view src/g23m-aci/uart/uart_rxf.c @ 581:a0a45c5eb3ef

gsmcomp.c: bumping trace partition size to 220 like in gprscomp.c This change is safe in terms of RAM usage because all of these partition pools have already been moved from XRAM to IRAM earlier, and our IRAM usage in VO configs is currently quite low - the one near the limit is XRAM on C11x.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 29 Jan 2019 03:52:49 +0000
parents 53929b40109c
children
line wrap: on
line source

/*
+-----------------------------------------------------------------------------
|  Project :
|  Modul   :
+-----------------------------------------------------------------------------
|  Copyright 2002 Texas Instruments Berlin, AG
|                 All rights reserved.
|
|                 This file is confidential and a trade secret of Texas
|                 Instruments Berlin, AG
|                 The receipt of or possession of this file does not convey
|                 any rights to reproduce or disclose its contents or to
|                 manufacture, use, or sell anything it may describe, in
|                 whole, or in part, without the specific written consent of
|                 Texas Instruments Berlin, AG.
+-----------------------------------------------------------------------------
|  Purpose :  This modul is part of the entity UART and implements all
|             procedures and functions as described in the
|             SDL-documentation (RX-statemachine)
+-----------------------------------------------------------------------------
*/

#ifndef UART_RXF_C
#define UART_RXF_C
#endif /* !UART_RXF_C */

#define ENTITY_UART

#ifndef FF_MULTI_PORT
/*==== INCLUDES =============================================================*/

#ifdef WIN32
#include "nucleus.h"
#endif /* WIN32 */
#include "typedefs.h"   /* to get Condat data types */
#include "vsi.h"        /* to get a lot of macros */
#include "macdef.h"     /* to get a lot of macros */
#include "custom.h"
#include "gsm.h"        /* to get a lot of macros */
#include "cnf_uart.h"   /* to get cnf-definitions */
#include "mon_uart.h"   /* to get mon-definitions */
#include "prim.h"       /* to get the definitions of used SAP and directions */
#ifdef DTILIB
#include "dti.h"        /* to get dti lib */
#endif /* DTILIB */
#include "pei.h"        /* to get PEI interface */
#ifdef _TARGET_
#include "uart/serialswitch.h"
#include "uart/traceswitch.h"
#else /* _TARGET_ */
#include "serial_dat.h" /* to get definitions of serial driver */
#endif /* _TARGET_ */
#include "uart.h"       /* to get the global entity definitions */

#ifdef _SIMULATION_
#include <stdio.h>      /* to get sprintf */
#endif /* _SIMULATION_ */
#include <string.h>    /* JK, delete warnings: to get memcpy */

/*==== CONST ================================================================*/

/*==== LOCAL VARS ===========================================================*/

/*==== PRIVATE FUNCTIONS ====================================================*/

/*==== PUBLIC FUNCTIONS =====================================================*/



/*
+------------------------------------------------------------------------------
| Function    : rx_proc_input
+------------------------------------------------------------------------------
| Description : The function rx_proc_input() is the actual callback function
|               to read data from the receive buffer.
|
| Parameters  : uart_device - database for the affected UART device
|
+------------------------------------------------------------------------------
*/
LOCAL void rx_proc_input (T_UART_DATA* uart_device)
{
  USHORT  i, len;
  T_DLC   *dlc;               /* used Data Link Connection */
  UBYTE   *source;            /* Data source pointer */
  UBYTE   *destination;       /* Data destination pointer */
  UBYTE   temp_field;         /* multi purpose value */
  BOOL    channels_complete;  /* indicator of complete reception */
  SHORT   error_code;         /* error code returned from a function */

  TRACE_FUNCTION( "rx_proc_input" );

  /*
   * read data only if we have read permission
   */
  if(uart_device->rx.read_permission)
  {
    if(uart_device->rx.dlc_instance EQ UART_EMPTY_INSTANCE)
      dlc = &uart_device->dlc_table[UART_CONTROL_INSTANCE];
    else
      dlc = &uart_device->dlc_table[uart_device->rx.dlc_instance];
    destination = &dlc->receive_data->buffer[dlc->receive_pos];
#ifdef _SIMULATION_
{
  char buf[80];
  sprintf(buf,"uart_device->rx.dlc_instance: %d", uart_device->rx.dlc_instance);
  TRACE_EVENT(buf);
}
#endif /* _SIMULATION_ */
    if(uart_device->rx.dlc_instance EQ UART_EMPTY_INSTANCE)
    {
      /*
       * Raw data
       */
      /*
       * Is a data descriptor allocated and
       * is the channel ready to receive
       */
      if((dlc->receive_process EQ UART_RX_PROCESS_READY) &&
         (dlc->receive_data))
      {
        for (i=0; i < uart_device->rx.nsource; i++)
        {
          /*
           * are there still data in the ring buffer segment and
           * are there still space in the data descriptor
           */
          if ((uart_device->rx.size[i] > 0) &&
              (dlc->receive_size > dlc->receive_pos))
          {
            len = dlc->receive_size - dlc->receive_pos;
            if (len > uart_device->rx.size[i])
              len = uart_device->rx.size[i];

            memcpy(&dlc->receive_data->buffer[dlc->receive_pos],
                   uart_device->rx.source[i],
                   len);

            uart_device->rx.size[i] -= len;
            dlc->receive_pos        += len;
            dlc->receive_data->len   = dlc->receive_pos;
          }
        }
        dlc->receive_process = UART_RX_PROCESS_COMPLETE;
      }
    }
    else
    {
      channels_complete = FALSE;
      /*
       * for each fragment
       */
      for (i=0; i < uart_device->rx.nsource; i++)
      {
        /*
         * while there is still data in buffer and
         * not yet all channels are processed
         */
        source = uart_device->rx.source[i];
        while((uart_device->rx.size[i] > 0) && (channels_complete NEQ TRUE))
        {
          /*
           * detect HDLC flag
           */
          if(*source EQ UART_HDLC_FLAG)
          {
            switch(uart_device->rx.analyze_state)
            {
              case UART_RX_ERROR:
                /*
                 * begin of frame detected
                 */
                uart_device->rx.analyze_state = UART_RX_BEGIN;
                /* fall through */
              case UART_RX_BEGIN:
                /*
                 * initialize new packet
                 */
                uart_device->rx.stored_len    = 0;
                uart_device->rx.address_field = 0;
                uart_device->rx.fcs           = UART_INITFCS;
                uart_device->rx.escape        = FALSE;
                uart_device->rx.analyze_state = UART_RX_ADDRESS;
                break;

              default:
                /*
                 * detect HDLC flag
                 */
                if(uart_device->rx.stored_len > 0)
                {
                  /*
                   * determine whether FCS already calculated
                   */
                  if(uart_device->rx.analyze_state NEQ UART_RX_FCS)
                  {
                    /*
                     * UART_RX_INFORMATION_...
                     */
                    destination--;
#ifdef _SIMULATION_
                    uart_device->rx.fcs = *destination;
#else /* _SIMULATION_ */
                    uart_device->rx.fcs = uart_device->
                                        fcstab[uart_device->rx.fcs ^ *destination];
#endif /* _SIMULATION_ */
                    /*
                     * remove FCS from data stream
                     */
                    dlc->receive_pos--;
                    uart_data->rx.stored_len--;
                  }
                  if(uart_device->rx.fcs EQ UART_GOODFCS)
                  {
                    /*
                     * no error occured, frame complete
                     */
                    dlc->receive_data->len        = dlc->receive_pos;
                    dlc->receive_process          = UART_RX_PROCESS_COMPLETE;
                    uart_device->rx.analyze_state = UART_RX_END;
                    break;
                  }
                }
                /*
                 * remove receiced frame because of an error
                 */
                switch(uart_device->rx.analyze_state)
                {
                  case UART_RX_INFORMATION:
                  case UART_RX_FCS:
                    if(uart_data->rx.dlc_instance EQ UART_CONTROL_INSTANCE)
                      dlc->receive_pos-= 2;
                    dlc->receive_pos    -= uart_data->rx.stored_len;
                    dlc->receive_process = UART_RX_PROCESS_READY;
                    break;
                  default:
                    /*
                     * Other states are not handeled here
                     */
                    break;
                }
                uart_device->rx.analyze_state = UART_RX_END;
                break;
            }
          }
          else if((*source EQ UART_HDLC_ESCAPE) &&
                  (uart_device->rx.escape NEQ TRUE))
          {
            /*
             * detect Control Escape octet
             */
            uart_device->rx.escape = TRUE;
          }
          else
          {
            /*
             * bit 5 complement for the octet followed by Control Escape
             */
            if(uart_device->rx.escape EQ TRUE)
            {
              *source             ^= 0x20;
              uart_device->rx.escape = FALSE;
            }
            /*
             * store the packet and determine the protocol
             */
            switch(uart_device->rx.analyze_state)
            {
              case UART_RX_ERROR:
                /*
                 * wait for next HDLC flag
                 */
                break;

              case UART_RX_ADDRESS:
                if((*source & UART_EA) EQ UART_EA)
                {
                  /*
                   * FCS calculation
                   */
#ifdef _SIMULATION_
                  uart_device->rx.fcs = *source;
#else /* _SIMULATION_ */
                  uart_device->rx.fcs = uart_device->
                                      fcstab[uart_device->rx.fcs ^ *source];
#endif /* _SIMULATION_ */
                  /*
                   * store Address field
                   */
                  uart_device->rx.address_field = *source;
                  uart_device->rx.analyze_state = UART_RX_CONTROL;
                }
                else
                {
                  /*
                   * invalid frame detected
                   */
                  uart_device->rx.analyze_state = UART_RX_ERROR;
                }
                break;

              case UART_RX_CONTROL:
                switch(*source)
                {
                  case UART_UIH_DATA_FRAME:
                    /*
                     * Data frame detected
                     */
                    temp_field = uart_device->rx.address_field >> UART_DLCI_POS;
                    /*
                     * if it is an existing channel, but not control channel
                     */
                    if((temp_field NEQ UART_DLCI_CONTROL) &&
                       (uart_device->dlc_instance[temp_field] NEQ
                          UART_EMPTY_INSTANCE))
                    {
                      uart_device->rx.dlc_instance =
                        uart_device->dlc_instance[temp_field];
                      dlc = &uart_device->dlc_table[uart_device->rx.dlc_instance];
#ifdef _SIMULATION_
                      TRACE_EVENT_P2("Addressfield found DLCI: 0x%02X \
                                     (dlc_instance 0x%02X)",
                                     temp_field, uart_device->rx.dlc_instance);
#endif /* _SIMULATION_ */
                      if(dlc->receive_process EQ UART_RX_PROCESS_READY)
                      {
                        /*
                         * reception Data channel found
                         * FCS calculation
                         */
#ifdef _SIMULATION_
                        uart_device->rx.fcs = *source;
#else /* _SIMULATION_ */
                        uart_device->rx.fcs = uart_device->
                                            fcstab[uart_device->
                                            rx.fcs ^ *source];
#endif /* _SIMULATION_ */
                        destination = &dlc->receive_data->
                                       buffer[dlc->receive_pos];
                        uart_device->rx.analyze_state = UART_RX_INFORMATION;
                        break;
                      }
                      else if(dlc->receive_process EQ UART_RX_PROCESS_COMPLETE)
                      {
                        channels_complete = TRUE;
                        break;
                      }
                    }
                    /* fall through */
                  case UART_SABM_FRAME:
                  case UART_UA_FRAME:
                  case UART_DM_DATA_FRAME:
                  case UART_DM_CONTROL_FRAME:
                  case UART_DISC_FRAME:
                  case UART_UIH_CONTROL_FRAME:
                    /*
                     * Control frame detected
                     */
                    dlc = &uart_device->dlc_table[UART_CONTROL_INSTANCE];
                    uart_device->rx.dlc_instance = UART_CONTROL_INSTANCE;
                    if(dlc->receive_process EQ UART_RX_PROCESS_READY)
                    {
                      /*
                       * reception Control channel found
                       * FCS calculation
                       */
#ifdef _SIMULATION_
                      uart_device->rx.fcs = *source;
#else /* _SIMULATION_ */
                      uart_device->rx.fcs = uart_device->
                                          fcstab[uart_device->
                                          rx.fcs ^ *source];
#endif /* _SIMULATION_ */
                      destination = &dlc->receive_data->
                                     buffer[dlc->receive_pos];
                      uart_device->rx.analyze_state = UART_RX_INFORMATION;
                      /*
                       * store Address and Control field
                       */
                      *destination = uart_device->rx.address_field;
                      destination++;
                      dlc->receive_pos++;
                      *destination = *source;
                      destination++;
                      dlc->receive_pos++;
                    }
                    else if(dlc->receive_process EQ UART_RX_PROCESS_COMPLETE)
                    {
                      channels_complete = TRUE;
                    }
                    else
                      /*
                       * discard frame, because it is unexpected
                       */
                      uart_device->rx.analyze_state = UART_RX_ERROR;
                    break;
                  default:
                    /*
                     * invalid frame detected
                     */
                    uart_device->rx.analyze_state = UART_RX_ERROR;
                    break;
                }
                break;

              case UART_RX_INFORMATION:
                if(uart_device->rx.stored_len < uart_device->n1)
                {
                  *destination = *source;
                  /*
                   * increase destination pointer
                   */
                  destination++;
                  uart_device->rx.stored_len++;
                  dlc->receive_pos++;
                }
                else
                {
                  /*
                   * FCS calculation
                   */
#ifdef _SIMULATION_
                  uart_device->rx.fcs = *source;
#else /* _SIMULATION_ */
                  uart_device->rx.fcs = uart_device->
                                      fcstab[uart_device->rx.fcs ^ *source];
#endif /* _SIMULATION_ */
                  uart_device->rx.analyze_state = UART_RX_FCS;
                }
                break;

              case UART_RX_FCS:
                /*
                 * remove receiced packet because its to long
                 */
                if(uart_data->rx.dlc_instance EQ UART_CONTROL_INSTANCE)
                  dlc->receive_pos-= 2;
                dlc->receive_pos             -= uart_data->rx.stored_len;
                dlc->receive_process          = UART_RX_PROCESS_READY;
                uart_device->rx.analyze_state = UART_RX_ERROR;
                break;

              default:
                /*
                 * wrong analyze state
                 */
                uart_device->rx.analyze_state = UART_RX_ERROR;
                break;
            }
          }
          if(uart_device->rx.analyze_state EQ UART_RX_END)
            uart_device->rx.analyze_state = UART_RX_BEGIN;
          /*
           * don't move source pointer
           * if each possible channel was processed
           * In this case analyze_state should be UART_RX_CONTROL.
           * The Control field must be analyzed again in next call of
           * this function.
           */
          else if(channels_complete NEQ TRUE)
          {
            /*
             * increase source pointer
             */
            source++;
            uart_device->rx.size[i]--;
          }
        }
      }
    }
  }

  PSIGNAL(hCommUART, UART_DRIVER_RECEIVED_IND, uart_device);

  *uart_device->rx.reInstall = rm_noInstall;

  /*
   * update pointer in UART driver
   */
  if((error_code = UF_InpAvail (uart_device->device)) < 0 )
  {
    TRACE_ERROR_P2("UF Driver: DataPointerUpdate failed, [%d], uart_rxf.c(%d)",
                                                         error_code, __LINE__);
  }
} /* rx_proc_input() */



/*
+------------------------------------------------------------------------------
| Function    : rx_init
+------------------------------------------------------------------------------
| Description : The function rx_init() initializes the RX service
|
| Parameters  : no parameters
|
+------------------------------------------------------------------------------
*/
GLOBAL void rx_init ()
{
#ifndef _SIMULATION_
#ifdef WIN32
#ifndef _TARGET_
  char    buf[80];
#endif /* !_TARGET_ */
  STATUS  sts;
#endif /* WIN32 */
#endif /* !_SIMULATION_ */

  TRACE_FUNCTION( "rx_init" );

#ifndef _SIMULATION_
#ifdef WIN32
  sts = NU_Create_HISR (&uart_data->rx.rx_HISR,
                        "RX_HISR",
                        rx_proc_input,
                        2,
                        uart_data->HISR_stack,
                        HISR_STACK_SIZE);
#ifndef _TARGET_
  sprintf (buf, "NU_Create_HISR(RX) = %d", sts);
  TRACE_EVENT (buf);
#endif /* _TARGET_ */
#endif /* WIN32 */
#endif /* !_SIMULATION_ */

  uart_data->rx.read_permission = FALSE;
  uart_data->rx.prev_lines      = 0;
  uart_data->rx.dlc_instance    = UART_EMPTY_INSTANCE;
  uart_data->rx.escape          = FALSE;
  uart_data->rx.analyze_state   = UART_RX_ERROR;
  uart_data->rx.receive_state   = UART_RX_NOT_RECEIVING;
  uart_data->rx.fcs             = UART_INITFCS;
  uart_data->rx.address_field   = 0;
  uart_data->rx.stored_len      = 0;

  INIT_STATE( UART_SERVICE_RX , RX_DEAD );
} /* rx_init() */



/*
+------------------------------------------------------------------------------
| Function    : rx_readOutFunc_0
+------------------------------------------------------------------------------
| Description : The function rx_readOutFunc_0() is the official callback
|               function to read data from the receive buffer of UART device 0.
|               It just copies the parameters and calls then the actual
|               function.
|
| Parameters  : cldFromIrq - called from interrupt
|               reInstall  - reinstallation mode
|               nsource    - number of source pointers
|               source     - array of source pointers
|               size       - array of sizes for every source pointer
|               state      - state of V.24 lines
|
+------------------------------------------------------------------------------
*/
GLOBAL void rx_readOutFunc_0 (BOOL           cldFromIrq,
                              T_reInstMode  *reInstall,
                              UBYTE          nsource,
                              UBYTE         *source[],
                              USHORT        *size,
                              ULONG          state)
{
#ifndef _SIMULATION_
#ifndef _TARGET_
  char buf[40];
#endif /* !_TARGET_ */
#endif /* !_SIMULATION_ */
  T_UART_DATA* uart_device;

  TRACE_FUNCTION( "rx_readOutFunc_0" );

  /*
   * select UART device 0
   */
  uart_device = &(uart_data_base[0]);

  /*
   * store parameters
   */
  uart_device->rx.cldFromIrq = cldFromIrq;
  uart_device->rx.nsource    = nsource;
  uart_device->rx.source[0]  = source[0];
  uart_device->rx.source[1]  = source[1];
  uart_device->rx.size       = size;
  uart_device->rx.lines      = state;
  uart_device->rx.reInstall  = reInstall;

#ifndef _SIMULATION_
#ifdef WIN32
  if (cldFromIrq)
  {
    STATUS sts;
    /*
     * interrupt context of the UART driver -> activate the HISR
     */
    sts = NU_Activate_HISR (&uart_device->rx.rx_HISR);
#ifndef _TARGET_
    sprintf (buf, "NU_Activate_HISR(RX) = %d", sts);
    TRACE_EVENT (buf);
#endif /* !_TARGET_ */
  }
  else
#endif /* WIN32 */
#endif /* !_SIMULATION_ */
  {
#ifdef _SIMULATION_
    UBYTE*  trace_source[2];
    USHORT  trace_size[2];
    USHORT  i;
    USHORT  pos;
    char    buf[90];

    trace_source[0] = source[0];
    trace_source[1] = source[1];

    trace_size[0] = size[0];
    trace_size[1] = size[1];

    /*
     * trace input
     */
    if((nsource) &&
       (uart_device->rx.read_permission))
    {

      TRACE_EVENT("==== INRAW");
      i   = 0;
      pos = 0;
      while(pos < trace_size[0])
      {
        i+= sprintf(&buf[i], "0x%02x, ", trace_source[0][pos]);
        pos++;
        if(i > 80)
        {
          TRACE_EVENT( buf );
          i = 0;
        }
        else if(pos >= trace_size[0])
        {
          TRACE_EVENT( buf );
        }
      }
      if(nsource > 1)
      {
        i   = 0;
        pos = 0;
        while(pos < trace_size[1])
        {
          i+= sprintf(&buf[i], "0x%02x, ", trace_source[1][pos]);
          pos++;
          if(i > 80)
          {
            TRACE_EVENT( buf );
            i = 0;
          }
          else if(pos >= trace_size[1])
          {
            TRACE_EVENT( buf );
          }
        }
      }
    }
#endif /* _SIMULATION_ */

    /*
     * normal callback from UF_ReadData
     */
    rx_proc_input(uart_device);
  }

} /* rx_readOutFunc_0() */



#ifdef FF_TWO_UART_PORTS
/*
+------------------------------------------------------------------------------
| Function    : rx_readOutFunc_1
+------------------------------------------------------------------------------
| Description : The function rx_readOutFunc_1() is the official callback
|               function to read data from the receive buffer of UART device 1.
|               It just copies the parameters and calls then the actual
|               function.
|
| Parameters  : cldFromIrq - called from interrupt
|               reInstall  - reinstallation mode
|               nsource    - number of source pointers
|               source     - array of source pointers
|               size       - array of sizes for every source pointer
|               state      - state of V.24 lines
|
+------------------------------------------------------------------------------
*/
GLOBAL void rx_readOutFunc_1 (BOOL           cldFromIrq,
                              T_reInstMode  *reInstall,
                              UBYTE          nsource,
                              UBYTE         *source[],
                              USHORT        *size,
                              ULONG          state)
{
#ifndef _SIMULATION_
#ifndef _TARGET_
  char buf[40];
#endif /* !_TARGET_ */
#endif /* !_SIMULATION_ */
  T_UART_DATA* uart_device;

  TRACE_FUNCTION( "rx_readOutFunc_1" );

  /*
   * select UART device 1
   */
  uart_device = &(uart_data_base[1]);

  /*
   * store parameters
   */
  uart_device->rx.cldFromIrq = cldFromIrq;
  uart_device->rx.nsource    = nsource;
  uart_device->rx.source[0]  = source[0];
  uart_device->rx.source[1]  = source[1];
  uart_device->rx.size       = size;
  uart_device->rx.lines      = state;
  uart_device->rx.reInstall  = reInstall;

#ifndef _SIMULATION_
#ifdef WIN32
  if (cldFromIrq)
  {
    STATUS sts;
    /*
     * interrupt context of the UART driver -> activate the HISR
     */
    sts = NU_Activate_HISR (&uart_device->rx.rx_HISR);
#ifndef _TARGET_
    sprintf (buf, "NU_Activate_HISR(RX) = %d", sts);
    TRACE_EVENT (buf);
#endif /* !_TARGET_ */
  }
  else
#endif /* WIN32 */
#endif /* !_SIMULATION_ */
  {
#ifdef _SIMULATION_
    UBYTE*  trace_source[2];
    USHORT  trace_size[2];
    USHORT  i;
    USHORT  pos;
    char    buf[90];

    trace_source[0] = source[0];
    trace_source[1] = source[1];

    trace_size[0] = size[0];
    trace_size[1] = size[1];

    /*
     * trace input
     */
    if((nsource) &&
       (uart_device->rx.read_permission))
    {

      TRACE_EVENT("==== INRAW");
      i   = 0;
      pos = 0;
      while(pos < trace_size[0])
      {
        i+= sprintf(&buf[i], "0x%02x, ", trace_source[0][pos]);
        pos++;
        if(i > 80)
        {
          TRACE_EVENT( buf );
          i = 0;
        }
        else if(pos >= trace_size[0])
        {
          TRACE_EVENT( buf );
        }
      }
      if(nsource > 1)
      {
        i   = 0;
        pos = 0;
        while(pos < trace_size[1])
        {
          i+= sprintf(&buf[i], "0x%02x, ", trace_source[1][pos]);
          pos++;
          if(i > 80)
          {
            TRACE_EVENT( buf );
            i = 0;
          }
          else if(pos >= trace_size[1])
          {
            TRACE_EVENT( buf );
          }
        }
      }
    }
#endif /* _SIMULATION_ */

    /*
     * normal callback from UF_ReadData
     */
    rx_proc_input(uart_device);
  }

} /* rx_readOutFunc_1() */
#endif /* FF_TWO_UART_PORTS */
#endif /* !FF_MULTI_PORT */