(WORD32)guardout<<16; var1=(UWORD32)var_32>>16; /* var_32 >> 4 = F12.20 */ P=(var1+LGuard)>>4; Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout); /* F0.32 * F13.3 = F5.35 */ LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */ /* F13.19 */ var1=(UWORD32)Phi_32>>16; Phi_32=Psi-(LGuard+var1); /* F13.19 */ /*Phi=angle-Phi_32*/ Phi_32=((WORD32)angle<<4)-Phi_32; /* F1.15 * 4 = F13.19 */ Phi=(WORD16)(Phi_32>>4); /* F17.15 */ /*var1=K*Phi F12.20 * F1.15 = 13.35 */ guard1=0; var1=Mult_40b(K,Phi,&guard1); /* var1 (F13.35) >> 16 */ /* F13.19 */ LGuard=(WORD32)guard1<<16; var1=(UWORD32)var1>>16; Psi+=var1+LGuard; } else { /************************************/ /* Prediction */ /************************************/ // Only predict in dedicated mode // NO prediction in idle mode // l1a_l1s_com.dedic_set.SignalCode = NULL if ( (l1_config.params.rgap_algo != 0) && ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) #if L1_GPRS || l1_mode==PACKET_TRANSFER_MODE #endif )) { /* Prediction of psi during reception gaps */ B_Count+= *frame_count; /* Predict psi ONLY when we have sufficient measurements available */ /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/ // Was the consecutive bad SNRs threshold value exceeded? if (B_Count>= l1_config.params.rgap_bad_snr_count_B) { // Predict with 0th order estimation is the default // Predict with 1st order estimation if (l1_config.params.rgap_algo >= 1) Psi += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE)); B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B; // Indicate by raising first_avg flag that a reception gap has occurred // I.e. the psi_avg table must be reinitialised after leaving reception gap first_avg = 1; // Counters in estimation part must also be reset M_Count = 0; good_snr = 0; psi_avg[0] = 0; } } } /* Quantize psi value */ var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout); /* F13.19 * C = F13.19 */ #if(RF_FAM == 61) /* In order to implement the NINT function for a F13.3, we check */ /* if var_32 + 0.5*2**18 is a multiple of 2**18 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18))); var_16=quotient*4; #else /* In order to implement the NINT function for a F13.3, we check */ /* if var_32 + 0.5*2**19 is a multiple of 2**19 */ quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19))); var_16=quotient*8; #endif if (var_16>C_max_step) Psi_quant[C_N_del]=C_max_step; else if(var_16<C_min_step) Psi_quant[C_N_del]=C_min_step; else Psi_quant[C_N_del]=var_16; /* F13.3 */ }/*end AFC_CLOSE_LOOP*/ } /* end else AFC_INIT*/ *frame_count = 0; return(Psi_quant[C_N_del]>>3); /* F16.0 */ } /* end case algo 3 */ #endif #if (VCXO_ALGO == 1) default: return 0; //omaps00090550 break; } // end of Switch #endif } /* end l1ctl_afc */ /************************************/ /* Automatic timing control (TOA) */ /************************************/ #if (TOA_ALGO == 2) #define TOA_DEBUG_ENABLE 0 #if (TOA_DEBUG_ENABLE == 1) #define TOA_MAKE_ZERO 0 #define TOA_LOG_BUFFER_LENGTH 4096 typedef struct { UWORD16 SNR_val; UWORD16 TOA_val; UWORD16 l1_mode; UWORD16 toa_frames_counter; UWORD16 fn_mod42432; }T_TOA_log_debug; T_TOA_log_debug toa_log_debug[TOA_LOG_BUFFER_LENGTH]; UWORD32 toa_log_index; UWORD32 toa_make_zero_f; #endif /*-------------------------------------------------------*/ /* l1ctl_toa() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ WORD16 l1ctl_toa (UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val) { WORD16 TOA_period_len = TOA_PERIOD_LEN [l1_mode]; WORD16 TOA_SHIFT=ISH_INVALID; UWORD16 cumul_abs; WORD16 cumul_sign; WORD32 prod_tmp, div_tmp,prod_sign; WORD32 toa_update_flag=0; WORD16 cumul; UWORD16 cumul_counter; #if (NEW_TOA_ALGO == 1) UWORD16 Trans_active; static WORD16 cumul_noTrans =0; static UWORD16 period_counter_noTrans =0; if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) #if L1_GPRS || l1_mode==PACKET_TRANSFER_MODE #endif ) Trans_active=TRUE; else Trans_active=FALSE; #endif if (phase==TOA_INIT) { #if (NEW_TOA_ALGO == 1) cumul_noTrans =0; period_counter_noTrans =0; #endif l1s.toa_var.toa_frames_counter=0; l1s.toa_var.toa_accumul_counter=0; l1s.toa_var.toa_accumul_value=0; #if (TOA_DEBUG_ENABLE == 1) toa_log_index = 0; #if (TOA_MAKE_ZERO == 1) toa_make_zero_f = 1; #else toa_make_zero_f = 0; #endif #endif return (TOA_SHIFT); } cumul = l1s.toa_var.toa_accumul_value; cumul_counter = l1s.toa_var.toa_accumul_counter; #if (TOA_DEBUG_ENABLE == 1) toa_log_debug[toa_log_index].SNR_val = SNR_val; toa_log_debug[toa_log_index].TOA_val = TOA_val; toa_log_debug[toa_log_index].l1_mode = l1_mode; toa_log_debug[toa_log_index].toa_frames_counter = l1s.toa_var.toa_frames_counter; toa_log_debug[toa_log_index].fn_mod42432 = l1s.actual_time.fn_mod42432; toa_log_index++; if(toa_log_index == TOA_LOG_BUFFER_LENGTH) { toa_log_index = 0; } #endif /* #if (TOA_DEBUG_ENABLE == 1) */ #if (TRACE_TYPE == 5) trace_toa_sim_ctrl(SNR_val, TOA_val, l1_mode, l1s.toa_var.toa_frames_counter, l1s.toa_var.toa_accumul_counter, l1s.toa_var.toa_accumul_value); #endif l1s.toa_var.toa_frames_counter++; { /* Fix for TOA */ #define DSP_CALC_NO_TABS_HO 0x3CA4 UWORD16 *toa_ho_fix; toa_ho_fix=(UWORD16 *)API_address_dsp2mcu(DSP_CALC_NO_TABS_HO); if ((TOA_val >= 22) || (TOA_val <= 6)) { *toa_ho_fix = 1; } if (*toa_ho_fix == 1) { if((TOA_val <= 18) && (TOA_val >= 10)) { *toa_ho_fix = 0; } } else { *toa_ho_fix = 0; } } #if (NEW_TOA_ALGO == 1) if (Trans_active) { #endif if (SNR_val>= L1_TOA_SNR_THRESHOLD) { cumul_counter++; prod_tmp = L1_TOA_LAMBDA * cumul; prod_tmp = prod_tmp + ((0x00004000)); // basically for rounding div_tmp = ((prod_tmp >> 15) & (0x0000FFFF)); cumul = div_tmp; // implemented below is // cumul = cumul + (L1_TOA_ONE_MINUS_LAMBDA * signum(TOA_Val - L1_TOA_EXPECTED_TOA)) if(TOA_val > L1_TOA_EXPECTED_TOA) { cumul = cumul + L1_TOA_ONE_MINUS_LAMBDA; } else if (TOA_val < L1_TOA_EXPECTED_TOA) { cumul = cumul - L1_TOA_ONE_MINUS_LAMBDA; } } // End if SNR_val if(l1s.toa_var.toa_update_flag == TRUE) { toa_update_flag = 1; } if (toa_update_flag) { cumul_sign = (cumul>0)? 1: -1; cumul_abs = cumul_sign*cumul; if(cumul_counter <= 5) { TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_15)? 0: cumul_sign; } else if(cumul_counter == 6) { TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_20)? 0: cumul_sign; } else if(cumul_counter == 7) { TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_25)? 0: cumul_sign; } else if(cumul_counter >= 8) { TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_30)? 0: cumul_sign; } #if (TRACE_TYPE==1) || (TRACE_TYPE==4) trace_info.toa_trace_var.toa_accumul_value = cumul; trace_info.toa_trace_var.toa_accumul_counter = cumul_counter; trace_info.toa_trace_var.toa_frames_counter = l1s.toa_var.toa_frames_counter; #endif cumul = 0; cumul_counter = 0; l1s.toa_var.toa_frames_counter = 0; l1s.toa_var.toa_update_flag = FALSE; #if (TOA_DEBUG_ENABLE == 1) #if (TOA_MAKE_ZERO == 1) if (toa_make_zero_f == 1) { TOA_SHIFT=0; } #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ #endif /*#if (TOA_MAKE_ZERO == 1)*/ } // end of if toa_update_flag #if (NEW_TOA_ALGO == 1) } else { period_counter_noTrans++; if (SNR_val>= L1_TOA_SNR_THRESHOLD) { cumul_noTrans = cumul_noTrans + TOA_val - L1_TOA_EXPECTED_TOA; } // End if SNR_val if (l1s.toa_var.toa_update_flag == TRUE) { switch (period_counter_noTrans) { case 2: if (cumul_noTrans>=0) TOA_SHIFT = (cumul_noTrans+1) >>1 ; else TOA_SHIFT = (cumul_noTrans) >>1 ; break; case 3: /* Not fully accurate rounding*/ if (cumul_noTrans>=0) TOA_SHIFT = (cumul_noTrans+2)/3 ; else TOA_SHIFT = (cumul_noTrans-2)/3 ; break; case 4: if (cumul_noTrans>=0) TOA_SHIFT = (cumul_noTrans+2) >>2 ; else TOA_SHIFT = (cumul_noTrans+1) >>2 ; break; default: TOA_SHIFT = cumul_noTrans; break; } /* end switch*/ if (TOA_SHIFT>8) TOA_SHIFT =8; if (TOA_SHIFT<-8) TOA_SHIFT =-8; #if (TRACE_TYPE==1) || (TRACE_TYPE==4) trace_info.toa_trace_var.toa_accumul_value = cumul_noTrans; trace_info.toa_trace_var.toa_accumul_counter = period_counter_noTrans; trace_info.toa_trace_var.toa_frames_counter = period_counter_noTrans; #endif cumul_noTrans = 0; period_counter_noTrans = 0; l1s.toa_var.toa_update_flag = FALSE; #if (TOA_DEBUG_ENABLE == 1) #if (TOA_MAKE_ZERO == 1) if (toa_make_zero_f == 1) { TOA_SHIFT=0; } #endif /*#if (TOA_DEBUG_ENABLE == 1)*/ #endif /*#if (TOA_MAKE_ZERO == 1)*/ } // end if update_flag } #endif // error a TOA is waiting to be updated in the TPU and will be erased #if (TRACE_TYPE==1) || (TRACE_TYPE==4) if (l1s.toa_var.toa_shift != ISH_INVALID) { l1_trace_toa_not_updated (); // should not occur!! } #endif if (TOA_SHIFT != ISH_INVALID) // new TOA => set the mask frames { // Set mask counter to 2 (2 frames masked). l1s.toa_var.toa_snr_mask = 2; } l1s.toa_var.toa_accumul_value = cumul; l1s.toa_var.toa_accumul_counter = cumul_counter; return(TOA_SHIFT); } // l1ctl_toa #else /*-------------------------------------------------------*/ /* l1ctl_toa_update() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ WORD16 l1ctl_toa_update(UWORD32 *TOASP, UWORD32 l1_mode) { static UWORD16 Old_TOA_estimated=12; //unit is Qbit UWORD32 TOAMAX; WORD16 IZW,ISH,i; UWORD32 TOA_estimated=0; //unit is Qbit UWORD16 Trans_active; if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE) #if L1_GPRS || l1_mode==PACKET_TRANSFER_MODE #endif ) Trans_active=TRUE; else Trans_active=FALSE; /* TOA offset computation and clock adjustement */ TOAMAX=0; for (i=1;i<TOA_HISTO_LEN;i++) { if (TOASP[i]>TOAMAX) TOAMAX=TOASP[i]; } TOAMAX >>= C_RED; i=1;IZW=0; while (i<TOA_HISTO_LEN && IZW==0) { if (TOASP[i]>=TOAMAX) IZW=i; i++; } /* Estimated TOA calculation */ if (TOASP[IZW-1]<(2*TOAMAX/3)) { TOA_estimated=IZW; TOA_estimated *= 4; // unit in QBit } else { #if 0 /* fix added in LoCosto, not present in TCS211 */ UWORD32 TOA_divisor; #endif TOA_estimated=(TOASP[IZW]*IZW)+(TOASP[IZW-1]*(IZW-1)>>C_GEW); TOA_estimated *= 8; //F13.3 in order to have qBit precision #if 0 TOA_divisor = TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); if (TOA_divisor!=0) #endif { TOA_estimated /= TOASP[IZW]+(TOASP[IZW-1] >> C_GEW); TOA_estimated /= 2; // unit in QBit ("/8" then "*4" = "/2") } #if 0 else { TOA_estimated = 0; } #endif } if (Trans_active) TOA_estimated=(TOA_estimated+(Old_TOA_estimated+4)) / 2; /* Offset calculation*/ if (TOA_estimated>=17 || TOA_estimated<=15) ISH=TOA_estimated - 16; else ISH=0; if (Trans_active) { if (ISH>1) ISH=1; if (ISH<-1) ISH=-1; } else { if (ISH>8) ISH=8; if (ISH<-8) ISH=-8; } Old_TOA_estimated = TOA_estimated - ISH - 4; return (ISH); } /*-------------------------------------------------------*/ /* l1ctl_toa() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : generate an histogram of TOA weighted */ /* with SNR */ /*-------------------------------------------------------*/ WORD16 l1ctl_toa(UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val, BOOL *toa_update, UWORD16 *toa_period_count #if (FF_L1_FAST_DECODING == 1) , UWORD8 skipped_values #endif ) { // xSignalHeaderRec *msg; UWORD16 i; WORD16 TOA_period_len = TOA_PERIOD_LEN[l1_mode]; static UWORD32 histo[TOA_HISTO_LEN]; static WORD16 period_counter=0; UWORD32 SNR_ZW; WORD16 ISH=ISH_INVALID; UWORD8 histo_center; #if 0 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)) histo_center=4; else histo_center=5; #else histo_center=4; #endif if (phase==TOA_INIT) { period_counter=0; for (i=0;i<TOA_HISTO_LEN;i++) histo[i]=0; histo[histo_center]=128; //F6.10 return(ISH); } #if (FF_L1_FAST_DECODING == 1) /* Manage any missing bursts due to fast decoding */ period_counter += skipped_values; #endif period_counter++; /* Filter update */ if (SNR_val>=C_SNRGR) { if (SNR_val>C_SNR_THR) SNR_ZW=C_SNR_THR; else SNR_ZW=SNR_val; histo[TOA_val+1]+=SNR_ZW; /* if TOA=0 histo[1]++ */ /* if TOA=1 histo[2]++ */ /* ... */ /* if TOA=9 histo[10]++ */ /* histo[0] is reserved for computation */ } #if L1_GPRS if (l1_mode==PACKET_TRANSFER_MODE) { if (*toa_update) { // Get ISH. ISH = l1ctl_toa_update(histo, l1_mode); //reset TOA period length counter period_counter=0; //reset histogram for (i=0;i<TOA_HISTO_LEN;i++) histo[i]=0; histo[histo_center]=128; //F6.10 *toa_update = FALSE; // reset TOA update flag *toa_period_count = 0; // reset TOA period counter } } else #endif if (period_counter>=TOA_period_len) // It is time to compute a new ISH and to reset the histogram. // Rem: ">=" is very important since a "l1 mode" change can give // a "TOA_period_len" smaller than the previous one an // therefore a "period_counter" may be already higher than // the new "TOA_period_len". { // Get ISH. ISH = l1ctl_toa_update(histo, l1_mode); //reset TOA period length counter period_counter=0; //reset histogram for (i=0;i<TOA_HISTO_LEN;i++) histo[i]=0; histo[histo_center]=128; //F6.10 } // error a TOA is waiting to be updated in the TPU and will be erased #if (TRACE_TYPE==1) || (TRACE_TYPE==4) if (l1s.toa_shift != ISH_INVALID) { l1_trace_toa_not_updated(); // should not occur !! } #endif if (ISH != ISH_INVALID) // new TOA => set the mask frames { // Set mask counter to 2 (2 frames masked). l1s.toa_snr_mask = 2; } return(ISH); } #endif /*-------------------------------------------------------*/ /* l1ctl_txpwr() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ UWORD8 l1ctl_txpwr(UWORD8 target_txpwr, UWORD8 current_txpwr) { if(target_txpwr > current_txpwr) { current_txpwr ++; // Increase TX power by 2 dB. } else if(target_txpwr < current_txpwr) { current_txpwr --; // Decrease TX power by 2 dB. } return(current_txpwr); } /************************************/ /* Automatic Gain Control */ /************************************/ /*-------------------------------------------------------*/ /* l1ctl_encode_delta1() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if(L1_FF_MULTIBAND == 0) WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) { WORD8 freq_band; switch(l1_config.std.id) { case GSM: case GSM_E: case DCS1800: case PCS1900: case GSM850: freq_band = l1_config.std.cal_freq1_band1; break; case DUAL: case DUALEXT: case DUAL_US: if(radio_freq >= l1_config.std.first_radio_freq_band2) freq_band = l1_config.std.cal_freq1_band2; else freq_band = l1_config.std.cal_freq1_band1; break; } return(freq_band); } #endif /*-------------------------------------------------------*/ /* l1ctl_encode_lna() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if (L1_FF_MULTIBAND == 0) void l1ctl_encode_lna( UWORD8 input_level, UWORD8 *lna_state, UWORD16 radio_freq) { /*** LNA Hysteresis is implemented as following : | On|---<>----+-------+ | | | LNA | | | | ^ v | | | | | | Off| +-------+----<>----- +-------------------------------- 50 40 30 20 input_level /-dBm THR_HIGH THR_LOW ***/ if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) ||(l1_config.std.id == DUAL_US)) && (radio_freq >= l1_config.std.first_radio_freq_band2)) { if ( input_level > l1_config.std.lna_switch_thr_high_band2 ) // < -40dBm ? { *lna_state = LNA_ON; // lna_off = FALSE } else if ( input_level < l1_config.std.lna_switch_thr_low_band2 ) // > -30dBm ? { *lna_state = LNA_OFF; // lna off = TRUE } } else { if ( input_level > l1_config.std.lna_switch_thr_high_band1 ) // < -40dBm ? { *lna_state = LNA_ON; // lna_off = FALSE } else if ( input_level < l1_config.std.lna_switch_thr_low_band1 ) // > -30dBm ? { *lna_state = LNA_OFF; // lna off = TRUE } } } #endif /*-------------------------------------------------------*/ /* l1ctl_csgc() */ /*-------------------------------------------------------*/ /* Description: */ /* ============ */ /* If we are running the first pass of a measurement */ /* session, we use the HIGH_AGC default agc setting to */ /* compute the input level from the measured power from */ /* the DSP. If this input level is saturated we set a */ /* saturation flag, otherwise we validate the measure and*/ /* store, for the considered carrier, the input level. */ /* When all the carriers have been scanned and some have */ /* been flagged "saturated", we measure them with the */ /* LOW_AGC agc setting, then store, for the considered */ /* carrier, the input level. */ /*-------------------------------------------------------*/ UWORD8 l1ctl_csgc(UWORD8 pm, UWORD16 radio_freq) { WORD16 current_IL, current_calibrated_IL; WORD8 delta1_freq, delta2_freq; WORD16 delta_drp_gain=0; UWORD32 index; UWORD16 g_magic; #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0) UWORD16 arfcn; #endif UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif #if (L1_FF_MULTIBAND == 0) // initialize index index = radio_freq - l1_config.std.radio_freq_index_offset; #else index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); #endif /*if(L1_FF_MULTIBAND == 0)*/ delta1_freq = l1ctl_encode_delta1(radio_freq); delta2_freq = l1ctl_encode_delta2(radio_freq); g_magic = l1ctl_get_g_magic(radio_freq); #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0) arfcn = Convert_l1_radio_freq(radio_freq); #endif if (l1a_l1s_com.full_list.meas_1st_pass_read) { // We validate or not power measure (pm) for the considered carrier // with measurement achieved with HIGH_AGC setting. We are working // with non calibrated IL to avoid saturation #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) #if (PWMEAS_IF_MODE_FORCE == 0) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , 0, radio_freq,if_threshold); #else if_ctl = IF_120KHZ_DSP; dco_algo_ctl_pw_temp = DCO_IF_0KHZ; #endif #if (L1_FF_MULTIBAND == 0) delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format #else delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format #endif // MULTIBAND == 0 else if(if_ctl == IF_100KHZ_DSP){ delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif if (0==pm) // Check and filter illegal pm value by using last valid IL current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); else { #if TESTMODE if (!l1_config.agc_enable) current_IL = (WORD16)(-(pm - ( (l1_config.tmode.rx_params.agc << 1) - delta_drp_gain ) - g_magic)); else #endif current_IL = (WORD16)(-(pm - ( (l1_config.params.high_agc <<1) - delta_drp_gain) - g_magic)); // for array index purpose, we work with positive IL } // NOTE: lna_value do not appear in this formula because lna is ALWAYS ON for // ---- this algorithm, so lna_value=lna_off*l1_config.params.lna_att_gsm=0 if ((current_IL<l1_config.params.high_agc_sat_thr) // Warning : we are working with positive IL // for IL_2_AGC_xx index purpose. #if TESTMODE && (l1_config.agc_enable) #endif ) { // pm is saturated so measure is not valid l1a_l1s_com.full_list.nbr_sat_carrier_ctrl++; l1a_l1s_com.full_list.nbr_sat_carrier_read++; l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 1; } else { current_calibrated_IL = current_IL - delta1_freq - delta2_freq; #if TESTMODE // When running with fixed AGC setting saturated carriers may occur: // protect against negative IL; if ((!l1_config.agc_enable) && (current_calibrated_IL < 0)) { current_calibrated_IL=0; current_IL=0; } #endif // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; if (current_IL>INDEX_MAX) current_IL=INDEX_MAX; // we validate the measure and save input_level and lna_off fields. l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), &(l1a_l1s_com.last_input_level[index].lna_off), radio_freq); l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + l1ctl_get_lna_att(radio_freq) * l1a_l1s_com.last_input_level[index].lna_off; l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; } } else // 2nd pass if any. { // we validate the measure and save input_level and lna_off(always 0) // fields. #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID, 0,radio_freq,if_threshold); #if (L1_FF_MULTIBAND == 0) delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format #else delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format #endif if(if_ctl == IF_100KHZ_DSP){ delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif if (0==pm) // Check and filter illegal pm value by using last valid IL current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level); else current_IL = (WORD16)(-(pm - ( (l1_config.params.low_agc << 1) - delta_drp_gain ) - g_magic)); current_calibrated_IL = current_IL - delta1_freq - delta2_freq; // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; if (current_IL>INDEX_MAX) current_IL=INDEX_MAX; l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), &(l1a_l1s_com.last_input_level[index].lna_off), radio_freq); l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + l1ctl_get_lna_att(radio_freq) * l1a_l1s_com.last_input_level[index].lna_off; l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0; } return((UWORD8)current_calibrated_IL); } /*-------------------------------------------------------*/ /* l1ctl_pgc() */ /*-------------------------------------------------------*/ /* Description : For a given radio_freq, last_known_agc is */ /* ============ based on a prior knowledge (the last */ /* stored input_level for the considered */ /* carrier). From the power measurement on */ /* this carrier (pm), we update the */ /* input_level for this carrier, for the */ /* next task to control. */ /*-------------------------------------------------------*/ UWORD8 l1ctl_pgc(UWORD8 pm, UWORD8 last_known_il, UWORD8 lna_off, UWORD16 radio_freq) { WORD32 last_known_agc; WORD32 current_IL, current_calibrated_IL; WORD8 delta1_freq, delta2_freq; WORD16 delta_drp_gain=0; WORD32 index, lna_value; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD16 arfcn; #endif UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif #if (L1_FF_MULTIBAND == 0) // initialize index index = radio_freq - l1_config.std.radio_freq_index_offset; #else index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); #endif // #if (L1_FF_MULTIBAND == 0) else delta1_freq = l1ctl_encode_delta1(radio_freq); delta2_freq = l1ctl_encode_delta2(radio_freq); lna_value = lna_off * l1ctl_get_lna_att(radio_freq); last_known_agc = (Cust_get_agc_from_IL(radio_freq, last_known_il >> 1, PWR_ID)) << 1; // F7.1 in order to be compatible with // pm and IL formats [-20,+140 in F7.1] // contain the input_level value we use // in the associated CTL task to build // the agc used in this CTL. #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) #if (L1_FF_MULTIBAND == 0) arfcn = Convert_l1_radio_freq(radio_freq); #else arfcn = radio_freq; #endif #endif #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) #if (PWMEAS_IF_MODE_FORCE == 0) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , last_known_il, radio_freq,if_threshold); #else if_ctl = IF_120KHZ_DSP; dco_algo_ctl_pw_temp = DCO_IF_0KHZ; #endif delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format if(if_ctl == IF_100KHZ_DSP){ delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif if (0==pm) // Check and filter illegal pm value by using last valid IL current_IL = l1a_l1s_com.last_input_level[index].input_level - lna_value; else current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); current_calibrated_IL = current_IL - delta1_freq - delta2_freq; // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; if (current_IL>INDEX_MAX) current_IL=INDEX_MAX; // we validate the measure and save input_level and lna_off fields l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), &(l1a_l1s_com.last_input_level[index].lna_off), radio_freq); l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL + l1ctl_get_lna_att(radio_freq) * l1a_l1s_com.last_input_level[index].lna_off; return((UWORD8)current_calibrated_IL); } /*-------------------------------------------------------*/ /* l1ctl_pgc2() */ /*-------------------------------------------------------*/ /* Description : */ /* ============= */ /* from power measurement pm_high_agc, */ /* achieve with an HIGH_AGC setting, and pm_low_agc */ /* achieve with a LOW_AGC seeting, we deduce the new */ /* AGC to apply in the next CTL task. */ /*-------------------------------------------------------*/ void l1ctl_pgc2(UWORD8 pm_high_agc, UWORD8 pm_low_agc, UWORD16 radio_freq) { UWORD8 pm; WORD32 IL_high_agc, IL_low_agc, new_IL, current_calibrated_IL; WORD8 delta1_freq, delta2_freq; WORD16 delta_high_drp_gain=0; WORD16 delta_low_drp_gain=0; WORD32 index; UWORD16 g_magic; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD16 arfcn; #endif UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif #if (L1_FF_MULTIBAND == 0) // initialize index index = radio_freq - l1_config.std.radio_freq_index_offset; #else index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq); #endif // #if (L1_FF_MULTIBAND == 0) else delta1_freq = l1ctl_encode_delta1(radio_freq); delta2_freq = l1ctl_encode_delta2(radio_freq); g_magic = l1ctl_get_g_magic(radio_freq); // lna_off was set to 0 during CTRL, so lna_value = 0 do not appear in the following // formula. #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) #if (L1_FF_MULTIBAND == 0) arfcn = Convert_l1_radio_freq(radio_freq); #else arfcn = radio_freq; #endif #endif if ((0==pm_high_agc) || (0==pm_low_agc)) // Check and filter illegal pm value(s) by using last valid IL new_IL = l1a_l1s_com.last_input_level[index].input_level; else { #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) #if (PWMEAS_IF_MODE_FORCE == 0) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID , 0, radio_freq,if_threshold); #else if_ctl = IF_120KHZ_DSP; dco_algo_ctl_pw_temp = DCO_IF_0KHZ; #endif delta_high_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format delta_low_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format if(if_ctl == IF_100KHZ_DSP){ delta_high_drp_gain += SCF_ATTENUATION_LIF_100KHZ; delta_low_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_high_drp_gain += SCF_ATTENUATION_LIF_120KHZ; delta_low_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif IL_high_agc = -(pm_high_agc - ((l1_config.params.high_agc << 1) - delta_high_drp_gain) - g_magic); IL_low_agc = -(pm_low_agc - ((l1_config.params.low_agc << 1) - delta_low_drp_gain) - g_magic); // HIGH_AGC and LOW_AGC are formatted to F7.1 in order to be compatible with // pm and IL formats if (IL_low_agc>=l1_config.params.low_agc_noise_thr) // pm_low_agc was on the noise floor, so not valid { // whatever the value of pm_high_agc, we consider it // as the right setting new_IL = IL_high_agc; pm = pm_high_agc; } else { // pm_low_agc is valid. if (IL_high_agc<=l1_config.params.high_agc_sat_thr) { // pm_high_agc is not valid, it's saturated. new_IL = IL_low_agc; pm = pm_low_agc; } else { // both pm_low_agc and pm_high_agc are valid, so we test the one that // gives the maximum input level and consider it as the right setting. if (IL_high_agc<=IL_low_agc) { new_IL = IL_high_agc; pm = pm_high_agc; } else { new_IL = IL_low_agc; pm = pm_low_agc; } } } } #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) RTTL1_FILL_MON_MEAS(pm_high_agc, IL_high_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) RTTL1_FILL_MON_MEAS(pm_low_agc, IL_low_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq) #endif current_calibrated_IL = new_IL - delta1_freq - delta2_freq; // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; if (new_IL>INDEX_MAX) new_IL=INDEX_MAX; // Updating of input_level and lna_off fields in order to correctly // setting the AGC for the next task. l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1), &(l1a_l1s_com.last_input_level[index].lna_off), radio_freq); l1a_l1s_com.last_input_level[index].input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * l1a_l1s_com.last_input_level[index].lna_off; } /*-------------------------------------------------------*/ /* l1ctl_find_max() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ UWORD8 l1ctl_find_max(UWORD8 *buff, UWORD8 buffer_len) { // WARNING: for array index purpose we work with POSITIVE input level // so maximum search for negative numbers is equivalent to // minimum search for positive numbers!!!!!! // (-30 > -120 but 30 < 120) UWORD8 maximum = 240; UWORD8 i; for (i=0; i<buffer_len; i++) { if (buff[i]<maximum) maximum=buff[i]; } return(maximum); } /*-------------------------------------------------------*/ /* l1ctl_pagc() */ /*-------------------------------------------------------*/ /* Description : */ /* =========== */ /* We deduce the last_known_agc from the last stored */ /* input_level for the considered carrier. We use this */ /* agc value to "build" the input level linked to the pm */ /* we have just read. */ /* This input level is used to feed a fifo of 4 elements */ /* and then compute an input_level maximum. This value is*/ /* used to update the input_level for this carrier. This */ /* input_level will be used for the next task to control.*/ /*-------------------------------------------------------*/ UWORD8 l1ctl_pagc(UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) { WORD8 delta1_freq, delta2_freq; WORD16 delta_drp_gain=0; WORD32 last_known_agc; UWORD8 IL_max; WORD32 current_IL, current_calibrated_IL; UWORD8 i; WORD32 lna_value; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD16 arfcn; #endif UWORD8 lna_off; UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif delta1_freq = l1ctl_encode_delta1(radio_freq); delta2_freq = l1ctl_encode_delta2(radio_freq); // Update fifo for (i=3;i>0;i--) l1a_l1s_com.Scell_info.buff_beacon[i]=l1a_l1s_com.Scell_info.buff_beacon[i-1]; // from the lna state (ON/OFF) we compute the attenuation // that was applied to signal when performing the power // measure. lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); // Compute applied agc for this pm last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; // F7.1 in order to be compatible // with pm and IL formats // contain the input_level value we use // in the associated CTL task to build // the agc used in this CTL. #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) #if (L1_FF_MULTIBAND == 0) arfcn = Convert_l1_radio_freq(radio_freq); #else arfcn = radio_freq; #endif #endif #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , l1a_l1s_com.Scell_used_IL_dd.input_level, radio_freq,if_threshold); lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format if(if_ctl == IF_100KHZ_DSP){ delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif if (0==pm) // Check and filter illegal pm value by using last valid IL current_IL = IL_info_ptr->input_level - lna_value; else current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); current_calibrated_IL = current_IL - delta1_freq - delta2_freq; // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; if (current_IL>INDEX_MAX) current_IL=INDEX_MAX; l1a_l1s_com.Scell_info.buff_beacon[0] = (UWORD8)current_IL; IL_max = l1ctl_find_max(&(l1a_l1s_com.Scell_info.buff_beacon[0]),4); //input levels are always stored with lna_on l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), &(IL_info_ptr->lna_off), radio_freq ); IL_info_ptr->input_level = IL_max + l1ctl_get_lna_att(radio_freq) * IL_info_ptr->lna_off; #if L2_L3_SIMUL #if (DEBUG_TRACE==BUFFER_TRACE_PAGC) buffer_trace(4,IL_info_ptr->input_level,last_known_agc, l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, IL_max >> 1, MAX_ID)); #endif #endif return((UWORD8)current_calibrated_IL); } /*-------------------------------------------------------*/ /* l1ctl_dpagc() */ /*-------------------------------------------------------*/ /* Description : */ /* =========== */ /* Based on the same principle as the one used for PAGC */ /* algorithm except that we feed 3 different fifo: */ /* 1) one is dedicated to BCCH carrier */ /* 2) another one is dedicated to all the other type of */ /* bursts */ /* 3) the last one is dedicated to non DTX influenced */ /* bursts */ /*-------------------------------------------------------*/ UWORD8 l1ctl_dpagc(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) { UWORD8 av_G_all, av_G_DTX; UWORD8 max_G_all, max_G_DTX; WORD32 last_known_agc, new_IL, current_calibrated_IL; WORD8 delta1_freq, delta2_freq; WORD16 delta_drp_gain=0; UWORD8 i; UWORD8 *tab_ptr; T_DEDIC_SET *aset; WORD32 lna_value; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD16 arfcn; #endif UWORD8 lna_off; UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif delta1_freq = l1ctl_encode_delta1(radio_freq); delta2_freq = l1ctl_encode_delta2(radio_freq); aset = l1a_l1s_com.dedic_set.aset; if (beacon) tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; else tab_ptr = aset->G_all; // Update fifo for (i=DPAGC_FIFO_LEN-1;i>0;i--) tab_ptr[i]=tab_ptr[i-1]; #if TESTMODE if (!l1_config.agc_enable) { // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) // corresponds to the lna_off bit last_known_agc = (l1_config.tmode.rx_params.agc) << 1; lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); } else #endif { #if DPAGC_MAX_FLAG last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; // F7.1 in order to be compatible with pm and IL formats #else last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1; // F7.1 in order to be compatible with pm and IL formats #endif // input_level_dd : contain the input_level value we use // in the associated CTL task to build the agc used in this CTL. lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); } #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) #if (L1_FF_MULTIBAND == 0) arfcn = Convert_l1_radio_freq(radio_freq); #else arfcn = radio_freq; #endif #endif #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , l1a_l1s_com.Scell_used_IL_dd.input_level, radio_freq,if_threshold); lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format if(if_ctl == IF_100KHZ_DSP){ delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif if (0==pm) // Check and filter illegal pm value by using last valid IL new_IL = IL_info_ptr->input_level - lna_value; else new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); current_calibrated_IL = new_IL - delta1_freq - delta2_freq; // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; #if TESTMODE if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 { // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) { l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; } l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 } #endif if (new_IL>INDEX_MAX) new_IL=INDEX_MAX; tab_ptr[0] = (UWORD8)new_IL; if (dtx_on && !beacon) { // Update DTX fifo for (i=DPAGC_FIFO_LEN-1;i>0;i--) aset->G_DTX[i]=aset->G_DTX[i-1]; aset->G_DTX[0]=tab_ptr[0]; } /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ #if DPAGC_MAX_FLAG max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); if (!beacon) { max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); // WARNING: for array index purpose we work with POSITIVE input level // so maximum search for negative numbers is equivalent to // minimum search for positive numbers!!!!!! // (-30 > -120 but 30 < 120) if (max_G_all <= max_G_DTX) new_IL = max_G_all; else new_IL = max_G_DTX; } else new_IL = max_G_all; #else av_G_all=av_G_DTX=0; for (i=0;i<DPAGC_FIFO_LEN;i++) av_G_all += tab_ptr[i]; av_G_all /= DPAGC_FIFO_LEN; if (!beacon) { for (i=0;i<DPAGC_FIFO_LEN;i++) av_G_DTX += aset->G_DTX[i]; av_G_DTX /= DPAGC_FIFO_LEN; if (av_G_all >= av_G_DTX) new_IL = av_G_all; else new_IL = av_G_DTX; } else new_IL = av_G_all; #endif // Updating of input_level and lna_off fields in order to correctly // setting the AGC for the next task. // input_level is always store with lna_on l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), &(IL_info_ptr->lna_off), radio_freq ); IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * IL_info_ptr->lna_off; #if L2_L3_SIMUL #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) buffer_trace(4,IL_info_ptr->input_level,last_known_agc, l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID)); #endif #endif return((UWORD8)current_calibrated_IL); } #if (AMR == 1) /*-------------------------------------------------------*/ /* l1ctl_dpagc_amr() */ /*-------------------------------------------------------*/ /* Description : */ /* =========== */ /* Based on the same principle as the one used for DPAGC */ /* algorithm except that the way to feed the G_dtx is */ /* different */ /*-------------------------------------------------------*/ UWORD8 l1ctl_dpagc_amr(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr) { UWORD8 av_G_all, av_G_DTX; UWORD8 max_G_all, max_G_DTX, max_il; WORD32 last_known_agc, new_IL, current_calibrated_IL; WORD8 delta1_freq, delta2_freq; WORD16 delta_drp_gain=0; UWORD8 i; UWORD8 *tab_ptr, *tab_amr_ptr; T_DEDIC_SET *aset; WORD32 lna_value; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD16 arfcn; #endif UWORD8 lna_off; UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif delta1_freq = l1ctl_encode_delta1(radio_freq); delta2_freq = l1ctl_encode_delta2(radio_freq); aset = l1a_l1s_com.dedic_set.aset; if (beacon) tab_ptr = l1a_l1s_com.Scell_info.buff_beacon; else tab_ptr = aset->G_all; // Update fifo for (i=DPAGC_FIFO_LEN-1;i>0;i--) tab_ptr[i]=tab_ptr[i-1]; tab_amr_ptr = aset->G_amr; for (i=DPAGC_AMR_FIFO_LEN-1;i>0;i--) tab_amr_ptr[i]=tab_amr_ptr[i-1]; #if TESTMODE if (!l1_config.agc_enable) { // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero) // corresponds to the lna_off bit last_known_agc = (l1_config.tmode.rx_params.agc) << 1; lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq); } else #endif { #if DPAGC_MAX_FLAG last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1; // F7.1 in order to be compatible with pm and IL formats #else last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1; // F7.1 in order to be compatible with pm and IL formats #endif // input_level_dd : contain the input_level value we use // in the associated CTL task to build the agc used in this CTL. lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq); } #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION) #if (L1_FF_MULTIBAND == 0) arfcn = Convert_l1_radio_freq(radio_freq); #else arfcn = radio_freq; #endif #endif #if(RF_FAM == 61) #if (CODE_VERSION != SIMULATION) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , l1a_l1s_com.Scell_used_IL_dd.input_level, radio_freq,if_threshold); lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off; delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format if(if_ctl == IF_100KHZ_DSP){ delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ; } else{ /* i.e. if_ctl = IF_120KHZ_DSP*/ delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ; } #endif #endif if (0==pm) // Check and filter illegal pm value by using last valid IL new_IL = IL_info_ptr->input_level - lna_value; else new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq)); current_calibrated_IL = new_IL - delta1_freq - delta2_freq; // Protect IL stores against overflow if (current_calibrated_IL>INDEX_MAX) current_calibrated_IL=INDEX_MAX; #if TESTMODE if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1 { // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0) for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--) { l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1]; } l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1 } #endif if (new_IL>INDEX_MAX) new_IL=INDEX_MAX; tab_ptr[0] = (UWORD8)new_IL; tab_amr_ptr[0] = (UWORD8)new_IL; if (dtx_on && !beacon) { // a new AMR block is received, feed the G_dtx with the max_il of the block for (i=DPAGC_FIFO_LEN-1;i>0;i--) aset->G_DTX[i]=aset->G_DTX[i-1]; if (l1a_l1s_com.dedic_set.aset->achan_ptr->mode == TCH_AHS_MODE) { // Keep the max_il between the last 2 bursts if (aset->G_amr[0] > aset->G_amr[1]) max_il = aset->G_amr[0]; else max_il = aset->G_amr[1]; } else { // Keep the max_il between the last 4 bursts max_il = l1ctl_find_max(&aset->G_amr[0], DPAGC_AMR_FIFO_LEN); } aset->G_DTX[0]= max_il; } /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */ #if DPAGC_MAX_FLAG max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN); if (!beacon) { max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN); // WARNING: for array index purpose we work with POSITIVE input level // so maximum search for negative numbers is equivalent to // minimum search for positive numbers!!!!!! // (-30 > -120 but 30 < 120) if (max_G_all <= max_G_DTX) new_IL = max_G_all; else new_IL = max_G_DTX; } else new_IL = max_G_all; #else av_G_all=av_G_DTX=0; for (i=0;i<DPAGC_FIFO_LEN;i++) av_G_all += tab_ptr[i]; av_G_all /= DPAGC_FIFO_LEN; if (!beacon) { for (i=0;i<DPAGC_FIFO_LEN;i++) av_G_DTX += aset->G_DTX[i]; av_G_DTX /= DPAGC_FIFO_LEN; if (av_G_all >= av_G_DTX) new_IL = av_G_all; else new_IL = av_G_DTX; } else new_IL = av_G_all; #endif // Updating of input_level and lna_off fields in order to correctly // setting the AGC for the next task. // input_level is always store with lna_on l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1), &(IL_info_ptr->lna_off), radio_freq ); IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) * IL_info_ptr->lna_off; #if L2_L3_SIMUL #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC) buffer_trace(4,IL_info_ptr->input_level,last_known_agc, l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID)); #endif #endif return((UWORD8)current_calibrated_IL); } #endif // AMR == 1 /*-------------------------------------------------------*/ /* l1ctl_get_g_magic() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if (L1_FF_MULTIBAND == 0) UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) { if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) { if (radio_freq >= l1_config.std.first_radio_freq_band2) return(l1_config.std.g_magic_band2); else return(l1_config.std.g_magic_band1); } else return(l1_config.std.g_magic_band1); } #endif /*-------------------------------------------------------*/ /* l1ctl_get_lna_att() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if (L1_FF_MULTIBAND == 0) UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) { if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) { if (radio_freq >= l1_config.std.first_radio_freq_band2) return(l1_config.std.lna_att_band2); else return(l1_config.std.lna_att_band1); } else return(l1_config.std.lna_att_band1); } #endif /*-------------------------------------------------------*/ /* l1ctl_update_TPU_with_toa() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1ctl_update_TPU_with_toa(void) { #if (TOA_ALGO != 0) WORD16 toa_shift; #if (TOA_ALGO == 2) toa_shift = l1s.toa_var.toa_shift; #else toa_shift = l1s.toa_shift; #endif if (toa_shift != ISH_INVALID) // New ISH (TOA shift) has been stored in "l1s.toa_shift". { // NEW !!! For EOTD measurements in IDLE mode, cut AFC updates... #if (L1_EOTD==1) #if (L1_GPRS) if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || (l1a_l1s_com.mode == DEDIC_MODE)|| (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED)) #else if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) || (l1a_l1s_com.mode == DEDIC_MODE)) #endif { // In dedicated or transfer modes we need to track an TOA // updates to post correct th results, else E-OTD implementation // has qb errors... if( (l1a_l1s_com.nsync.eotd_meas_session == TRUE) && (l1a_l1s_com.nsync.eotd_toa_phase == 1) ) { l1a_l1s_com.nsync.eotd_toa_tracking += toa_shift; } #endif // Update tpu offset. l1s.tpu_offset = (l1s.tpu_offset + TPU_CLOCK_RANGE + toa_shift) % TPU_CLOCK_RANGE; #if (TRACE_TYPE==1) || (TRACE_TYPE==4) #if (GSM_IDLE_RAM == 0) l1_trace_new_toa(); #else l1_trace_new_toa_intram(); #endif #endif #if (L1_EOTD==1) } #endif #if (TRACE_TYPE == 5) #if (TOA_ALGO == 2) trace_toa_sim_update (toa_shift,l1s.tpu_offset); #endif #endif // Reset ISH. #if (TOA_ALGO == 2) l1s.toa_var.toa_shift = ISH_INVALID; // Reset the ISH. #else l1s.toa_shift = ISH_INVALID; // Reset the ISH. #endif } #endif } /*-------------------------------------------------------*/ /* l1ctl_saic() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if (L1_SAIC != 0) #define SWH_CHANTAP_INIT 0xFFD068CE #if (NEW_SNR_THRESHOLD == 1) UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode, UWORD8 task, UWORD8 * saic_flag) #else UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode) #endif /* NEW_SNR_THRESHOLD */ { UWORD16 SWH_flag = 0; UWORD8 CSF_Filter_choice = L1_SAIC_HARDWARE_FILTER; #if (NEW_SNR_THRESHOLD == 0) volatile UWORD16 *ptr; UWORD8 saic_flag; #endif /* NEW_SNR_THRESHOLD */ #if (NEW_SNR_THRESHOLD == 0) ptr = (volatile UWORD16 * ) (SWH_CHANTAP_INIT); *ptr = 0; saic_flag=1; #else *saic_flag=0; #endif switch (l1_mode) { case DEDIC_MODE: // GSM DEDICATED MODE { #if (NEW_SNR_THRESHOLD == 1) *saic_flag=1; #endif if(IL_for_rxlev < L1_SAIC_GENIE_GSM_DEDIC_THRESHOLD) { SWH_flag=1; } break; } #if L1_GPRS case PACKET_TRANSFER_MODE: // PACKET TRANSFER MODE { #if (NEW_SNR_THRESHOLD == 0) #if (L1_SAIC == 1) if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) { *ptr = 4; } #endif /*#if (L1_SAIC == 3)*/ #endif #if (L1_SAIC == 3) if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD) { SWH_flag = 1; } #endif /*#if (L1_SAIC == 3)*/ break; } #endif /*#if L1_GPRS*/ default: /* GSM OR GPRS IDLE MODES */ { #if ((L1_SAIC == 2)||(L1_SAIC == 3)) if(IL_for_rxlev < L1_SAIC_GENIE_GSM_GPRS_IDLE_THRESHOLD) { SWH_flag=1; } #endif break; } } l1ddsp_load_swh_flag (SWH_flag , #if (NEW_SNR_THRESHOLD == 0) saic_flag #else *saic_flag #endif ); if(SWH_flag == 1) { CSF_Filter_choice = L1_SAIC_PROGRAMMABLE_FILTER; } #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) l1_trace_saic(SWH_flag, #if (NEW_SNR_THRESHOLD == 0) saic_flag #else *saic_flag #endif ); #endif #if (TRACE_TYPE == 5) trace_saic_sim(IL_for_rxlev, l1_mode, SWH_flag); #endif return(CSF_Filter_choice); } #endif #if (FF_L1_FAST_DECODING == 1) /*-----------------------------------------------------------------*/ /* l1ctl_pagc_missing_bursts */ /*-----------------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* When fast decoding is active, fewer bursts are decoded. As a */ /* result, fewer gain values are available. The PAGC algo must */ /* be updated with the missed values. */ /* */ /* Input parameters: */ /* ----------------- */ /* UWORD8 skipped_values: the number of skipped bursts due to fast */ /* decoding. */ /* */ /* Input parameters from globals: */ /* ------------------------------ */ /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ /* l1_config.params.il_min: minimum level */ /* */ /* Output parameters: */ /* ------------------ */ /* none */ /* */ /* Modified parameters from globals: */ /* --------------------------------- */ /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */ /* */ /*-----------------------------------------------------------------*/ void l1ctl_pagc_missing_bursts (UWORD8 skipped_values) { UWORD8 i = 0; /* skipped_values cannot be greater than 3, otherwise this is an error * and the PAGC algorithm mustn't be updated. */ if (skipped_values > 3) { return; } /* Update fifo by removing skipped_values of samples */ for (i = 3; i > (skipped_values - 1); i--) { l1a_l1s_com.Scell_info.buff_beacon[i] = l1a_l1s_com.Scell_info.buff_beacon[i-skipped_values]; } /* Insert minimum IL level as many times a burst has been skipped */ for (i = 0; i < skipped_values; i++) { l1a_l1s_com.Scell_info.buff_beacon[i] = l1_config.params.il_min; } } #endif /* #if (FF_L1_FAST_DECODING == 1) */