FreeCalypso > hg > fc-magnetite
view src/cs/layer1/p_cfile/l1p_driv.c @ 654:8c0bd0b6447c
.../luna/r2d_task_i.c: r2d_check_and_send_event() call removed
This call was present in the D-Sample color version of r2d_task_i.c,
but not in any other version. Removing it produces no ill effect
that I could see.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 07 May 2020 20:36:04 +0000 |
parents | 0740b5ff15f6 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1P_DRIVE.C * * Filename l1p_driv.c * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #define L1P_DRIVE_C #include "l1_macro.h" #include "l1_confg.h" #if L1_GPRS #if (CODE_VERSION == SIMULATION) #include <string.h> #include "l1_types.h" #include "sys_types.h" #include "l1_const.h" #include "l1_time.h" #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif #include "l1_defty.h" #include "l1_varex.h" #include "cust_os.h" #include "l1_msgty.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #include "l1p_cons.h" #include "l1p_msgt.h" #include "l1p_deft.h" #include "l1p_vare.h" #include "l1p_tabs.h" #include "sim_cons.h" #include "sim_def.h" extern T_hw FAR hw; #include "l1_proto.h" #else #include <string.h> #include "l1_types.h" #include "sys_types.h" #include "l1_const.h" #include "l1_time.h" #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif #include "l1_defty.h" #include "l1_varex.h" #include "cust_os.h" #include "l1_msgty.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #include "l1p_cons.h" #include "l1p_msgt.h" #include "l1p_deft.h" #include "l1p_vare.h" #include "l1p_tabs.h" #include "l1_proto.h" #include "tpudrv.h" #endif #if(RF_FAM == 61) #include "l1_rf61.h" #include "tpudrv61.h" #include "l1_ctl.h" #endif /*-------------------------------------------------------*/ /* Prototypes of external functions used in this file. */ /*-------------------------------------------------------*/ void l1dmacro_synchro (UWORD32 when, UWORD32 value); void l1dmacro_offset (UWORD32 offset_value, WORD32 relative_time); void l1dmacro_afc (UWORD16 afc_value, UWORD8 win_id); #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61) ) UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq #if(REL99 && FF_PRF) ,UWORD8 number_uplink_timeslot #endif ); #endif void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq); BOOL l1ps_swap_iq_ul (UWORD16 radio_freq); BOOL l1ps_swap_iq_dl (UWORD16 radio_freq); #if (L1_MADC_ON == 1) #if (RF_FAM == 61) void l1pdmacro_rx_up (UWORD16 radio_freq,UWORD8 adc_active, UWORD8 csf_filter_choice #if (NEW_SNR_THRESHOLD == 1) ,UWORD8 saic_flag #endif /* NEW_SNR_THRESHOLD == 1*/ ); #endif #else /* RF_FAM == 61*/ void l1pdmacro_rx_up (UWORD16 radio_freq); #endif void l1pdmacro_rx_down (UWORD16 radio_freq, UWORD8 num_rx, BOOL rx_done_flag); void l1pdmacro_tx_up (UWORD16 radio_freq); void l1pdmacro_tx_down (UWORD16 radio_freq, WORD16 time, BOOL tx_flag, UWORD8 timing_advance,UWORD8 adc_active); void l1pdmacro_tx_synth(UWORD16 radio_freq); void l1pdmacro_anchor (WORD16 time); void l1dmacro_rx_synth(UWORD16 radio_freq); void l1dmacro_agc(UWORD16 radio_freq, WORD8 agc_value, UWORD8 lna_off #if (RF_FAM == 61) ,UWORD8 if_ctl #endif ); #if (CODE_VERSION == SIMULATION) void l1dmacro_rx_ms (UWORD16 arfcn, BOOL rxnb_select); #else #if (L1_MADC_ON == 1) #if (RF_FAM == 61) void l1dmacro_rx_ms (UWORD16 arfcn,UWORD8 adc_active); #endif #else void l1dmacro_rx_ms (UWORD16 arfcn); #endif #endif void l1pdmacro_it_dsp_gen(WORD16 time); /*-------------------------------------------------------*/ /* Prototypes of functions defined in this file. */ /*-------------------------------------------------------*/ // TPU Drivers... // DSP Drivers... void l1pddsp_synchro (UWORD8 switch_mode, UWORD8 camp_timeslot); void l1pddsp_idle_prach_data (BOOL polling, UWORD8 cs_type, UWORD16 channel_request_data, UWORD8 bsic, UWORD16 radio_freq); void l1pddsp_idle_prach_power (UWORD8 txpwr, UWORD16 radio_freq, UWORD8 ts); void l1pddsp_single_tx_block (UWORD8 burst_nb, UWORD8 *data, UWORD8 tsc, UWORD16 radio_freq); #if FF_L1_IT_DSP_USF void l1pddsp_idle_rx_nb (UWORD8 burst_nb, UWORD8 tsq, UWORD16 radio_freq, UWORD8 timeslot_no, BOOL ptcch_dl, BOOL usf_interrupt); #else void l1pddsp_idle_rx_nb (UWORD8 burst_nb, UWORD8 tsq, UWORD16 radio_freq, UWORD8 timeslot_no, BOOL ptcch_dl); #endif void l1pddsp_transfer_mslot_ctrl (UWORD8 burst_nb, UWORD8 dl_bitmap, UWORD8 ul_bitmap, UWORD8 *usf_table, UWORD8 mac_mode, UWORD8 *ul_buffer_index, UWORD8 tsc, UWORD16 radio_freq, UWORD8 synchro_timeslot, #if FF_L1_IT_DSP_USF UWORD8 dsp_usf_interrupt #else UWORD8 usf_vote_enable #endif ); void l1pddsp_transfer_mslot_power (UWORD8 *txpwr, UWORD16 radio_freq, UWORD8 ul_bitmap); void l1pddsp_ul_ptcch_data (UWORD8 cs_type, UWORD16 channel_request_data, UWORD8 bsic, UWORD16 radio_freq, UWORD8 timeslot_no); void l1pddsp_interf_meas_ctrl (UWORD8 nb_meas_req); void l1pddsp_transfer_meas_ctrl (UWORD8 meas_position); /*-------------------------------------------------------*/ /* l1pd_afc() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pd_afc(void) { #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) l1ddsp_load_afc(l1s.afc); #endif #if (RF_FAM == 61) l1dtpu_load_afc(l1s.afc); #endif } /*-------------------------------------------------------*/ /* l1pdtpu_interf_meas() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ UWORD8 l1pdtpu_interf_meas(UWORD16 radio_freq, WORD8 agc, UWORD8 lna_off, UWORD8 meas_bitmap, UWORD32 offset_serv, UWORD16 win_id, UWORD8 synchro_ts #if (RF_FAM == 61) ,UWORD8 if_ctl #endif ) { UWORD8 bit_mask = 0x80; UWORD8 ts; BOOL rf_programmed = FALSE; UWORD8 count = 0; if(!win_id) { // Nothing programmed yet, we must avoid Mirror effect in Ctrl phase. l1pdmacro_anchor(l1_config.params.rx_change_offset_time); } for (ts=0; ts<8; ts++) { // the bitmap corresponds to that of the idle frame of the network!!! #if ((CHIPSET==3)||(CHIPSET == 4)) // limitation of 5 measurements for SAMSON (TPU RAM size limitation) if((meas_bitmap & bit_mask)&&(count <= 4)) #else if(meas_bitmap & bit_mask) #endif { UWORD16 local_win_id; UWORD16 offset; WORD16 when; UWORD16 offset_chg; if((ts>synchro_ts) && (count==0)) { // The 1st Work does not contain any Interf meas. // We must ovoid a possible Mirror effect for the rest of TS. l1pdmacro_anchor(l1_config.params.rx_change_offset_time); } // Increment nbr of meas. programmed. count++; local_win_id = (8 - synchro_ts + ts) * BP_SPLIT; if(local_win_id >= (BP_SPLIT * 8)) local_win_id -= BP_SPLIT * 8; // Modulo. // Compute offset offset_chg = ((local_win_id * BP_DURATION) >> BP_SPLIT_PW2); offset = offset_serv + offset_chg; if(offset >= TPU_CLOCK_RANGE) offset -= TPU_CLOCK_RANGE; if(!rf_programmed) { // Compute offset change timing when = offset_chg + PROVISION_TIME - l1_config.params.rx_synth_setup_time - EPSILON_OFFS; if(when < 0) when += TPU_CLOCK_RANGE; // Program TPU scenario l1dmacro_offset (offset, when); // change TPU offset according to win_id l1dmacro_rx_synth (radio_freq); // pgme SYNTH. #if (RF_FAM !=61) l1dmacro_agc (radio_freq, agc,lna_off); // pgme AGC. #endif #if (RF_FAM == 61) l1dmacro_agc (radio_freq, agc,lna_off, if_ctl); // pgme AGC. #endif rf_programmed = TRUE; } else { // Compute offset change timing when = offset_chg - BP_DURATION + PROVISION_TIME + PW_ACQUIS_DURATION + 20; if(when < 0) when += TPU_CLOCK_RANGE; // Program TPU scenario l1dmacro_offset (offset, when); // change TPU offset according to win_id } #if (CODE_VERSION == SIMULATION) l1dmacro_rx_ms (radio_freq, 1); // pgm PWR acquisition. #else #if (L1_MADC_ON == 1) #if (RF_FAM == 61) l1dmacro_rx_ms (radio_freq,INACTIVE); // pgm PWR acquisition. #endif #else l1dmacro_rx_ms (radio_freq); // pgm PWR acquisition. #endif #endif l1dmacro_offset (offset_serv, IMM); // restore offset } bit_mask >>= 1; } // for(ts... return(count); } /*-------------------------------------------------------*/ /* l1dtpu_serv_rx() */ /*-------------------------------------------------------*/ /* Parameters : */ /* rx_id: range 0-7, first slot of RX group */ /* rx_group_id: used in case |RX| |RX| */ /* */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pdtpu_serv_rx_nb(UWORD16 radio_freq, UWORD8 agc, UWORD8 lna_off, UWORD8 rx_id, UWORD32 offset_serv, UWORD8 num_rx, UWORD8 rx_group_id, BOOL rx_done_flag,UWORD8 adc_active #if (RF_FAM == 61) ,UWORD8 csf_filter_choice ,UWORD8 if_ctl #endif #if (NEW_SNR_THRESHOLD == 1) ,UWORD8 saic_flag #endif /* NEW_SNR_THRESHOLD*/ ) { UWORD16 offset; #if (CODE_VERSION == SIMULATION) UWORD32 tpu_w_page; if (hw.tpu_r_page==0) tpu_w_page=1; else tpu_w_page=0; hw.rx_id[tpu_w_page][rx_group_id-1]=rx_id; hw.num_rx[tpu_w_page][rx_group_id-1]=num_rx; hw.rx_group_id[tpu_w_page]=rx_group_id; #endif offset = offset_serv + (rx_id * BP_DURATION); if(offset >= TPU_CLOCK_RANGE) offset -= TPU_CLOCK_RANGE; if (rx_group_id == 1) { // Time tracking. l1dmacro_synchro (l1_config.params.rx_change_synchro_time, offset_serv); // Adjust serving OFFSET. #if L2_L3_SIMUL #if (DEBUG_TRACE == BUFFER_TRACE_OFFSET) buffer_trace(3, 0x43, offset_serv, l1s.actual_time.fn, 0); #endif #endif // Change offset to align on RX. l1dmacro_offset(offset, IMM); // Program Synth. // Program ADC measurement // Program AGC. l1dmacro_rx_synth(radio_freq); if(adc_active == ACTIVE) l1dmacro_adc_read_rx(); l1dmacro_agc (radio_freq, agc, lna_off #if (RF_FAM == 61) ,if_ctl #endif ); } else { // Change offset to align on RX. l1dmacro_offset(offset, IMM); // Change offset to align on RX. } l1pdmacro_rx_up (radio_freq #if (RF_FAM == 61) ,adc_active ,csf_filter_choice #endif #if (NEW_SNR_THRESHOLD == 1) ,saic_flag #endif /* NEW_SNR_THRESHOLD*/ ); // RX window opened. l1pdmacro_rx_down(radio_freq, num_rx, rx_done_flag); // RX window closed. // Restore offset to synchro value. l1dmacro_offset (offset_serv, IMM); } /*-------------------------------------------------------*/ /* l1dtpu_serv_tx() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) #ifndef ABB_RAMP_UP_TIME //Flexi ABB Delays defines it in tpudrvXX.h #define ABB_RAMP_UP_TIME 32 // maximum time for ramp up #endif #ifndef ABB_RAMP_DELAY//Flexi ABB Delays defines it in tpudrvXX.h #define ABB_RAMP_DELAY 6 // minimum ramp delay APCDEL #endif #ifndef ABB_BULON_HOLD_TIME //Flexi ABB Delays defines it in tpudrvXX.h #define ABB_BULON_HOLD_TIME 32 // min. hold time for BULON after BULENA down #endif #endif void l1pdtpu_serv_tx(UWORD16 radio_freq, UWORD8 timing_advance, UWORD32 offset_serv, UWORD8 tx_id, UWORD8 num_tx, UWORD8 tx_group_id, UWORD8 switch_flag, BOOL burst_type, BOOL rx_flag, UWORD8 adc_active) { WORD16 time; UWORD32 offset_tx; UWORD32 timing_advance_in_qbit = (UWORD32)timing_advance << 2; #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61)) UWORD16 apcdel1_data, apcdel1_data_up; #endif UWORD8 i; static UWORD8 static_switch_flag = 0; #if (CODE_VERSION == SIMULATION) UWORD32 tpu_w_page; if (hw.tpu_r_page==0) tpu_w_page=1; else tpu_w_page=0; hw.tx_id[tpu_w_page][tx_group_id-1]=tx_id; hw.num_tx[tpu_w_page][tx_group_id-1]=num_tx; hw.tx_group_id[tpu_w_page]=tx_group_id; #endif // Reset timing advance if TA_ALGO not enabled. #if !TA_ALGO timing_advance_in_qbit = 0; #endif // In case another group of TX bursts is called, the previous slot was a hole // An IT has to be generated to the DSP so that ramps and power level are reloaded // This does not apply to combinations of PRACH and TX NB if ((tx_group_id > 1) && (!static_switch_flag)) { // exact timing for generation of IT during hole not required but // time > time of previous ramp down (BULENA -> BULON down = 32 qb) + margin (10 qb) #if (RF_FAM != 61) time = TX_TABLE[tx_id-1] + PROVISION_TIME + ABB_BULON_HOLD_TIME + 10 - l1_config.params.prg_tx_gsm; #endif #if (RF_FAM == 61) time = TX_TABLE[tx_id-1] + PROVISION_TIME + APC_RAMP_DOWN_TIME + 10 - l1_config.params.prg_tx_gsm; #endif if (burst_type == TX_NB_BURST) time -= timing_advance_in_qbit; // time can never be negative here l1pdmacro_it_dsp_gen(time); } if (tx_group_id == 1) { #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) //MS TX, set ABB in MS mode #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) // ABB set to MS mode if |TX|TX|.., |TX|PRACH|, |PRACH|TX| or |PRACH|PRACH| // switch_flag is set for the first burst of TX/PRACH or PRACH/PRACH combinations // MS mode in ABB must be maintained for second burst (static_switch_flag) if ((num_tx > 1) || (switch_flag) || (static_switch_flag)) l1ps_dsp_com.pdsp_ndb_ptr->d_bbctrl_gprs = l1_config.params.bbctrl | B_MSLOT; else l1ps_dsp_com.pdsp_ndb_ptr->d_bbctrl_gprs = l1_config.params.bbctrl; #endif #endif } else { // handle special case |TX| |TX|TX| #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) //MS TX, set ABB in MS mode #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) if ((num_tx > 1) || (switch_flag) || (static_switch_flag)) l1ps_dsp_com.pdsp_ndb_ptr->d_bbctrl_gprs = l1_config.params.bbctrl | B_MSLOT; #endif #endif } // Compute offset value for TX. // PRG_TX has become variable, no longer contained in TIME_OFFSET_TX ! if ((burst_type == TX_NB_BURST) || (switch_flag==1)) { offset_tx = offset_serv + TX_TABLE[tx_id] + PROVISION_TIME - l1_config.params.prg_tx_gsm - timing_advance_in_qbit; } else { offset_tx = offset_serv + TX_TABLE[tx_id] + PROVISION_TIME - l1_config.params.prg_tx_gsm; } // offset_tx mod 5000 if (offset_tx >= TPU_CLOCK_RANGE) offset_tx -= TPU_CLOCK_RANGE; if(rx_flag == TRUE) { time = offset_tx - l1_config.params.tx_synth_setup_time - EPSILON_OFFS - offset_serv; if ((burst_type == TX_NB_BURST) || (switch_flag==1)) time += timing_advance_in_qbit - TA_MAX; } else time = TPU_CLOCK_RANGE - EPSILON_SYNC; if (time < 0) time += TPU_CLOCK_RANGE; if (!static_switch_flag) l1dmacro_offset (offset_tx, (WORD32) time); // load OFFSET for TX before each burst. #if L2_L3_SIMUL #if (DEBUG_TRACE == BUFFER_TRACE_OFFSET) buffer_trace(2, offset_tx,l1s.actual_time.fn,0,0); #endif #endif time=0; // program PLL only if no TX control carried out in same frame: |TX| |TX|TX| possible // |PRACH|TX|, |TX|PRACH| or |PRACH|PRACH| also possible if (tx_group_id == 1) { l1pdmacro_tx_synth(radio_freq); // load SYNTH. } if (!static_switch_flag) // window opened for previous time slot (TX/PRACH or PRACH/PRACH) l1pdmacro_tx_up(radio_freq); // TX window opened #if (CODE_VERSION == SIMULATION) if (burst_type == TX_RA_BURST) { time += l1_config.params.tx_ra_duration; } else { if (num_tx > 1) // num_tx * BP_DURATION time += TX_TABLE[num_tx - 1] + l1_config.params.tx_nb_duration; else time += l1_config.params.tx_nb_duration; } #else #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) // Read APCDEL1 register DELU(4:0): delay of ramp up start, DELD (9:5) delay of ramp down start // This value is used for computations in MS TX or TX/PRACH combinations // This value is not modified by the computations apcdel1_data = (l1s_dsp_com.dsp_ndb_ptr->d_apcdel1 >> 6) & 0x03ff; apcdel1_data_up = apcdel1_data & 0x001f; //delay of ramp up start #endif #if (RF_FAM == 61) // Read APCDEL1 register DELU(4:0): delay of ramp up start, DELD (9:5) delay of ramp down start // This value is used for computations in MS TX or TX/PRACH combinations // This value is not modified by the computations apcdel1_data = (l1s_dsp_com.dsp_ndb_ptr->d_apcdel1) & 0x03ff; apcdel1_data_up = apcdel1_data & 0x001f; //delay of ramp up start #endif if (!switch_flag) { if (burst_type == TX_NB_BURST) { // If PRACH precedes TX normal burst(s) we have to add BP_DURATION if (static_switch_flag) time += BP_DURATION; // generate DSP IT for each TX slot after ramp up // Margin: // ABB_RAMP_DELAY = 4*1.5bits internal ABB delay BULENA ON -> ramp up // apcdel1_data_up = additional delay BULENA ON -> ramp up // ABB_RAMP_UP_TIME: maximum time for ramp up: 16 coeff. // 10 qbits of additional margin #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) for (i=0; i<num_tx; i++) l1pdmacro_it_dsp_gen(time + ABB_RAMP_DELAY + ABB_RAMP_UP_TIME + i*BP_DURATION + apcdel1_data_up + 10); #endif #if (RF_FAM == 61) for (i=0; i<num_tx; i++) l1pdmacro_it_dsp_gen(time + APC_RAMP_DELAY + APC_RAMP_UP_TIME + i*BP_DURATION + apcdel1_data_up + 10); #endif if (num_tx > 1) // (num_tx - 1) * BP_DURATION + normal burst duration time += TX_TABLE[num_tx - 1] + l1_config.params.tx_nb_duration - (num_tx - 1); else time += l1_config.params.tx_nb_duration; } else //PRACH { // If TX NB precedes PRACH we have to add BP_DURATION and TA (in qbits) if (static_switch_flag == 1) { if (timing_advance_in_qbit > 240) // clip TA, cf. comment below timing_advance_in_qbit = 240; time += BP_DURATION + timing_advance_in_qbit; } // If PRACH precedes PRACH we have to add BP_DURATION else if (static_switch_flag == 2) time += BP_DURATION ; #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) l1pdmacro_it_dsp_gen(time + ABB_RAMP_DELAY + ABB_RAMP_UP_TIME + apcdel1_data_up + 10); #endif #if (RF_FAM == 61) l1pdmacro_it_dsp_gen(time + APC_RAMP_DELAY + APC_RAMP_UP_TIME + apcdel1_data_up + 10); #endif time += l1_config.params.tx_ra_duration; } } else if (switch_flag == 1) // |TX|PRACH| or |PRACH|TX| { #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) || (DSP == 38) || (DSP == 39) // => ABB windows are opened as for TX_NB in MS mode // => Ramp up start of PRACH is delayed inside this window by the TA of the TX_NB // => DSP inserts dummy bits such that ramp and modulation match // Rem.: the TA passed for the PRACH is the one for the following TX_NB!!! #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) || (RF_FAM == 61) // In combinations of TX_NB and PRACH apcdel1_bis and apcdel2_bis apply to the PRACH UWORD16 apcdel1_bis_data, apcdel1_bis_data_up, apcdel2_bis_data_up, prach_delay; API d_ctrl_abb_gprs; // clip TA (in qbit): max. TA supported = BP_DURATION - PRACH duration - max. ramp time // = 625 - 88*4 - 32 = 241 if (timing_advance_in_qbit > 240) timing_advance_in_qbit = 240; prach_delay = apcdel1_data_up + timing_advance_in_qbit; apcdel1_bis_data_up = prach_delay & 0x001f; apcdel2_bis_data_up = (prach_delay >> 5) & 0x001f; // For ramp down delay we need to keep the original value from APCDEL1 (bits 9:5) // APCDEL2 default value is '0' apcdel1_bis_data = apcdel1_bis_data_up | (apcdel1_data & 0x03e0); #if(RF_FAM != 61) l1s_dsp_com.dsp_ndb_ptr->d_apcdel1_bis = (apcdel1_bis_data << 6) | 0x04; l1s_dsp_com.dsp_ndb_ptr->d_apcdel2_bis = (apcdel2_bis_data_up << 6) | 0x34; #else l1s_dsp_com.dsp_ndb_ptr->d_apcdel1_bis = (apcdel1_bis_data ); l1s_dsp_com.dsp_ndb_ptr->d_apcdel2_bis = (apcdel2_bis_data_up); #endif if (burst_type == TX_RA_BURST) // |PRACH|TX| { #if(RF_FAM != 61) l1pdmacro_it_dsp_gen(time + ABB_RAMP_DELAY + ABB_RAMP_UP_TIME + prach_delay + 10); #else l1pdmacro_it_dsp_gen(time + APC_RAMP_DELAY + APC_RAMP_UP_TIME + prach_delay + 10); #endif // apcdel1_bis, apcdel2_bis must be programmed for the current ts (PRACH) // here we need to overwrite (mask) bits for APCDEL1, APCDEL2 programming done in l1pddsp_transfer_mslot_power() d_ctrl_abb_gprs = l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[tx_id]; d_ctrl_abb_gprs |= ((1 << B_BULRAMPDEL_BIS) | (1 << B_BULRAMPDEL2_BIS)); d_ctrl_abb_gprs &= ~((1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[tx_id] = d_ctrl_abb_gprs; } else // |TX|PRACH| { #if(RF_FAM != 61) l1pdmacro_it_dsp_gen(time + ABB_RAMP_DELAY + ABB_RAMP_UP_TIME + apcdel1_data_up + 10); #else l1pdmacro_it_dsp_gen(time + APC_RAMP_DELAY + APC_RAMP_UP_TIME + apcdel1_data_up + 10); #endif // apcdel1_bis, apcdel2_bis must be programmed for the next ts (PRACH) d_ctrl_abb_gprs = l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[tx_id + 1]; d_ctrl_abb_gprs |= ((1 << B_BULRAMPDEL_BIS) | (1 << B_BULRAMPDEL2_BIS)); d_ctrl_abb_gprs &= ~((1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[tx_id + 1] = d_ctrl_abb_gprs; } #endif // ANALOG static_switch_flag = 1; #endif // DSP == 33 || DSP == 34 || (DSP == 36) || (DSP == 37) } else if (switch_flag == 2) // |PRACH|PRACH| // Combination handled by programming ABB with MS mode = 1 // => first burst length of first PRACH = BP_DURATION { #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) l1pdmacro_it_dsp_gen(time + ABB_RAMP_DELAY + ABB_RAMP_UP_TIME + apcdel1_data_up + 10); #endif #if (RF_FAM == 61) l1pdmacro_it_dsp_gen(time + APC_RAMP_DELAY + APC_RAMP_UP_TIME + apcdel1_data_up + 10); #endif static_switch_flag = 2; } #endif //Codeversion // In case of combinations TX_NB/PRACH or PRACH/PRACH the TX window is kept open if (!switch_flag) { l1pdmacro_tx_down(radio_freq, time, switch_flag, timing_advance_in_qbit,adc_active); // TX window closed l1dmacro_offset (offset_serv, IMM); // Restore offset with serving value. static_switch_flag = 0; } #if L2_L3_SIMUL #if (DEBUG_TRACE == BUFFER_TRACE_OFFSET) buffer_trace(2, offset_serv,l1s.actual_time.fn,0,0); #endif #endif } /*-------------------------------------------------------*/ /* l1pddsp_synchro() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_synchro(UWORD8 switch_mode, UWORD8 camp_timeslot) { // Set "b_abort" to TRUE. l1s_dsp_com.dsp_db_w_ptr->d_ctrl_system |= (1 << B_TASK_ABORT); // Set switch mode within "b_switch_to_gprs" & "b_switch_to_gms" l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs = (switch_mode << B_SWITCH); // In case of a switch to GPRS_SCHEDULER, last_used_txpwr is set to "NO_TXPWR" // in order to force GSM ramp programming when the MS will switch back to // GSM_SCHEDULER // Moreover, the d_win_start_gprs register must be initialized only during the // GSM->GPRS switch too. if(switch_mode == GPRS_SCHEDULER) { l1s.last_used_txpwr = NO_TXPWR; // Set camp timeslot. l1ps_dsp_com.pdsp_ndb_ptr->d_win_start_gprs = camp_timeslot; } } /*-------------------------------------------------------*/ /* l1pddsp_idle_prach_data() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_idle_prach_data(BOOL polling, UWORD8 cs_type, UWORD16 channel_request_data, UWORD8 bsic, UWORD16 radio_freq) { UWORD16 swap_bit; // 16 bit wide to allow shift left. // UL on TS=3. l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= 0x80 >> 3; // Swap I/Q management. swap_bit = l1ps_swap_iq_ul(radio_freq); l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= swap_bit << 15; // Load UL buffer according to "polling" bit. if(polling) { // Select first UL polling buffer. l1ps_dsp_com.pdsp_ndb_ptr->a_ul_buffer_gprs[3] = 8; // Store CS type. l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][0] = cs_type; // Store UL data block. if(cs_type == CS_PAB8_TYPE) { l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][2] = ((API)(bsic << 2)) | ((API)(channel_request_data) << 8); l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][3] = 0; } else { l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][2] = ((API)(channel_request_data) << 5); l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][3] = ((API)(bsic << 10)); } } else { // Set "b_access_prach" to indicate 1 Prach only to DSP. l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= (1 << B_ACCESS_PRACH); // Select first UL data buffer. l1ps_dsp_com.pdsp_ndb_ptr->a_ul_buffer_gprs[3] = 0; // Store CS type. l1ps_dsp_com.pdsp_ndb_ptr->a_du_gprs[0][0] = cs_type; // Store UL data block. if(cs_type == CS_PAB8_TYPE) { l1ps_dsp_com.pdsp_ndb_ptr->a_du_gprs[0][1] = ((API)(bsic << 2)) | ((API)(channel_request_data) << 8); l1ps_dsp_com.pdsp_ndb_ptr->a_du_gprs[0][2] = 0; } else { l1ps_dsp_com.pdsp_ndb_ptr->a_du_gprs[0][1] = ((API)(channel_request_data) << 5); l1ps_dsp_com.pdsp_ndb_ptr->a_du_gprs[0][2] = ((API)(bsic << 10)); } if (l1pa_l1ps_com.pra_info.prach_alloc == FIX_PRACH_ALLOC) { // Set fix alloc bit. l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs |= (2 << B_MAC_MODE); } else { // Reset MAC mode to dynamic allocation l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs &= ~(3 << B_MAC_MODE); #if !FF_L1_IT_DSP_USF #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) || (DSP == 38) || (DSP == 39) // Enable USF vote on timeslot 0 l1ps_dsp_com.pdsp_ndb_ptr->d_usf_vote_enable = 0x80; #endif #endif } } } /*-------------------------------------------------------*/ /* l1pddsp_idle_prach_power() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_idle_prach_power(UWORD8 txpwr, UWORD16 radio_freq, UWORD8 ts) { #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61)) UWORD16 pwr_data; #endif #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) ) // Force FIXED transmit power if requested. if(l1_config.tx_pwr_code == 0) { l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[ts] = l1_config.params.fixed_txpwr; // Control bitmap: update RAMP, use RAMP[5][..]. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[ts] = ((1 << B_RAMP_GPRS) | (5 << B_RAMP_NB_GPRS) | (1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); // Store Ramp. #if (CODE_VERSION != SIMULATION) Cust_get_ramp_tab(l1ps_dsp_com.pdsp_ndb_ptr->a_ramp_gprs[5], 0, /* not used */ 0, /* not used */ 1 /* arbitrary value for arfcn */ ); #endif } else { // Get H/W value corresponding to txpwr command. pwr_data = Cust_get_pwr_data(txpwr, radio_freq #if(REL99 && FF_PRF) ,1 #endif ); // Store Transmit power. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[ts] = ((pwr_data << 6) | 0x12); // Control bitmap: update RAMP, use RAMP[5][..]. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[ts] = ((1 << B_RAMP_GPRS) | (5 << B_RAMP_NB_GPRS) | (1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); // Store Ramp. #if (CODE_VERSION != SIMULATION) Cust_get_ramp_tab(&(l1ps_dsp_com.pdsp_ndb_ptr->a_ramp_gprs[5][0]), txpwr, txpwr, radio_freq); #endif } #endif #if (RF_FAM == 61) // Force FIXED transmit power if requested. if(l1_config.tx_pwr_code == 0) { l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[ts] = l1_config.params.fixed_txpwr; // Control bitmap: update RAMP, use RAMP[5][..]. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[ts] = ((1 << B_RAMP_GPRS) | (5 << B_RAMP_NB_GPRS) | (1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); // Store Ramp. #if (DSP ==38) || (DSP == 39) Cust_get_ramp_tab(l1ps_dsp_com.pdsp_ndb_ptr->a_drp_ramp2_gprs[5], 0, /* not used */ 0, /* not used */ 1 /* arbitrary value for arfcn */ ); #endif } else { // Get H/W value corresponding to txpwr command. pwr_data = Cust_get_pwr_data(txpwr, radio_freq #if(REL99 && FF_PRF) ,1 #endif ); // Store Transmit power. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[ts] = (API) (pwr_data); // Control bitmap: update RAMP, use RAMP[5][..]. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[ts] = ((1 << B_RAMP_GPRS) | (5 << B_RAMP_NB_GPRS) | (1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); // Store Ramp. #if(DSP == 38) || (DSP == 39) Cust_get_ramp_tab(&(l1ps_dsp_com.pdsp_ndb_ptr->a_drp_ramp2_gprs[5][0]), txpwr, txpwr, radio_freq); #endif } #endif //RF_FAM == 61 } /*-------------------------------------------------------*/ /* l1pddsp_single_block() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_single_tx_block(UWORD8 burst_nb, UWORD8 *data, UWORD8 tsc, UWORD16 radio_freq) { UWORD16 swap_bit; // 16 bit wide to allow shift left. // Burst number within a block. l1ps_dsp_com.pdsp_db_w_ptr->d_burst_nb_gprs = burst_nb; // UL on TS=3. l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= 0x80 >> 3; // Swap I/Q management. swap_bit = l1ps_swap_iq_ul(radio_freq); l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= swap_bit << 15; // Select first UL polling buffer. l1ps_dsp_com.pdsp_ndb_ptr->a_ul_buffer_gprs[3] = 8; // Store CS type: CS1 for Polling. l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][0] = CS1_TYPE_POLL; if(burst_nb == BURST_1) // Store UL data block. { API *ul_block_ptr = &(l1ps_dsp_com.pdsp_ndb_ptr->a_pu_gprs[0][2]); UWORD8 i,j; // Copy first 22 bytes in the first 11 words after header. for (i=0, j=0; j<11; j++) { ul_block_ptr[j] = ((API)(data[i])) | ((API)(data[i+1]) << 8); i += 2; } // Copy last UWORD8 (23rd) in the 12th word after header. ul_block_ptr[11] = data[22]; } // Training sequence. // Rem: bcch_freq_ind is set within Hopping algo. l1s_dsp_com.dsp_db_w_ptr->d_ctrl_system |= tsc << B_TSQ; } /*-------------------------------------------------------*/ /* l1pddsp_idle_rx_nb() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if FF_L1_IT_DSP_USF void l1pddsp_idle_rx_nb(UWORD8 burst_nb, UWORD8 tsc, UWORD16 radio_freq, UWORD8 timeslot_no, BOOL ptcch_dl, BOOL usf_interrupt) #else void l1pddsp_idle_rx_nb(UWORD8 burst_nb, UWORD8 tsc, UWORD16 radio_freq, UWORD8 timeslot_no, BOOL ptcch_dl) #endif { UWORD16 swap_bit; // 16 bit wide to allow shift left. // DL on TS=0. l1ps_dsp_com.pdsp_db_w_ptr->d_task_d_gprs |= 0x80 >> timeslot_no; // Swap I/Q management. swap_bit = l1ps_swap_iq_dl(radio_freq); l1ps_dsp_com.pdsp_db_w_ptr->d_task_d_gprs |= swap_bit << 15; if(ptcch_dl) { // PTCCH/DL case must be flagged to DSP. l1ps_dsp_com.pdsp_db_w_ptr->d_task_d_gprs |= (1 << B_PTCCH_DL); } // Burst number within a block. l1ps_dsp_com.pdsp_db_w_ptr->d_burst_nb_gprs = burst_nb; // Channel coding is forced to CS1. l1ps_dsp_com.pdsp_ndb_ptr->a_ctrl_ched_gprs[timeslot_no] = CS1_TYPE_DATA; // pass information to DSP which good USF value is to be expected l1ps_dsp_com.pdsp_ndb_ptr->a_usf_gprs[0] = (API) 0x07; #if FF_L1_IT_DSP_USF // In case of connection establishment mode with dynamic or fixed // allocation scheme we need to request the DSP USF interrupt for PRACH // scheduling. Latched by DSP during Work3 if (burst_nb == 3) { if (usf_interrupt) l1ps_dsp_com.pdsp_ndb_ptr->d_usf_vote_enable |= (1 << B_USF_IT); else l1ps_dsp_com.pdsp_ndb_ptr->d_usf_vote_enable &= ~(1 << B_USF_IT); } #endif // RIF receiver algorithm: select 156.25. l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs &= 0xFFFF ^ (1 << B_RIF_RX_MODE); // Training sequence. // Rem: bcch_freq_ind is set within Hopping algo. l1s_dsp_com.dsp_db_w_ptr->d_ctrl_system |= tsc << B_TSQ; } /*-------------------------------------------------------*/ /* l1pddsp_transfer_mslot_ctrl() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_transfer_mslot_ctrl(UWORD8 burst_nb, UWORD8 dl_bitmap, UWORD8 ul_bitmap, UWORD8 *usf_table, UWORD8 mac_mode, UWORD8 *ul_buffer_index, UWORD8 tsc, UWORD16 radio_freq, UWORD8 synchro_timeslot, #if FF_L1_IT_DSP_USF UWORD8 dsp_usf_interrupt #else UWORD8 usf_vote_enable #endif ) { UWORD8 i; UWORD16 swap_bit; // 16 bit wide to allow shift left. // Burst number within a block. l1ps_dsp_com.pdsp_db_w_ptr->d_burst_nb_gprs = burst_nb; // DL bitmap. l1ps_dsp_com.pdsp_db_w_ptr->d_task_d_gprs = dl_bitmap; // UL bitmap. l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs = ul_bitmap; // Swap I/Q management for DL. swap_bit = l1ps_swap_iq_dl(radio_freq); l1ps_dsp_com.pdsp_db_w_ptr->d_task_d_gprs |= swap_bit << 15; // Swap I/Q management for UL. swap_bit = l1ps_swap_iq_ul(radio_freq); l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= swap_bit << 15; if(burst_nb == 0) { // Store USF table for(i=0;i<(8 - synchro_timeslot);i++) l1ps_dsp_com.pdsp_ndb_ptr->a_usf_gprs[i] = usf_table[i+synchro_timeslot]; // Automatic CS detection. for(i=0;i<8;i++) { l1ps_dsp_com.pdsp_ndb_ptr->a_ctrl_ched_gprs[i] = CS_AUTO_DETECT; // Select first UL polling buffer. l1ps_dsp_com.pdsp_ndb_ptr->a_ul_buffer_gprs[i] = ul_buffer_index[i]; } #if !FF_L1_IT_DSP_USF // USF vote enable programming #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) || (DSP == 38) || (DSP == 39) // Multislot TX allowed and usf_vote_enable suported: programs usf_vote_enable l1ps_dsp_com.pdsp_ndb_ptr->d_usf_vote_enable = usf_vote_enable; #else // Single slot TX only and usf_vote_enable not supported // Modify MAC mode if (usf_vote_enable) // USF vote enabled --> Set MAC mode to dynamic mode mac_mode = DYN_ALLOC; else // USF vote disabled --> Set MAC mode to fixed mode mac_mode = FIX_ALLOC_NO_HALF; #endif #endif // !FF_L1_IT_DSP_USF // MAC mode. l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs &= ~(3 << B_MAC_MODE); l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs |= mac_mode << B_MAC_MODE; } #if FF_L1_IT_DSP_USF if(burst_nb == 3) { // Program DSP to generate an interrupt once USF available if // required. Latched by DSP during Work3. if (dsp_usf_interrupt) l1ps_dsp_com.pdsp_ndb_ptr->d_usf_vote_enable = (1 << B_USF_IT); else l1ps_dsp_com.pdsp_ndb_ptr->d_usf_vote_enable = 0; } #endif // RIF receiver algorithm: select 156.25. l1ps_dsp_com.pdsp_ndb_ptr->d_sched_mode_gprs &= 0xFFFF ^ (1 << B_RIF_RX_MODE); // d_fn // ---- // bit [0..7] -> b_fn_report, unused for GPRS // bit [8..15] -> b_fn_sid , FN%104 l1s_dsp_com.dsp_db_w_ptr->d_fn = ((l1s.next_time.fn_mod104)<<8); // Training sequence. // Rem: bcch_freq_ind is set within Hopping algo. l1s_dsp_com.dsp_db_w_ptr->d_ctrl_system |= tsc << B_TSQ; } /*-------------------------------------------------------*/ /* l1pddsp_transfer_mslot_power() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_transfer_mslot_power(UWORD8 *txpwr, UWORD16 radio_freq, UWORD8 ul_bitmap) { #define NO_TX 100 UWORD16 i; // 16 bit needed for shifting pupose. UWORD8 last_TX = NO_TX; UWORD8 txpwr_ramp_up; UWORD8 txpwr_ramp_down; UWORD8 cpt_TX = 0; UWORD8 ts_mask; #if (REL99 && FF_PRF) UWORD8 number_uplink_timeslot = 0 ; // number of uplink timeslot for power reduction feature #endif #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61)) UWORD16 pwr_data; UWORD16 d_ramp_idx; WORD16 ts_conv; #endif //Locosto #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) // This function is called with an ul_bitmap which represents the abolute // position of any Tx bursts in this frame. This bitmap has already // absorbed any synchro change (in dl_tn), hence we need to do some // processing to recover the actual Tx timeslot number which is used // as an index into the txpwr array. // // Example : MS Class 8 with 4 Rx and 1 Tx : // // // dl_ts_alloc : 0x0f 0 0 0 0 R R R R // ul_ts_alloc : 0x02 0 0 0 0 0 0 T 0 // shift + combine : 0 0 0 0 R R R R 0 T // set dl_tn=4 : R R R R 0 T 0 0 // ul_bitmap : 0x04 0 0 0 0 0 1 0 0 // i : 5 // // Example : MS Class 8 with 1 Rx and 1 Tx on TS=7 // // dl_ts_alloc : 0x01 0 0 0 0 0 0 0 R // ul_ts_alloc : 0x01 0 0 0 0 0 0 0 T // shift + combine : 0 0 0 0 0 0 0 R 0 0 T // set dl_tn=7 : R 0 0 T 0 0 0 0 // ul_bitmap : 0x10 0 0 0 1 0 0 0 0 // i : 3 // // We recover the actual timeslot from the ul_bitmap by the following // method : // // ts = (i + dl_tn) - 3 // // Where i is the loopindex usd to detect "1" in the ul_bitmap. // This works for MS class 8 because (3 <= i <= 5) if the // multislot class is respected. #if (REL99 && FF_PRF)// power reduction feature for (i=0; i<8; i++) { // computed number of uplink timeslot in order to determine uplink power reduction ts_mask = (0x80>>i); if (ul_bitmap & ts_mask) number_uplink_timeslot++; } #endif ts_conv = l1a_l1s_com.dl_tn - 3; // Index of the programmed ramps d_ramp_idx = 0; for(i=0;i<8;i++) { // Program Transmit power and ramp for allocated timeslots. if(ul_bitmap & (0x80>>i)) { // Fixe transmit power. if(l1_config.tx_pwr_code == 0) { // Store Transmit power. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[i] = l1_config.params.fixed_txpwr; // Control bitmap: update RAMP, use RAMP[d_ramp_idx][..]. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[i] = ((d_ramp_idx << B_RAMP_NB_GPRS) | (1 << B_RAMP_GPRS) | (1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); // Store Ramp. #if (RF_FAM == 61) #if (DSP ==38) || (DSP == 39) Cust_get_ramp_tab(l1ps_dsp_com.pdsp_ndb_ptr->a_drp_ramp2_gprs[d_ramp_idx++], 0, /* not used */ 0, /* not used */ 1 /* arbitrary value for arfcn */ ); #endif #else #if (CODE_VERSION != SIMULATION) Cust_get_ramp_tab(l1ps_dsp_com.pdsp_ndb_ptr->a_ramp_gprs[d_ramp_idx++], 0, /* not used */ 0, /* not used */ 1 /* arbitrary value for arfcn */ ); #endif #endif } else { // count the number of TX windows cpt_TX ++; // Get power amplifier data. #if(REL99 && FF_PRF) pwr_data = Cust_get_pwr_data(txpwr[i+ts_conv], radio_freq, number_uplink_timeslot); #else pwr_data = Cust_get_pwr_data(txpwr[i+ts_conv], radio_freq); #endif // Store Transmit power. #if(RF_FAM == 61) l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[i] = (pwr_data); #else l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_power_gprs[i] = ((pwr_data << 6) | 0x12); #endif // Control bitmap: update RAMP, use RAMP[d_ramp_idx][..] for slot i. l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[i] = ((d_ramp_idx << B_RAMP_NB_GPRS) | (1 << B_RAMP_GPRS) | (1 << B_BULRAMPDEL) | (1 << B_BULRAMPDEL2)); // Store Ramp. // ========== // for the 1st TX the RAMP is: RAMP_UP_TX1 / RAMP_DOWN_TX1 // for the 2nd TX the RAMP is: RAMP_UP_TX2 / RAMP_DOWN_TX1 // for the 3rd TX the RAMP is: RAMP_UP_TX3 / RAMP_DOWN_TX2 // (...) // for the (i)th TX the RAMP is: RAMP_UP_TX_(i) / RAMP_DOWN_TX_(i-1) // for the additionnal RAMP : xxxx / RAMP_DOWN_TX_last txpwr_ramp_up = txpwr[i+ts_conv]; // the ramp up is the current TX if(last_TX == NO_TX) // specific case of the first TX txpwr_ramp_down = txpwr[i+ts_conv]; // the ramp down is the current TX else txpwr_ramp_down = txpwr[last_TX+ts_conv]; // the ramp down is the previous TX #if(RF_FAM == 61) #if(DSP == 38) || (DSP == 39) Cust_get_ramp_tab(&(l1ps_dsp_com.pdsp_ndb_ptr->a_drp_ramp2_gprs[d_ramp_idx++][0]), txpwr_ramp_up, txpwr_ramp_down, radio_freq); #endif #else #if (CODE_VERSION != SIMULATION) Cust_get_ramp_tab(&(l1ps_dsp_com.pdsp_ndb_ptr->a_ramp_gprs[d_ramp_idx++][0]), txpwr_ramp_up, txpwr_ramp_down, radio_freq); #endif #endif } // memorize the last TX window last_TX = i; } else { // program an interrupt in the TS following // the last TX window and needed by the DSP // Is it the TS following a TX window ? #if 0 /* original LoCosto code */ if((i == last_TX+1) && (i<8)) #else /* FreeCalypso TCS211 reconstruction */ if (i == last_TX+1) #endif { // program the interrupt l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[i] = (1 << B_MS_RULE); } } } // in a multi-TX case an additionnal ramp down must be set if(cpt_TX > 1) { // Control bitmap: update RAMP, use RAMP[d_ramp_idx][..] for slot i and set the interrupt #if 0 /* FreeCalypso TCS211 reconstruction */ if((last_TX+1) <= 7) #endif l1ps_dsp_com.pdsp_db_w_ptr->a_ctrl_abb_gprs[last_TX+1] = ((d_ramp_idx << B_RAMP_NB_GPRS) | (1 << B_RAMP_GPRS) | (1 << B_MS_RULE)); // Store Ramp. // ========== txpwr_ramp_up = txpwr[last_TX+ts_conv]; // this ramp up is unused (default: set to last_TX) txpwr_ramp_down = txpwr[last_TX+ts_conv]; // the ramp down is the last TX #if(RF_FAM == 61) #if(DSP ==38) || (DSP == 39) Cust_get_ramp_tab(&(l1ps_dsp_com.pdsp_ndb_ptr->a_drp_ramp2_gprs[d_ramp_idx][0]), txpwr_ramp_up, txpwr_ramp_down, radio_freq); #endif #else #if (CODE_VERSION != SIMULATION) Cust_get_ramp_tab(&(l1ps_dsp_com.pdsp_ndb_ptr->a_ramp_gprs[d_ramp_idx][0]), txpwr_ramp_up, txpwr_ramp_down, radio_freq); #endif #endif } // #endif Locosto } /*-------------------------------------------------------*/ /* l1pddsp_ul_ptcch_data() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_ul_ptcch_data(UWORD8 cs_type, UWORD16 channel_request_data, UWORD8 bsic, UWORD16 radio_freq, UWORD8 timeslot_no) { UWORD16 swap_bit; // 16 bit wide to allow shift left. // UL on TS=timeslot_no. l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= 0x80 >> timeslot_no; // Swap I/Q management. swap_bit = l1ps_swap_iq_ul(radio_freq); l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= swap_bit << 15; // Set "b_ptcch_ul" to indicate PTCCH/UL to DSP. l1ps_dsp_com.pdsp_db_w_ptr->d_task_u_gprs |= (1 << B_PTCCH_UL); // Store CS type. l1ps_dsp_com.pdsp_ndb_ptr->a_ptcchu_gprs[0] = cs_type; // Store UL data block. if(cs_type == CS_PAB8_TYPE) { l1ps_dsp_com.pdsp_ndb_ptr->a_ptcchu_gprs[1] = ((API)(bsic << 2)) | ((API)(channel_request_data) << 8); l1ps_dsp_com.pdsp_ndb_ptr->a_ptcchu_gprs[2] = 0; } else { l1ps_dsp_com.pdsp_ndb_ptr->a_ptcchu_gprs[1] = ((API)(channel_request_data) << 5); l1ps_dsp_com.pdsp_ndb_ptr->a_ptcchu_gprs[2] = ((API)(bsic << 10)); } } /*-------------------------------------------------------*/ /* l1pddsp_interf_meas_ctrl() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ void l1pddsp_interf_meas_ctrl(UWORD8 nb_meas_req) { // Interference measurement task set as a monitoring task within GSM interface. // 101 means 1 meas, 102 means 2 meas ... // Rem: swap I/Q is not managed for power measurements. l1s_dsp_com.dsp_db_w_ptr->d_task_md = INTERF_DSP_TASK + nb_meas_req; } /*-------------------------------------------------------*/ /* l1pddsp_transfer_meas_ctrl() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_transfer_meas_ctrl(UWORD8 meas_position) { // Store measurement position. // Rem: This is a L1S filtered information giving the position of the meas. as a // bitmap. // Rem: swap I/Q is not managed for power measurements. l1ps_dsp_com.pdsp_db_w_ptr->d_task_pm_gprs = meas_position; } /*-------------------------------------------------------*/ /* l1pddsp_meas_ctrl() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_meas_ctrl(UWORD8 nbmeas, UWORD8 pm_pos) { // Request Signal level measurement task to DSP. A bit map is passed // to DSP in order to specify the position of the measurement. // Note: MSB is TN = 0 and LSB is TN = 7. // Rem: swap I/Q is not managed for power measurements. // Note: currently a maximum of four Pm can be performed / TDMA. This would // be modified in a near futur. // Note: If a Rx is programmed i.e. pm_pos = 1, only a maximum // of 3 Pm is requested to DSP and position of the Pm are right shifted (Rx on TN = 0). // Remark: In packet Idle mode Rx are still on TN = 0. This implies three Pm // always after the Rx. l1ps_dsp_com.pdsp_db_w_ptr->d_task_pm_gprs = ((UWORD8) (0xff << (8 - nbmeas))) >> pm_pos; } /*-------------------------------------------------------*/ /* l1pddsp_meas_read() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_meas_read(UWORD8 nbmeas, UWORD8 *a_pm) { UWORD8 i = 0; UWORD8 j; UWORD8 bit_mask = 0x80; // Looks for first PM position while ((i < 8) && (l1ps_dsp_com.pdsp_db_r_ptr->d_task_pm_gprs & bit_mask) == 0) { i++; bit_mask >>= 1; } // Read 'nbmeas' contiguous PM levels from the first PM position // Note: PM are always programmed on contiguous timeslots #if 0 /* original LoCosto code */ for (j = 0; ((j < nbmeas)&&(i < 8)); j++) #else /* FreeCalypso TCS211 reconstruction */ for (j = 0; j < nbmeas; j++) #endif { // Download PM from DSP/MCU memory interface a_pm[j] = (l1ps_dsp_com.pdsp_db_r_ptr->a_burst_pm_gprs[i] & 0xffff) >> 5; // Read next PM on following TN i++; } } /*-------------------------------------------------------*/ /* l1pddsp_load_bcchn_task() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1pddsp_load_bcchn_task(UWORD8 tsq,UWORD16 radio_freq ) { UWORD16 swap_bit = l1ps_swap_iq_dl(radio_freq); l1s_dsp_com.dsp_db_w_ptr->d_task_md = NBN_DSP_TASK | (swap_bit << 15); // Load BCCHN task l1s_dsp_com.dsp_db_w_ptr->d_ctrl_system |= tsq << B_TSQ; } #endif