FreeCalypso > hg > fc-magnetite
view src/cs/drivers/drv_app/ffs/board/reclaim.c @ 50:7c668a4acc42
spi_drv.lib done
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 30 Sep 2016 21:25:55 +0000 |
parents | 945cf7f506b2 |
children |
line wrap: on
line source
/****************************************************************************** * Flash File System (ffs) * Idea, design and coding by Mads Meisner-Jensen, mmj@ti.com * * FFS core reclaim functionality * * $Id: reclaim.c 1.4.1.28 Thu, 08 Jan 2004 15:05:23 +0100 tsj $ * ******************************************************************************/ #ifndef TARGET #include "ffs.cfg" #endif #include "ffs/ffs.h" #include "ffs/board/core.h" #include "ffs/board/drv.h" #include "ffs/board/ffstrace.h" #include <stdlib.h> // rand() /****************************************************************************** * Inodes Reclaim ******************************************************************************/ void inodes_recurse(iref_t i) { iref_t pi; struct inode_s *ip, *newip; tw(tr(TR_BEGIN, TrReclaimLow, "inodes_recurse(%d) {\n", i)); ip = inode_addr(i); newip = (struct inode_s *) offset2addr(dev.binfo[fs.newinodes].offset) + i; // copy inode dir to new block, except child, sibling and copied ffsdrv.write((uint32*) &newip->location, (uint32*) &ip->location, sizeof(location_t)); ffsdrv.write_halfword((uint16*) &newip->size, ip->size); ffsdrv_write_byte (&newip->flags, ip->flags); ffsdrv.write_halfword((uint16*) &newip->sequence, ip->sequence); ffsdrv.write_halfword((uint16*) &newip->updates, ip->updates); bstat[fs.newinodes].used++; // if no children of this dir, we have no more work to do if (ip->child == (iref_t) IREF_NULL) { tw(tr(TR_END, TrReclaimLow, "}\n")); return; } pi = -i; i = ip->child; ip = inode_addr(i); do { tw(tr(TR_FUNC, TrReclaimLow, "pi = %d, i = %d", pi, i)); tw(tr(TR_NULL, TrReclaimLow, ", size = %d, location = 0x%x", ip->size, ip->location)); tw(tr(TR_NULL, TrReclaimLow, ", name_addr = 0x%x", addr2name(offset2addr(location2offset(ip->location))))); if (is_object(ip, OT_SEGMENT)) tw(tr(TR_NULL, TrReclaimLow, ", (segment)\n")); else tw(tr(TR_NULL, TrReclaimLow, ", '%s'\n", (ip->size ? addr2name(offset2addr(location2offset(ip->location))) : "(cleaned)"))); if (is_object_valid(ip)) { if (is_object(ip, OT_DIR)) { tw(tr(TR_NULL, TrReclaimLow, "recursing...\n", i)); inodes_recurse(i); } else { tw(tr(TR_NULL, TrReclaimLow, "copying...\n")); // copy inode to new block, except child, sibling and copied newip = (struct inode_s *) offset2addr(dev.binfo[fs.newinodes].offset) + i; ffsdrv.write((uint32*) &newip->location, (uint32*) &ip->location, sizeof(location_t)); ffsdrv.write_halfword((uint16*) &newip->size, ip->size); ffsdrv_write_byte (&newip->flags, ip->flags); ffsdrv.write_halfword((uint16*) &newip->sequence, ip->sequence); ffsdrv.write_halfword((uint16*) &newip->updates, ip->updates); bstat[fs.newinodes].used++; } tw(tr(TR_FUNC, TrReclaimLow, "Linking: %d->%d\n",pi, i)); // now write the child or sibling link of previous inode newip = (struct inode_s *) offset2addr(dev.binfo[fs.newinodes].offset); if (pi > 0) ffsdrv.write_halfword((uint16*) &(newip + pi)->sibling, i); else ffsdrv.write_halfword((uint16*) &(newip + (-pi))->child, i); pi = i; // save index of previous inode if (ip->child != (iref_t) IREF_NULL && is_object(ip, OT_FILE)) { iref_t pis, is; struct inode_s *ips; pis = i; ips = ip; tw(tr(TR_FUNC, TrReclaimLow, "Follow segment head\n")); // While child is valid while ((is = ips->child) != (iref_t) IREF_NULL) { // Get child is = ips->child; ips = inode_addr(is); tw(tr(TR_FUNC, TrReclaimLow, "Child ok, got new child i = %d\n", is)); // While object not is valid while (!is_object_valid(ips)) { tw(tr(TR_FUNC, TrReclaimLow, "pi = %d, i = %d c(cleaned)\n", pis, is)); // If sibling are valid if (ips->sibling != (iref_t) IREF_NULL) { // Get sibling is = ips->sibling; ips = inode_addr(is); tw(tr(TR_FUNC, TrReclaimLow, "Sibling ok, got new sibling i = %d\n", is)); } else { tw(tr(TR_FUNC, TrReclaimLow, "Sibling = FF (%d)\n", ips->sibling)); break; // Nothing more todo, child and sibling = FF } } // If object is valid if (is_object_valid(ips)) { tw(tr(TR_NULL, TrReclaimLow, "copying...\n")); // copy inode to new block, except child, sibling and copied newip = (struct inode_s *) offset2addr(dev.binfo[fs.newinodes].offset) + is; ffsdrv.write((uint32*) &newip->location, (uint32*) &ips->location, sizeof(location_t)); ffsdrv.write_halfword((uint16*) &newip->size, ips->size); ffsdrv_write_byte (&newip->flags, ips->flags); ffsdrv.write_halfword((uint16*) &newip->sequence, ips->sequence); ffsdrv.write_halfword((uint16*) &newip->updates, ips->updates); bstat[fs.newinodes].used++; tw(tr(TR_FUNC, TrReclaimLow, "Linking child: %d->%d\n",pis, is)); // now write the child link of previous inode newip = (struct inode_s *) offset2addr(dev.binfo[fs.newinodes].offset); ffsdrv.write_halfword((uint16*) &(newip + (pis))->child, is); pis = is; // save index of previous inode } else { tw(tr(TR_FUNC, TrReclaimLow, "Sibling = FF (%d, %d)\n", ips->sibling, ips->child)); } } } } else { tw(tr(TR_NULL, TrReclaimLow, "(ignoring)\n")); } i = ip->sibling; ip = inode_addr(i); } while (i != (iref_t) IREF_NULL); tw(tr(TR_END, TrReclaimLow, "}\n")); } // Reclaim inodes, eg. move inodes to another block and erase old one. effs_t inodes_reclaim(void) { tw(tr(TR_BEGIN, TrIReclaim, "inodes_reclaim() {\n")); ttw(str(TTrRec, "irec{")); if (fs.initerror != EFFS_OK) { tw(tr(TR_END, TrIReclaim, "} %d\n", fs.initerror)); ttw(ttr(TTrRec, "} %d" NL, fs.initerror)); return fs.initerror; } if ((fs.newinodes = block_alloc(1, BF_COPYING)) < 0) { tw(tr(TR_END, TrIReclaim, "} %d\n", EFFS_NOBLOCKS)); ttw(ttr(TTrRec, "} %d" NL, EFFS_NOBLOCKS)); return EFFS_NOBLOCKS; } statistics_update_irec(bstat[fs.inodes].used - bstat[fs.inodes].lost, bstat[fs.inodes].lost); // copy all inodes... bstat[fs.newinodes].used = 0; inodes_recurse(fs.root); block_commit(); tw(tr(TR_END, TrIReclaim, "} 0\n")); ttw(str(TTrRec, "} 0" NL)); return EFFS_OK; } #if (FFS_TEST == 0) #define BLOCK_COMMIT_TEST(testcase, text) #else #if (TARGET == 0) // NOTEME: We have compressed the macro code because it will NOT compile on // Unix otherwise. So until we find out why, we use this as a work-around. #define BLOCK_COMMIT_TEST(testcase, text) if (fs.testflags == testcase) { tw(tr(TR_FUNC, TrData, "} (" text ")\n")); return; } #else #define BLOCK_COMMIT_TEST(testcase, text) if (fs.testflags == testcase) { ttw(ttr(TTrData, "} (" text ")\n")); return; } #endif #endif // Inode -> Lost, Copying -> Inode, Lost -> Free void block_commit(void) { int oldinodes = fs.inodes; tw(tr(TR_BEGIN, TrIReclaim, "block_commit(%d -> %d) {\n", oldinodes, fs.newinodes)); ttw(ttr(TTrRec, "block_commit(%d -> %d) {\n" NL, oldinodes, fs.newinodes)); BLOCK_COMMIT_TEST(BLOCK_COMMIT_BEFORE, "Oops before commit"); block_flags_write(oldinodes, BF_LOST); BLOCK_COMMIT_TEST(BLOCK_COMMIT_NO_VALID, "Oops no valid inode block"); // Validate new block as an inodes block block_flags_write(fs.newinodes, BF_INODES); bstat[fs.newinodes].lost = 0; bstat[fs.newinodes].objects = 1; inodes_set(fs.newinodes); // Free old inodes block block_free(oldinodes); BLOCK_COMMIT_TEST(BLOCK_COMMIT_OLD_FREE, "Oops after freeing old block"); BLOCK_COMMIT_TEST(BLOCK_COMMIT_AFTER, "Oops after commit"); ttw(str(TTrRec, "} 0" NL)); tw(tr(TR_END, TrIReclaim, "}\n")); } /****************************************************************************** * Data Reclaim ******************************************************************************/ // Important note: We must NOT perform a data reclaim when we are in the // process of creating the journal file! // Reclaim a data block, eg. move files to other blocks and erase old one. // When the reclaim is done, we must completely delete the old inodes which // are pointing into the old data sector which is going to be erased now. iref_t data_reclaim(int space) { iref_t error; tw(tr(TR_BEGIN, TrDReclaim, "data_reclaim(%d) {\n", space)); if (fs.initerror != EFFS_OK) { tw(tr(TR_END, TrDReclaim, "} %d\n", fs.initerror)); return fs.initerror; } error = data_reclaim_try(space); tw(tr(TR_END, TrDReclaim, "} (data_reclaim) %d\n", error)); return error; } int dage_max_reached(int dage_blk, int agegain) { int reclaim, early, log2, mask; tw(tr(TR_BEGIN, TrDReclaim, "young(%d, %d) {\n", dage_blk, agegain)); // Simple algorithm reclaim = (dage_blk + agegain - 2 * FFS_DAGE_MAX >= 0); // Early exponential probability based reclaim early = FFS_DAGE_MAX - dage_blk; if (agegain > dage_blk - 4 && 0 < early && early <= FFS_DAGE_EARLY_WIDTH) { if (early < 4) early = 2; if (early < FFS_DAGE_EARLY_WIDTH) { // Now make an exponential probability distributon by // generating a bitmask of a size relative to (dage_blk // - DAGE_EARLY_WIDTH) log2 = -1; while (early > 0) { early >>= 1; log2++; } reclaim = log2; mask = (1 << (log2 + 1)) - 1; reclaim = ((rand() & mask) == 0); } } // Do not perform a reclaim unless we gain a certain minimum if (agegain < FFS_DAGE_GAIN_MIN) reclaim = 0; tw(tr(TR_END, TrDReclaim, "} (%d)\n", reclaim)); return reclaim; } // Try to reclaim at least <space> bytes of data space. On success, return // the number of bytes actually reclaimed. Otherwise, on failure, return a // (negative) error. int data_reclaim_try(int space) { // 1. Find a suitable block to reclaim. // // 2. Relocate each valid object from old block (to another block). An // object relocation is similar to a normal file update, e.g. similar to // fupdate(). // // 3. If there is not enough space to relocate a file, we must alloc a // new block then data_format() it. // // 4. set BF_CLEANING flag of old block. // // 5. ALL inodes (also invalid an erased ones) referring into reclaimed // block must now be totally wiped out. // // 6. Free (invalidate) old block. int result = 0, reserved_ok = 0; bref_t b, blocks_free; bref_t brc_young_b, brc_lost_b, brc_unused_b; blocksize_t brc_lost_lost, brc_lost_unused; blocksize_t brc_unused_unused; blocksize_t unused, unused_total, lost, lost_total, free; age_t brc_young_dage, free_dage, dage; struct block_header_s *bhp; // Note gain can be negative if the free block is younger than the youngest data block int age_gain; tw(tr(TR_BEGIN, TrDReclaim, "data_reclaim_try(%d) {\n", space)); ttw(str(TTrRec, "drec{" NL)); // While searching for a block to reclaim, we maintain three block // reclaim candidates (brc): One with the maximum number of lost bytes, // one with the maximum number of unused bytes and another for the // youngest block, e.g. the one with the largest age distance to // fs.age_max. The candidates are tried in the order mentioned. // This counts free blocks, so we initialize to number of blocks minus // one for inodes. blocks_free = dev.numblocks - 1; // Initialize Block Reclaim Candidate (brc) variables brc_lost_b = -1; brc_lost_unused = 0; brc_lost_lost = 0; brc_unused_b = -1; brc_unused_unused = 0; brc_young_b = -1; brc_young_dage = 0; free_dage = 0; lost_total = 0; unused_total = 0; tw(tr(TR_FUNC, TrDReclaim, "blk unused lost w/age age dist objs\n")); for (b = 0; b < dev.numblocks; b++) { bhp = (struct block_header_s *) offset2addr(dev.binfo[b].offset); if (is_block(b, BF_IS_DATA)) { // Record number of lost bytes and number of unused bytes, // eg. total space that would be freed if this block was // reclaimed lost = bstat[b].lost; unused = dev.blocksize - (bstat[b].used - bstat[b].lost); free = dev.blocksize - bstat[b].used; lost_total += lost; unused_total += unused; if (free >= RESERVED_LOW) reserved_ok = 1; if (lost > brc_lost_lost) { brc_lost_b = b; brc_lost_lost = lost; brc_lost_unused = unused; } if (unused > brc_unused_unused) { brc_unused_b = b; brc_unused_unused = unused; } tw(tr(TR_FUNC, TrDReclaim, "%3d %7d %7d ", b, unused, lost)); dage = saturate_dage(fs.age_max - bhp->age); tw(tr(TR_NULL, TrDReclaim, "%6d %5d %4d %3d\n", lost, bhp->age, dage, bstat[b].objects)); if (dage >= brc_young_dage) { brc_young_b = b; brc_young_dage = dage; } blocks_free--; } else if (is_block(b, BF_IS_FREE)) { unused_total += dev.blocksize; // Find youngest free block (in must cases we will only have one free b) dage = saturate_dage(fs.age_max - bhp->age); if (dage >= free_dage) free_dage = dage; // Delta age of youngest free block } } tw(tr(TR_FUNC, TrDReclaim, "sum %7d %7d\n", unused_total, lost_total)); tw(tr(TR_FUNC, TrDReclaim, "blocks_free = %d, fs.age_max = %d\n", blocks_free, fs.age_max)); age_gain = brc_young_dage - free_dage; // Same as free - block age if (space > unused_total) { // We will never be able to reclaim this amount... result = 0; } else { // No additional blocks (apart from spare block) are free... tw(tr(TR_FUNC, TrDReclaim, "brc_young_dage = %d, brc_lost_unused = %d, brc_unused_unused = %d\n", brc_young_dage, brc_lost_unused, brc_unused_unused)); if (reserved_ok == 0) { tw(tr(TR_FUNC, TrDReclaim, "No reserved, reclaim most-lost block (%d)\n", brc_unused_b)); result = data_block_reclaim(brc_lost_b, MOST_LOST); } else if (dage_max_reached(brc_young_dage, age_gain) > 0 ) { tw(tr(TR_FUNC, TrDReclaim, "Reclaiming youngest block (%d)\n", brc_young_b)); result = data_block_reclaim(brc_young_b, YOUNGEST); } else if (brc_lost_unused >= space) { tw(tr(TR_FUNC, TrDReclaim, "Reclaiming most-lost block (%d)\n", brc_lost_b)); result = data_block_reclaim(brc_lost_b, MOST_LOST); } else if (brc_unused_unused >= space) { tw(tr(TR_FUNC, TrDReclaim, "Reclaiming most-unused block (%d)\n", brc_unused_b)); result = data_block_reclaim(brc_unused_b, MOST_UNUSED); } else { tw(tr(TR_FUNC, TrDReclaim, "Reclaiming most-lost blockx (%d)\n", brc_lost_b)); result = data_block_reclaim(brc_lost_b, MOST_LOST); if (result >= 0) result = 0; // We reclaimed a block but we still need more space } } tw(tr(TR_END, TrDReclaim, "} (data_reclaim_try) %d\n", result)); return result; } #if (FFS_TEST == 0) #define BLOCK_RECLAIM_TEST(testcase, text) #else #if (TARGET == 0) // NOTEME: We have compressed the macro code because it will NOT compile on // Unix otherwise. So until we find out why, we use this as a work-around. #define BLOCK_RECLAIM_TEST(testcase, text) if (fs.testflags == testcase) { tw(tr(TR_FUNC, TrTestHigh, "(" text ")\n")); tw(tr(TR_END, TrDReclaim, "} (Test) -100\n", result));return -100; } #else #define BLOCK_RECLAIM_TEST(testcase, text) if (fs.testflags == testcase) { ttw(ttr(TTrData, "} (" text ")"NL)); ttw(ttr(TTrRec, "} (Test) -100" NL));return -100; } #endif #endif #if (FFS_TEST == 0) #define BLOCK_RECOVER_TEST_INIT(testcase, text) #define BLOCK_RECOVER_TEST(testcase, text) #else #if (TARGET == 0) #define BLOCK_RECOVER_TEST_INIT(testcase, text) int rand_object; if (fs.testflags == testcase) { rand_object = rand() % bstat[b].objects; tw(tr(TR_FUNC, TrTestHigh, "Fail when object nr %d is relocated\n", rand_object)); } #define BLOCK_RECOVER_TEST(testcase, text) if (fs.testflags == testcase) {if (rand_object == n) { tw(tr(TR_FUNC, TrTestHigh, "(" text ")\n")); tw(tr(TR_END, TrDReclaim, "} (Test) -101\n", result)); return -101; } } #else #define BLOCK_RECOVER_TEST_INIT(testcase, text) int rand_object; if (fs.testflags == testcase) { rand_object = rand() % bstat[b].objects; ttw(ttr(TTrData, "Fail when object nr %d is relocated" NL, rand_object)); } #define BLOCK_RECOVER_TEST(testcase, text) if (fs.testflags == testcase) {if (rand_object == n) { ttw(ttr(TTrData, "(" text ")" NL)); ttw(ttr(TTrRec, "} (Test) -101" NL, result)); return -101; } } #endif #endif iref_t data_block_reclaim(bref_t b, int candidate) { iref_t i, n, j; blocksize_t used_old, lost_old; int org_res_space, result = 0; iref_t org_block_files_reserved; offset_t lower, upper; struct inode_s *ip; static int is_reclaim_running = 0; tw(tr(TR_BEGIN, TrDReclaim, "data_block_reclaim(%d) {\n", b)); // In case of no free blocks (after sudden power off) or if the file // system is near full we risk to be reentered (infinity recursively // loop) and we can not allow that, so just return. if (is_reclaim_running == 1) { tw(tr(TR_END, TrDReclaim, "} (reenteret skip reclaim) 0\n")); return EFFS_RECLAIMLOOP; } is_reclaim_running = 1; // If there are more objects in this block than there are remaining // free inodes, we have to make an inodes_reclaim() first. tw(tr(TR_FUNC, TrDReclaim, "block_objects, fs.inodes_max, inodes: used, free\n")); tw(tr(TR_FUNC, TrDReclaim, "%10d, %13d, %15d, %4d\n", bstat[b].objects, fs.inodes_max, bstat[fs.inodes].used, fs.inodes_max - (bstat[fs.inodes].used + bstat[fs.inodes].lost))); if (bstat[b].objects >= (fs.inodes_max - (bstat[fs.inodes].used + bstat[fs.inodes].lost + FFS_INODES_MARGIN))) { tw(tr(TR_FUNC, TrInode, "NOTE: Will run out of free inodes...\n")); inodes_reclaim(); } // Allocate a new block. NOTE: we don't return an error because if we // get in the situation where we don't have any free blocks this is the // only way to recover. if ((result = block_alloc(1, BF_DATA)) < 0) { tw(tr(TR_FUNC, TrAll, "WARNING: block_alloc failed\n")); } BLOCK_RECLAIM_TEST(BLOCK_RECLAIM_ALLOC, "Oops after ffs_block_alloc()"); // If there are any objects at all to reclaim... if (bstat[b].objects > 0) { BLOCK_RECOVER_TEST_INIT(BLOCK_RECOVER_OBJECTS, "Dummy") // Save the current journal state if (journal_push() != EFFS_OK) { is_reclaim_running = 0; // NOTEME: change to goto? return EFFS_CORRUPTED; } // We simulate that this block is completely full, such that we // don't relocate files to the end of the block used_old = bstat[b].used; lost_old = bstat[b].lost; // For statistics bstat[b].used = dev.blocksize - 1; // Compute lower (inclusive) and upper (exclusive) bounds of the // location of files in this block lower = offset2location(dev.binfo[b].offset); upper = offset2location(dev.binfo[b].offset + dev.blocksize); tw(tr(TR_FUNC, TrDReclaim, "Block addr range = 0x%X..0x%X\n", location2offset(lower), location2offset(upper))); // This is the only time we are allowed to use the reserved org_block_files_reserved= fs.block_files_reserved; fs.block_files_reserved = 0; org_res_space = fs.reserved_space; fs.reserved_space = RESERVED_NONE; ip = inode_addr(1); for (i = 1, n = 0; i < fs.inodes_max; i++, ip++) { BLOCK_RECOVER_TEST(BLOCK_RECOVER_OBJECTS, "Oops before relocate all objects"); // Ensure object is valid and within the block to be reclaimed if (is_object_valid(ip) && lower <= ip->location && ip->location < upper) { if ((result = object_relocate(i)) < 0) { tw(tr(TR_FUNC, TrAll, "FATAL object_relocate failed\n")); break; } // If we reclaim a segment head or wch that is in use we must // update the file descriptor as well for (j = 0; j < fs.fd_max; j++) { if (i == fs.fd[j].seghead) { tw(tr(TR_FUNC, TrDReclaim, "Updated seghead %d -> %d \n", fs.fd[j].seghead, result)); fs.fd[j].seghead = result; } if (i == fs.fd[j].wch) { tw(tr(TR_FUNC, TrDReclaim, "Updated wch %d -> %d \n", fs.fd[j].wch, result)); fs.fd[j].wch = result; } } // If we have just reclaimed an object which we started on // updating we must also update ojournal if (i == fs.ojournal.oldi) { struct inode_s *ip = inode_addr(result); tw(tr(TR_FUNC, TrDReclaim, "Updated ojournal oldi %d -> %d \n", fs.ojournal.oldi, result)); fs.ojournal.oldi = result; fs.ojournal.location = ip->location; } if (i == fs.ojournal.diri || i == -fs.ojournal.diri) { fs.ojournal.diri = (fs.ojournal.diri < 0 ? -result : result); tw(tr(TR_FUNC, TrDReclaim, "Updated ojournal: diri %d -> %d \n", i, fs.ojournal.diri)); } if (i == fs.ojournal.repli || i == -fs.ojournal.repli) { fs.ojournal.repli = (fs.ojournal.repli < 0 ? -result : result); tw(tr(TR_FUNC, TrDReclaim, "Updated ojournal: repli %d -> %d \n", i, fs.ojournal.repli)); } if (i == fs.i_backup || i == -fs.i_backup) { fs.i_backup = (fs.i_backup < 0 ? -result : result); tw(tr(TR_FUNC, TrDReclaim, "Updated i_backup: %d -> %d \n", i, fs.i_backup)); } n++; } } fs.block_files_reserved = org_block_files_reserved; // Restore fs.reserved_space = org_res_space; tw(tr(TR_FUNC, TrDReclaim, "Reclaimed %d objects\n", n)); if (result >= 0) result = n; // We return number of objects relocated if (i < fs.inodes_max) { // We did not finish, so restore the old bstat[].used of the block. bstat[b].used = used_old; tw(tr(TR_FUNC, TrAll, "WARNING: data_block_reclaim() not completed\n")); result = EFFS_DBR; } // Restore the saved journal state if (journal_pop() != EFFS_OK) { is_reclaim_running = 0; // NOTEME: change to goto? return EFFS_CORRUPTED; } } BLOCK_RECLAIM_TEST(BLOCK_RECLAIM_NO_CLEAN, "Oops before clean old data block"); if (result >= 0) { // Clean the block (remove all inodes that refer to this block) block_flags_write(b, BF_CLEANING); block_clean(b); statistics_update_drec(used_old - lost_old, lost_old, candidate); BLOCK_RECLAIM_TEST(BLOCK_RECLAIM_CLEANING, "Oops before free old data block"); // Free the old block block_free(b); } is_reclaim_running = 0; tw(tr(TR_END, TrDReclaim, "} (data_block_reclaim) %d\n", result)); ttw(ttr(TTrRec, "} %d" NL, result)); return result; } // Relocate object represented by inode reference <i>. iref_t object_relocate(iref_t oldi) { iref_t newi; struct inode_s *oldip; char *olddata, *oldname; int oldsize; tw(tr(TR_BEGIN, TrReclaimLow, "object_relocate(%d) {\n", oldi)); journal_begin(oldi); oldip = inode_addr(oldi); oldsize = segment_datasize(oldip); olddata = offset2addr(location2offset(oldip->location)); oldname = addr2name(olddata); olddata = addr2data(olddata, oldip); if (is_object(oldip, OT_SEGMENT)) newi = segment_create(olddata, oldsize, -oldi); else { // root inode is a special case if (*oldname == '/') newi = object_create(oldname, olddata, oldsize, 0); else newi = object_create(oldname, olddata, oldsize, oldi); } if (newi < 0) { tw(tr(TR_END, TrReclaimLow, "} %d\n", newi)); return newi; } // root inode is a special case if ((*oldname == '/') && !is_object(oldip, OT_SEGMENT)) { tw(tr(TR_FUNC, TrDReclaim, "Relocating fs.root: %d->%d\n", oldi, newi)); fs.root = newi; } journal_end(0); tw(tr(TR_END, TrReclaimLow, "} %d\n", newi)); return newi; } // Clean a block, eg. erase all inodes that refer to this block. iref_t block_clean(bref_t b) { iref_t i, n; struct inode_s *ip; offset_t lower, upper; tw(tr(TR_FUNC, TrDReclaim, "block_clean(%d) { ", b)); // Compute lower (inclusive) and upper (exclusive) bounds of the // location of files in this block lower = offset2location(dev.binfo[b].offset); upper = offset2location(dev.binfo[b].offset + dev.blocksize); tw(tr(TR_FUNC, TrDReclaim, "offset range = 0x%X..0x%X: ", lower, upper)); ip = inode_addr(1); for (i = 1, n = 0; i < fs.inodes_max; i++, ip++) { // Ensure object is within the block to be reclaimed. Note: if ffs // is conf. with 1MB or above will all not used inodes default have // the location to FFFF which will trigger a clean and make a error! if (lower <= ip->location && upper > ip->location) { tw(tr(TR_NULL, TrReclaimLow, "%d ", i)); // Set the size to zero so it won't be counted in ffs_initialize() ffsdrv.write_halfword((uint16 *) &ip->size, 0); n++; } } tw(tr(TR_NULL, TrDReclaim, "} %d\n", n)); return n; } /****************************************************************************** * Main and block reclaim ******************************************************************************/ // Reclaim (erase) all blocks that are marked as invalid/reclaimable. Each // time a block is erased, its age is incremented so as to support wear // levelling. Also, the global age limits are updated. FIXME: Should we // avoid having ffs_initialize() do a block_reclaim() because it delays reboot?. int blocks_reclaim(void) { bref_t b, n, b_lost_space; int blocks_free = 0, lost_space; int free_space, b_free_space; tw(tr(TR_BEGIN, TrBlock, "blocks_reclaim() {\n")); ttw(str(TTrRec, "blocks_reclaim() {" NL)); // Testing of fs.testflags is for the sake of testing block_commit() if ((fs.testflags & BLOCK_COMMIT_BASE) != 0) { tw(tr(TR_FUNC, TrBlock, "Bailing out because fs.testflags = 0x%X\n", fs.testflags)); } else { for (b = 0, n = 0; b < dev.numblocks; b++) { if (is_block_flag(b, BF_LOST)) { block_reclaim(b); n++; } if (is_block(b, BF_IS_FREE)) { blocks_free++; } } } // If the number of free blocks is less than fs.blocks_free_min we // call data_block_reclaim(). We will reclaim the block with most lost // space. This should only happend if we got a sudden power off/reset // while we reclaimed a block. if (blocks_free < fs.blocks_free_min) { lost_space = 0; free_space = 0; // We most never reclaim the block with most free space because this // is the only block we can relocate the objects to. for (b = 0; b < dev.numblocks; b++) { if (is_block_flag(b, BF_DATA)) { if ((dev.blocksize - bstat[b].used) > free_space) { free_space = dev.blocksize - bstat[b].used; b_free_space = b; } } } tw(tr(TR_FUNC, TrBlock, "most free space: %d in block: %d \n", free_space, b_free_space)); for (b = 0; b < dev.numblocks; b++) { if (is_block_flag(b, BF_DATA) && b != b_free_space) { if (bstat[b].lost > lost_space) { lost_space = bstat[b].lost; b_lost_space = b; } } } tw(tr(TR_FUNC, TrBlock, "most lost space: %d in block: %d \n", lost_space, b_lost_space)); data_block_reclaim(b_lost_space, MOST_LOST); } tw(tr(TR_END, TrBlock, "} %d\n", n)); ttw(ttr(TTrRec, "} %d" NL, n)); return n; } int block_reclaim(bref_t b) { age_t age; struct block_header_s *bhp; tw(tr(TR_BEGIN, TrBlock, "block_reclaim(%d) {\n", b)); // In ffs_initialize() we set fs.initerror = EFFS_INVALID while we call // blocks_fsck(). We test for that condition now, in order to avoid // doing sector erases that will delay the whole target boot process. if (fs.initerror == EFFS_INVALID) { tw(tr(TR_END, TrBlock, "} %d\n", fs.initerror)); return fs.initerror; } // Testing of fs.testflags is for the sake of testing block_commit() if ((fs.testflags & BLOCK_COMMIT_BASE) != 0 && fs.testflags != BLOCK_COMMIT_OLD_FREE) { tw(tr(TR_FUNC, TrBlock, "Bailing out because fs.testflags = 0x%X\n", fs.testflags)); } else { // We must read block's age before we erase it. bhp = (struct block_header_s *) offset2addr(dev.binfo[b].offset); age = bhp->age; ffsdrv.erase(b); block_preformat(b, age); } tw(tr(TR_END, TrBlock, "} %d\n", 0)); return 0; }