FreeCalypso > hg > fc-magnetite
view src/cs/layer1/p_cfile/l1p_sync.c @ 484:a1946652f71c
top README: update for the status of hybrid firmware
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Wed, 20 Jun 2018 08:18:48 +0000 |
parents | 0740b5ff15f6 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1P_SYNC.C * * Filename l1p_sync.c * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #define L1P_SYNC_C //#pragma DUPLICATE_FOR_INTERNAL_RAM_START #include "l1_macro.h" #include "l1_confg.h" #if L1_GPRS #if (CODE_VERSION == SIMULATION) #include <string.h> #include "l1_types.h" #include "sys_types.h" #include "l1_const.h" #include "l1_time.h" #include <l1_trace.h> #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif #include "l1_defty.h" #include "cust_os.h" #include "l1_msgty.h" #include "l1_varex.h" #include "l1_signa.h" #include "l1_proto.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #include "l1p_cons.h" #include "l1p_msgt.h" #include "l1p_deft.h" #include "l1p_vare.h" #include "l1p_prot.h" #include "l1p_mfta.h" #include "l1p_sign.h" #include "l1p_macr.h" #include "l1p_proto.h" #else #include <string.h> #include "l1_types.h" #include "sys_types.h" #include "l1_const.h" #include "l1_time.h" #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif #include "l1_defty.h" #include "cust_os.h" #include "l1_msgty.h" #include "l1_varex.h" #include "l1_signa.h" #include "l1_proto.h" #include "l1_trace.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #include "l1p_cons.h" #include "l1p_msgt.h" #include "l1p_deft.h" #include "l1p_vare.h" #include "l1p_prot.h" #include "l1p_mfta.h" #include "l1p_sign.h" #include "l1p_macr.h" #endif #if(RF_FAM == 61) #include "l1_rf61.h" #include "tpudrv61.h" #endif #if (GSM_IDLE_RAM !=0) #if (OP_L1_STANDALONE == 0) #include "csmi/sleep.h" #else #include "csmi_simul.h" #endif #endif /*-------------------------------------------------------*/ /* Prototypes of external functions used in this file. */ /*-------------------------------------------------------*/ void l1ps_tcr_ctrl (UWORD8 pm_position); void l1pddsp_meas_ctrl (UWORD8 nbmeas, UWORD8 pm_pos); void l1pddsp_meas_read (UWORD8 nbmeas, UWORD8 *pm_read); void l1pctl_transfer_agc_init(); UWORD8 l1pctl_pgc (UWORD8 pm, UWORD8 last_known_il, UWORD8 lna_off, UWORD16 radio_freq); void l1ps_bcch_meas_ctrl (UWORD8 ts); //#pragma DUPLICATE_FOR_INTERNAL_RAM_END #if (MOVE_IN_INTERNAL_RAM == 0) // Must be followed by the pragma used to duplicate the funtion in internal RAM //#pragma DUPLICATE_FOR_INTERNAL_RAM_START /*-------------------------------------------------------*/ /* l1ps_transfer_mode_manager() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void l1ps_transfer_mode_manager() { BOOL block_boundary = TRUE; UWORD8 current_assignment_command = NO_TBF; #if FF_TBF BOOL tbf_update_synchro_forced = FALSE; #endif //==================================== // NEW configuration management //==================================== if(!l1pa_l1ps_com.transfer.semaphore) // IF Transfer parameter structure protected, // No action within L1S. { WORD8 i; UWORD8 min_synchro_ts = 7; BOOL new_tbf_installed = FALSE; T_PACKET_TA *current_ta_config; // In packet transfer mode, we only detect STI at block boundaries in order to udpate the // ASET structure after the last Control of the previous TBF if (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) { if ((l1s.next_time.fn_mod13 != 0)&&(l1s.next_time.fn_mod13 != 4)&& (l1s.next_time.fn_mod13 != 8)) { block_boundary = FALSE; } } // Delay STI detection when a poll response hasn't already been answered // for transition to Packet transfer mode else if (l1a_l1s_com.l1s_en_task[POLL] == TASK_ENABLED) { block_boundary = FALSE; } // LOOK FOR NEW ASSIGNMENT... //=========================== // Consider both FREE SET... for(i=0;i<2;i++) { // Is there a new transfer channel provided in "fset[i]"? if(((l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_ASSIGNMENT_REQ) && (block_boundary == TRUE)) || (l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_SINGLE_BLOCK_REQ)) { if(l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present) // Starting time present. // Rem: starting time detected 1 frame in advance, this frame is used by // SYNCHRO task. { WORD32 time_diff; WORD8 frame_shift=0; WORD8 tn_diff; // In packet idle mode, L1 must detect if the synchronization change will happen // from a timeslot N to a timeslot M < N because in this case, a frame is skipped // and the MS is ready two frames after the synchronization change... a radio // block can be missed... // In packet transfer, the SYNCHRO task will always been executed on BURST 1, that let // 2 frames before the new TBF starts if (l1a_l1s_com.l1s_en_task[PDTCH] != TASK_ENABLED) { frame_shift -= 1; tn_diff = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; if(tn_diff < 0) frame_shift -= 1; } //TBF_changes #if FF_TBF // PDTCH task is enabled else { // Pseudo TBF for Two phase access, new TBF configuration has to // be installed for Starting Time taking into account that a // SYNCHRO task has to be scheduled before. if ((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) && (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc)) { // Note: We are at block boundary. if ((l1s.next_time.fn_mod13 == 0) || (l1s.next_time.fn_mod13 == 4)) frame_shift -= 4; else // i.e. (l1s.next_time.fn_mod13 == 8) frame_shift -= 5; } // Two phase access establishment on PACCH (therefore there is an // ongoing uplink TBF). if ((l1pa_l1ps_com.transfer.fset[i]->allocated_tbf == UL_TBF) && (l1pa_l1ps_com.transfer.fset[i]->pseudo_tbf_two_phase_acc)) { // Make sure single/multi block allocation // if a synchro task has to be inserted i.e. : // -> we are currently in EGPRS mode // -> and/or we change synchronization timeslot if ( (l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot != l1a_l1s_com.dl_tn) #if L1_EGPRS || (l1pa_l1ps_com.transfer.aset->egprs_param.tbf_mode == TBF_MODE_EGPRS) #endif ) { // Note: We are at block boundary. if ((l1s.next_time.fn_mod13 == 0) || (l1s.next_time.fn_mod13 == 4)) frame_shift -= 4; else // i.e. (l1s.next_time.fn_mod13 == 8) frame_shift -= 5; } } } #endif time_diff = ( (l1pa_l1ps_com.transfer.fset[i]->tbf_sti.absolute_fn) + frame_shift - (l1s.next_time.fn % 42432) + 2*42432) % 42432; if((time_diff >= (32024)) && (time_diff <= (42431))) // Starting time has been passed... //--------------------------------- { // For SINGLE BLOCK case, an error must be reported to L3. if(l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_SINGLE_BLOCK_REQ) { xSignalHeaderRec *msg; // Send confirmation msg to L3/MACA. msg = os_alloc_sig(sizeof(T_MPHP_SINGLE_BLOCK_CON)); DEBUGMSG(status,NU_ALLOC_ERR) ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->purpose = l1pa_l1ps_com.transfer.fset[i]->assignment_command; ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->assignment_id = l1pa_l1ps_com.transfer.fset[i]->assignment_id; ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->status = SINGLE_STI_PASSED; msg->SignalCode = L1P_SINGLE_BLOCK_CON; // send message... os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) // Do not reset "tbf_sti.present". // Ignore the SINGLE BLOCK requested. l1pa_l1ps_com.transfer.fset[i]->SignalCode = NULL; } else { // Reset "tbf_sti.present" flag to take into account the new // configuration. l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present = FALSE; } } else if(time_diff == 0) // Starting time corresponds to current frame... //---------------------------------------------- { // Reset "tbf_sti.present" flag to take into account the new // configuration. l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present = FALSE; } else // Starting time hasn't already been reached... //--------------------------------------------- { // time_to_next_l1s_task updated with time to sti Select_min_time(time_diff, l1a_l1s_com.time_to_next_l1s_task); } } // Do we switch to a new transfer configuration? // We have to switch if, new set STI is passed. if(!l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present) { // Install new configuration immediately. // Rem: the new channel will start at a block boundary because by construction // PDTCH task is started every block boundary. T_TRANSFER_SET *transfer_set; // STI has been passed, we must switch to the new config. #if (TRACE_TYPE!=0) // Trace "starting time" on log file and screen. trace_fct(CST_STI_PASSED, l1a_l1s_com.Scell_info.radio_freq); #endif #if FF_TBF // Forces a SYNCHRO task prior to new TBF configuration if // -> Coming from 2 phases access TBF // -> Coming from (Packet) Idle if (((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) && (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc)) || (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_DISABLED) ) { // Can not be merged with test above evaluated only when a // starting time is present in the message. tbf_update_synchro_forced = TRUE; } #endif if (current_assignment_command == NO_TBF) current_assignment_command = l1pa_l1ps_com.transfer.fset[i]->assignment_command; else if ((current_assignment_command == UL_TBF) || (current_assignment_command == DL_TBF)) current_assignment_command = BOTH_TBF; // Check if anything to keep from previous configuration. // Select the best timeslot for timebase synchro. if(l1pa_l1ps_com.transfer.aset->allocated_tbf != NO_TBF) { UWORD8 synchro_ts; // Check if required to take TA from previous packet assignment // if TA not valid in new assignment command if ( l1pa_l1ps_com.transfer.fset[i]->packet_ta.ta == 255) { // new TA value to be taken from previous packet TA l1pa_l1ps_com.transfer.fset[i]->packet_ta.ta = l1pa_l1ps_com.transfer.aset->packet_ta.ta; } switch(l1pa_l1ps_com.transfer.fset[i]->assignment_command) { case DL_TBF: { // If any, keep the UL allocation from previous set. if((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) || (l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF)) { T_UL_RESSOURCE_ALLOC *ul_ptr; // Swap the pointers on UL parameter structures ul_ptr = l1pa_l1ps_com.transfer.fset[i]->ul_tbf_alloc; l1pa_l1ps_com.transfer.fset[i]->ul_tbf_alloc = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc; l1pa_l1ps_com.transfer.aset->ul_tbf_alloc = ul_ptr; l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = BOTH_TBF; l1pa_l1ps_com.transfer.fset[i]->ul_tbf_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; // Chose min synchro timeslot from UL and DL TBFs. if(l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot < l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot) { synchro_ts = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; } else { synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; } } // No UL TBF running, select the new DL TBF synchro timeslot. else { synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; } } break; case UL_TBF: { // If any, keep the DL allocation from previous set. if((l1pa_l1ps_com.transfer.aset->allocated_tbf == DL_TBF) || (l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF)) { l1pa_l1ps_com.transfer.fset[i]->dl_tbf_alloc = l1pa_l1ps_com.transfer.aset->dl_tbf_alloc; l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = BOTH_TBF; l1pa_l1ps_com.transfer.fset[i]->dl_tbf_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; // Chose min synchro timeslot from UL and DL TBFs. if(l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot < l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot) { synchro_ts = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; } else { synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; } } // No DL TBF running, select the new UL TBF synchro timeslot. else { synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; } // Reset Repeat allocation starting time checking l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; // Reset Allocation Exhaustion detection flag l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; } break; case BOTH_TBF: case NO_TBF: default: { // Nothing to keep, everything (UL & DL) is replaced. synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; // Reset Repeat allocation starting time checking l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; // Reset Allocation Exhaustion detection flag l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; } break; } // end of switch(...assignment_command) if(synchro_ts < min_synchro_ts) min_synchro_ts = synchro_ts; } // end of if(...allocated_tbf != NO_TBF) else { min_synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; } // New set becomes active and old becomes free. // Save a pointer on currently used PTCCH parameters current_ta_config = &l1pa_l1ps_com.transfer.aset->packet_ta; transfer_set = l1pa_l1ps_com.transfer.aset; l1pa_l1ps_com.transfer.aset = l1pa_l1ps_com.transfer.fset[i]; l1pa_l1ps_com.transfer.fset[i] = transfer_set; l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = NO_TBF; l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = min_synchro_ts; // Set local flag. new_tbf_installed = TRUE; if(l1pa_l1ps_com.transfer.aset->SignalCode == MPHP_ASSIGNMENT_REQ) // Assignement confirmation message is sent { xSignalHeaderRec *msg; // Send confirmation msg to L3/MACA. msg = os_alloc_sig(sizeof(T_L1P_TRANSFER_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) msg->SignalCode = L1P_TRANSFER_DONE; ((T_L1P_TRANSFER_DONE *) (msg->SigP))->assignment_id = l1pa_l1ps_com.transfer.aset->assignment_id; // Insert "t_difference" information in L1P_TRANSFER_DONE msg // will be used in Ncell Dedic6 state machine to request a reset // or not of the state machine ((T_L1P_TRANSFER_DONE *) (msg->SigP))->tn_difference = min_synchro_ts - l1a_l1s_com.dl_tn; // detect the Transition IDLE -> Transfer if (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) ((T_L1P_TRANSFER_DONE *) (msg->SigP))->Transfer_update = TRUE; else ((T_L1P_TRANSFER_DONE *) (msg->SigP))->Transfer_update = FALSE; os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) } // New config has been acknowledeged, clear SignalCode... l1pa_l1ps_com.transfer.fset[i]->SignalCode = NULL; l1pa_l1ps_com.transfer.aset->SignalCode = NULL; } // end if(...tbf_sti.present) } // end of if(...SignalCode == MPHP_ASSIGNMENT_REQ) } if(new_tbf_installed == TRUE) { // Start the new configuration //---------------------------- // Enable PACKET tasks. { // Set assignment_command to the last enabled TBF type. // This permits MAC-S to correctly manage TBF boundary conditions. l1pa_l1ps_com.transfer.aset->assignment_command = current_assignment_command; // Flag the new configuration to MACS. l1ps_macs_com.new_set = TRUE; // Flag the new configuration in order to update the Read set parameters // in the first Read phase of the new TBF // This permits to start using the new aset parameters for the first Control of // the first block of the new TBF and to keep the parameters needed for the // last read phase of the last block of the previous TBF. l1ps.read_param.new_set = TRUE; // TBF_changes #if !FF_TBF // We need to detect that we just leaving CS/P Idle mode to enter // in Packet Transfer mode. Then we have to enable SYNCHRO task on dectection // of a mode change (Idle or Packet idle -> Packet transfer). // Note: This check can't be gathered with the one done a little bit later // on tn_difference and SINGLE task from the fact that the allocated_tbf // is checked and PDTCH enabled. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { if(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_DISABLED) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; } } #endif // Disable interference measurements l1a_l1s_com.l1s_en_task[ITMEAS] = TASK_DISABLED; // Check for Continuous Timing advance procedure. // Enable PTCCH task if required. if((l1pa_l1ps_com.transfer.aset->packet_ta.ta_index != 255) && (l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn != 255)) { // No action when the configuration is the same as the current one. if((l1pa_l1ps_com.transfer.aset->packet_ta.ta_index != current_ta_config->ta_index) || (l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn != current_ta_config->ta_tn) || (l1a_l1s_com.l1s_en_task[PTCCH] == TASK_DISABLED)) // The configuration is different than the current one or no PTCCH is currently running // (for example in packet idle) { // Reset PTCCH execution variables. l1pa_l1ps_com.transfer.ptcch.activity = 0; l1pa_l1ps_com.transfer.ptcch.request_dl = FALSE; // Enable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_ENABLED; } } else // PTCCH is not configured. { // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; } // Transfer AGC initialization l1pctl_transfer_agc_init(); switch(l1pa_l1ps_com.transfer.aset->allocated_tbf) { case SINGLE_BLOCK_UL: { // Set SINGLE execution variables. l1pa_l1ps_com.transfer.single_block.activity = SINGLE_UL; // UL enabled // Enable SINGLE task. l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; } break; case SINGLE_BLOCK_DL: { // Set SINGLE execution variables. l1pa_l1ps_com.transfer.single_block.activity = SINGLE_DL; // DL enabled // Enable SINGLE task. l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; } break; case TWO_PHASE_ACCESS: { // Set SINGLE execution variables. l1pa_l1ps_com.transfer.single_block.activity |= SINGLE_DL; // DL enabled l1pa_l1ps_com.transfer.single_block.activity |= SINGLE_UL; // UL enabled // Enable SINGLE task. l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; } break; default: { /* * FreeCalypso: removal of the following line is * TCS211 reconstruction */ //if(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) //In case of transition idle to transfer the Packet transfer mode is set when synchro is executed // Layer 1 internal mode is set to PACKET TRANSFER MODE. l1a_l1s_com.mode = PACKET_TRANSFER_MODE; // Enable PDTCH task. l1a_l1s_com.l1s_en_task[PDTCH] = TASK_ENABLED; // Need to disable SINGLE task for two phase access case l1a_l1s_com.l1s_en_task[SINGLE] = TASK_DISABLED; } break; } // End switch() // SYNCHRO task is not schedule if we are in the specific case: // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) // Note: tn_difference has to be accumulated in order to cope with the // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { // Save the "timeslot difference" between new and old configuration // in "tn_difference". // tn_difference -> loaded with the number of timeslot to shift. // dl_tn -> loaded with the new timeslot. l1a_l1s_com.tn_difference += min_synchro_ts - l1a_l1s_com.dl_tn; l1a_l1s_com.dl_tn = min_synchro_ts; #if !FF_TBF // Enable SYNCHRO task only if lowest allocated timeslot changed // or if each time the SINGLE task is enabled // In the specific case of the SINGLE task, the GPRS_SCHEDULER // has to be selected. if((l1a_l1s_com.tn_difference != 0) || (l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED)) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; } #else // Enable SYNCHRO task if at least one of these conditions fulfilled: // -> Change in the timeslot synhronization // -> Change of the ongoing TBF mode (synchro_forced) // -> Exit of two phase access (synchro_forced) // -> Coming from (Packet) Idle (synchro forced) // -> SINGLE task enabled if((l1a_l1s_com.tn_difference != 0) || (tbf_update_synchro_forced) || (l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED)) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; } #endif } else {}// L1A is touching dl_tn, tn_difference and dsp_scheduler_mode parameters... } } // LOOK FOR TIMING AVANCE UPDATE //=============================== if(l1pa_l1ps_com.transfer.ptcch.ta_update_cmd == TRUE) { #define CURRENT_TA_CONFIG l1pa_l1ps_com.transfer.aset->packet_ta #define NEW_TA_CONFIG l1pa_l1ps_com.transfer.ptcch.packet_ta // Only update if the assignment_id of the running TBF matches with the assignment_id // given in the MPHP_TIMING_ADVANCE_REQ message if (l1pa_l1ps_com.transfer.ptcch.assignment_id == l1pa_l1ps_com.transfer.aset->assignment_id) { xSignalHeaderRec *msg; // Immediate Update of PACKET TA structure. //----------------------------------------- // Update TA value only if a new value is provided. if(NEW_TA_CONFIG.ta != 255) CURRENT_TA_CONFIG.ta = NEW_TA_CONFIG.ta; if((NEW_TA_CONFIG.ta_index != 255) && (NEW_TA_CONFIG.ta_tn != 255)) // There is a New PTCCH configuration. { // No action when the configuration is the same as the current one. if((NEW_TA_CONFIG.ta_index != CURRENT_TA_CONFIG.ta_index) || (NEW_TA_CONFIG.ta_tn != CURRENT_TA_CONFIG.ta_tn)) // The configuration is different than the current one. { // Download the new configuration. CURRENT_TA_CONFIG.ta_index = NEW_TA_CONFIG.ta_index; CURRENT_TA_CONFIG.ta_tn = NEW_TA_CONFIG.ta_tn; // Reset PTCCH execution variables. l1pa_l1ps_com.transfer.ptcch.activity = 0; l1pa_l1ps_com.transfer.ptcch.request_dl = FALSE; // Enable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_ENABLED; } } else // PTCCH is not configured. { // Diable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; } // Send confirmation message to L3. msg = os_alloc_sig(sizeof(T_MPHP_TIMING_ADVANCE_CON)); DEBUGMSG(status,NU_ALLOC_ERR) msg->SignalCode = L1P_TA_CONFIG_DONE; ((T_MPHP_TIMING_ADVANCE_CON *) msg->SigP)->assignment_id = l1pa_l1ps_com.transfer.aset->assignment_id; os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) } // End if "assignment_id of the running TBF matches" // Reset Control code. l1pa_l1ps_com.transfer.ptcch.ta_update_cmd = FALSE; } // End if(...ta_update_cmd == TRUE) // LOOK FOR PSI PARAMETERS UPDATE //=============================== if(l1pa_l1ps_com.transfer.psi_param.psi_param_update_cmd == TRUE) { // Update parameters l1a_l1s_com.Scell_info.pb = l1pa_l1ps_com.transfer.psi_param.Scell_pb; l1pa_l1ps_com.access_burst_type = l1pa_l1ps_com.transfer.psi_param.access_burst_type; // Reset Control code. l1pa_l1ps_com.transfer.psi_param.psi_param_update_cmd = FALSE; } /***********************************************************/ /* TBF release, PDCH release, Repeat allocation, Fixed */ /* allocation exhaustion */ /***********************************************************/ // These events are only taken into account on block boundaries // in order to keep the "aset" structure unchanged for all the control phases // of the last block before modification if(block_boundary) { // LOOK FOR TBF TO BE RELEASED... //=============================== if(l1pa_l1ps_com.transfer.tbf_release_param.tbf_release_cmd == TRUE) { xSignalHeaderRec *msg; //TBF_changes #if !FF_TBF switch(l1pa_l1ps_com.transfer.tbf_release_param.released_tbf) #else UWORD8 released_tbf; // Special case if we got a request to release a two phase access TBF: // It is registered within ASET structure as an uplink TBF. If we are // currently in pseudo TBF for two phase access, we process the request // like an uplink release, otherwise we skip it and just send the // L1P_TBF_RELEASED to L1A. released_tbf = l1pa_l1ps_com.transfer.tbf_release_param.released_tbf; if (released_tbf == TWO_PHASE_ACCESS) { if (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc) released_tbf = UL_TBF; else released_tbf = NO_TBF; } switch(released_tbf) #endif { case UL_TBF: { if(l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) { // Disable PDTCH task. l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; // Free the active set. l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; } else if(l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) { // Still DL_TBF running. // We must synchro to the 1st timeslot of DL_TBF. // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" // since MACS will detect the alloc change. // Active set becomes DL TBF. l1pa_l1ps_com.transfer.aset->allocated_tbf = DL_TBF; // SYNCHRO task is not schedule if we are in the specific case: // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) // Note: tn_difference has to be accumulated in order to cope with the // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot - l1a_l1s_com.dl_tn; l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; // Enable SYNCHRO task only when camp timeslot is changed. if(l1a_l1s_com.tn_difference != 0) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; } } // Diable PTCCH if timeslot doesn't match with the remaining DL TBF allocation if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc)) { // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) l1_trace_ptcch_disable(); #endif } } // Reset Repeat allocation starting time checking l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; // Reset Allocation Exhaustion detection flag l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; #if L1_EDA // Disable FB/SB task detection mechanism for MS class 12 l1ps_macs_com.fb_sb_task_detect = FALSE; #endif } break; case DL_TBF: { if(l1pa_l1ps_com.transfer.aset->allocated_tbf == DL_TBF) { // Disable PDTCH task. l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; // Free the active set. l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; } else if(l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) { // Still UL_TBF running. // We must synchro to the 1st timeslot of UL_TBF. // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" // since MACS will detect the alloc change. // Active set becomes UL TBF. l1pa_l1ps_com.transfer.aset->allocated_tbf = UL_TBF; // SYNCHRO task is not schedule if we are in the specific case: // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) // Note: tn_difference has to be accumulated in order to cope with the // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot - l1a_l1s_com.dl_tn; l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; // Enable SYNCHRO task only when camp timeslot is changed. if(l1a_l1s_com.tn_difference != 0) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; } } // Diable PTCCH if timeslot doesn't match with the remaining UL TBF allocation if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc)) { // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) l1_trace_ptcch_disable(); #endif } } } break; case BOTH_TBF: { // No more TBF... // Disable PDTCH task. l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; // Free the active set. l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; // Reset Repeat allocation starting time checking l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; // Reset Allocation Exhaustion detection flag l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; #if L1_EDA // Disable FB/SB task detection mechanism for MS class 12 l1ps_macs_com.fb_sb_task_detect = FALSE; #endif } break; } // Send confirmation msg to L3/MACA. msg = os_alloc_sig(sizeof(T_L1P_TBF_RELEASED)); DEBUGMSG(status,NU_ALLOC_ERR) msg->SignalCode = L1P_TBF_RELEASED; // initialize the TBF type for the confirmation msg ((T_L1P_TBF_RELEASED *) msg->SigP)->tbf_type = l1pa_l1ps_com.transfer.tbf_release_param.released_tbf; if (l1pa_l1ps_com.transfer.aset->allocated_tbf == NO_TBF) { /* * FreeCalypso: removal of the following line is * TCS211 reconstruction */ //l1ps.read_param.assignment_id = 0x01; /* default non initialised value for next tbf */ ((T_L1P_TBF_RELEASED *) msg->SigP)->released_all = TRUE; #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) // Correction of BUG1041: reset of multislot bit in d_bbctrl_gprs // when leaving patcket transfer. l1ps_dsp_com.pdsp_ndb_ptr->d_bbctrl_gprs = l1_config.params.bbctrl; #endif } else { ((T_L1P_TBF_RELEASED *) msg->SigP)->released_all = FALSE; } // Insert "tn_difference" information in L1P_TBF_RELEASED msg // will be used in Ncell Dedic6 state machine to request a reset // or not of the state machine. ((T_L1P_TBF_RELEASED *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) // Flag the new configuration in order to update the Read set parameters // with the "aset" structure modifications in the first PDTCH Read phase // after configuration change l1ps.read_param.new_set = TRUE; // Reset Control code. l1pa_l1ps_com.transfer.tbf_release_param.tbf_release_cmd = FALSE; } // LOOK FOR PDCH TO BE RELEASED... //================================ if(l1pa_l1ps_com.transfer.pdch_release_param.pdch_release_cmd == TRUE) { xSignalHeaderRec *msg; UWORD8 timeslot,timeslot_alloc; // PDCH Release only apply if the assignement_id of the running TBF matches // with the assignment_id included in the MPHP_PDCH_RELEASE_REQ message if (l1pa_l1ps_com.transfer.pdch_release_param.assignment_id == l1pa_l1ps_com.transfer.aset->assignment_id) { // Update timeslot allocation bitmaps l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc &= l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available; l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc &= l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available; // Process the downlink TBF first allocated timeslot timeslot_alloc = l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc; timeslot = 0; while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) { timeslot++; } l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot = timeslot; // Process the uplink TBF first allocated timeslot timeslot_alloc = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc; timeslot = 0; #if L1_EDA // Dynamic allocation mode or Extended Dynamic allocation mode if((l1pa_l1ps_com.transfer.aset->mac_mode == DYN_ALLOC) || (l1pa_l1ps_com.transfer.aset->mac_mode == EXT_DYN_ALLOC)) #else // Dynamic allocation mode if(l1pa_l1ps_com.transfer.aset->mac_mode == DYN_ALLOC) #endif { while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) { timeslot++; } } else // Fixed allocation mode if(l1pa_l1ps_com.transfer.aset->mac_mode == FIX_ALLOC_NO_HALF) { // If the control timeslot hasn't been released if (l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & (0x80 >> l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot)) { // The first allocated timeslot is the control timeslot timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot; } else { // The first allocated timeslot is found in the allocation bitmap while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) { timeslot++; } } } l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = timeslot; // Fill "synchro_timeslot" which will be the frame synchro slot. switch(l1pa_l1ps_com.transfer.aset->allocated_tbf) { case(DL_TBF): { l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; } break; case(UL_TBF): { l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; } break; case(BOTH_TBF): { if (l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot > l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot) { l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; } else { l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; } } break; } // SYNCHRO task is not schedule if we are in the specific case: // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) // Note: tn_difference has to be accumulated in order to cope with the // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { // New synchronization l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" // since MACS will detect the alloc change. // Enable SYNCHRO task only when camp timeslot is changed. if(l1a_l1s_com.tn_difference != 0) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; } } // Disable PTCCH if timeslot doesn't match with the remaining PDCH allocation if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available)) { // Disable PTCCH task. l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) l1_trace_ptcch_disable(); #endif } // Send confirmation msg to L3/MACA. msg = os_alloc_sig(sizeof(T_L1P_PDCH_RELEASE_CON)); DEBUGMSG(status,NU_ALLOC_ERR) msg->SignalCode = L1P_PDCH_RELEASED; ((T_L1P_PDCH_RELEASE_CON *) msg->SigP)->assignment_id = l1pa_l1ps_com.transfer.pdch_release_param.assignment_id; // Insert "tn_difference" information in T_L1P_PDCH_RELEASE_CON msg // will be used in Ncell Dedic6 state machine to request a reset // or not of the state machine ((T_L1P_PDCH_RELEASE_CON *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) // Flag the new configuration in order to update the Read set parameters // with the "aset" structure modifications in the first PDTCH Read phase // after configuration change l1ps.read_param.new_set = TRUE; } // End if "assignment_id matches with the running TBF" // Reset Control code. l1pa_l1ps_com.transfer.pdch_release_param.pdch_release_cmd = FALSE; } // LOOK FOR REPEAT ALLOCATION ... //================================ if(l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation) { UWORD8 timeslot,timeslot_alloc; // Starting time checking... //-------------------------- if(l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present) // Starting time present. // Rem: starting time detected 1 frame in advance, this frame is used by // SYNCHRO task. { WORD32 time_diff; // If synchro change occurs, it's always from a timeslot N to N + 1 time_diff = ( (l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.absolute_fn - 1) - (l1s.next_time.fn % 42432) + 2*42432) % 42432; // Starting time has been passed... if(((time_diff >= (32024)) && (time_diff <= (42431))) || (time_diff == 0)) { l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present = FALSE; } } // End if "starting time present" // Starting time passed... //------------------------ // If the repeat allocation starts on this frame... if (!l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present) { #if (TRACE_TYPE!=0) // Trace "starting time" on log file and screen. trace_fct(CST_STI_PASSED, l1a_l1s_com.Scell_info.radio_freq); #endif // Update ts_override and starting time l1pa_l1ps_com.transfer.aset->ts_override = l1pa_l1ps_com.transfer.repeat_alloc.ts_override; l1pa_l1ps_com.transfer.aset->tbf_sti.absolute_fn = l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.absolute_fn; // Lowest allocated timeslot for the UL TBF // If the downlink control timeslot hasn't been released: it's the downlink control timeslot // Else no change if ( l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & (0x80 >> l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot)) { // Synchronization on the downlink control timeslot l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot; } // Synchronization // If a downlink TBF is enabled if ( l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) { // Synchronization on the downlink TBF lowest allocated timeslot ? if (l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot > l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot) l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; else l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; } // Else: synchronization on the uplink TBF lowest allocated timeslot else l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; // SYNCHRO task is not schedule if we are in the specific case: // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) // Note: tn_difference has to be accumulated in order to cope with the // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; // Enable SYNCHRO task only when camp timeslot is changed. if(l1a_l1s_com.tn_difference != 0) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; } } // Set assignment_command to the last enabled TBF type. // This permits MAC-S to correctly manage TBF boundary conditions. if ((current_assignment_command == NO_TBF) || (current_assignment_command == UL_TBF)) l1pa_l1ps_com.transfer.aset->assignment_command = UL_TBF; else l1pa_l1ps_com.transfer.aset->assignment_command = BOTH_TBF; // Flag the new configuration to MACS. l1ps_macs_com.new_set = TRUE; // Flag the new configuration in order to update the Read set parameters // with the "aset" structure modifications in the first PDTCH Read phase // after configuration change l1ps.read_param.new_set = TRUE; // Reset Repeat allocation starting time checking l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; // Reset Allocation Exhaustion detection flag l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; // Send confirmation { xSignalHeaderRec *msg; // Send confirmation msg to L3/MACA. msg = os_alloc_sig(sizeof(T_L1P_REPEAT_ALLOC_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) msg->SignalCode = L1P_REPEAT_ALLOC_DONE; // Insert "tn_difference" information in T_L1P_REPEAT_ALLOC_DONE msg // will be used in Ncell Dedic6 state machine to request a reset // or not of the state machine ((T_L1P_REPEAT_ALLOC_DONE *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) } } // End if "Repeat allocation starts this frame..." } // End of "Repeat allocation starting time checking" // LOOK FOR FIXED MODE ALLOCATION BITMAP EXHAUSTION ... //================================================== if(l1ps_macs_com.fix_alloc_exhaust_flag) { #if (TRACE_TYPE!=0) // Trace "starting time" on log file and screen. trace_fct(CST_ALLOC_EXHAUSTION, l1a_l1s_com.Scell_info.radio_freq); #endif // Update uplink TBF synchronization timeslot { UWORD8 timeslot = 0; UWORD8 bitmap = 0x80; while (!(l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & bitmap)) { timeslot ++; bitmap >>= 1; } // Synchronization on the lowest allocated timeslot for uplink tranfer l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = timeslot; } // New synchronization only done on a timeslot inferior to current synchronization // - if a DL TBF is present: the DL TBF synchronization is taken into account // - an UL TBF is present: synchronization can only be done on a timeslot number inferior or // equal to the current synchronization if (l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot < l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot) { l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; } // SYNCHRO task is not schedule if we are in the specific case: // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) // Note: tn_difference has to be accumulated in order to cope with the // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) { l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; // Enable SYNCHRO task only when camp timeslot is changed. if(l1a_l1s_com.tn_difference != 0) { l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; } } // Send signal to L1A { xSignalHeaderRec *msg; // Send confirmation msg to L3/MACA. msg = os_alloc_sig(sizeof(T_L1P_ALLOC_EXHAUST_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) msg->SignalCode = L1P_ALLOC_EXHAUST_DONE; // Insert "tn_difference" information in T_L1P_ALLOC_EXHAUST_DONE msg // will be used in Ncell Dedic6 state machine to request a reset // or not of the state machine ((T_L1P_ALLOC_EXHAUST_DONE *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; os_send_sig(msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) } // Flag the new configuration in order to update the Read set parameters // with the "aset" structure modifications in the first PDTCH Read phase // after configuration change l1ps.read_param.new_set = TRUE; // Reset flag l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; } // End if "fixed mode allocation bitmap has exhausted" } // End of "block_boundary" } // end of if(!l1pa_l1ps_com.transfer.semaphore) } //#pragma DUPLICATE_FOR_INTERNAL_RAM_END #endif // MOVE_IN_INTERNAL_RAM #if !((MOVE_IN_INTERNAL_RAM == 1) && (GSM_IDLE_RAM !=0)) // MOVE TO INTERNAL MEM IN CASE GSM_IDLE_RAM enabled //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_START // KEEP IN EXTERNAL MEM otherwise /*-------------------------------------------------------*/ /* l1ps_meas_manager() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* This function is the tasks manager for Packet Cell */ /* Reselection. */ /* The followings tasks are handled: */ /* */ /* FSMS_MEAS: */ /* */ /* P_CRMS_MEAS: Packet Cell Reselection measurement */ /* in Idle mode. The task includes: */ /* o BA(GPRS) measurement */ /* o Network controlled meas. */ /* o Extended measurement */ /* Occurrences are performed in order to satisfy the */ /* following ETSI constraints: */ /* 1. At least one measure of each BA BCCH carrier shall */ /* be taken for each paging block, */ /* 2. A minimum of one measure for each BA BCCH carrier */ /* for every 4 second must be performed, */ /* 3. MS is not required to take more than one sample */ /* per second for each BCCH carrier, */ /* 4. At least 5 measures per BA BCCH carrier are */ /* required for a valid received level average value */ /* (RLA_P), */ /* 5. RLA_P shall be based on samples collected over a */ /* period of 5s to Max{5s, five consecutive PPCH */ /* blocks dedicated to the MS}, */ /* 6. Samples allocated to each carrier shall as far */ /* as possible be uniformly distributed over the */ /* evaluation period. */ /* */ /* A TI condition is include: */ /* 7. In order to save power consumption, it will be */ /* necessary to use as far as possible the PPCH */ /* blocks to perform a maximum of measurements during */ /* these frames. */ /* */ /* From the previous constraints, it appears that */ /* Paging block period needs to be considered to fit */ /* ETSI consideration. */ /* Tow case are considered: */ /* o PPCH period >= 1s */ /* o PPCH period < 1s */ /* */ /* Once all carriers of the frequency list have been */ /* measured, a reporting message L1P_CR_MEAS_DONE is */ /* built and sent to L1A. */ /*-------------------------------------------------------*/ void l1ps_meas_manager() { enum states { NULL_MEAS = 0, PCHTOTAL = 1, TOTAL = 2, MEAS = 3, MEASTOTAL = 4 }; UWORD8 IL_for_rxlev; BOOL init_meas = FALSE; #if (RF_FAM == 61) UWORD16 dco_algo_ctl_pw = 0; UWORD16 dco_algo_ctl_pw_temp = 0; UWORD8 if_ctl = 0; UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; #endif #define cr_list_size l1pa_l1ps_com.cres_freq_list.alist->nb_carrier static WORD8 remain_carrier; static UWORD8 nbr_meas; static BOOL schedule_trigger; static xSignalHeaderRec *cr_msg = NULL; static WORD16 time_to_wake_up; static WORD16 time_to_4s; static WORD16 time_to_1s; static UWORD32 fn_update; static UWORD16 session_done; // Did a session of measures performed in the 4s period static UWORD16 session_done_1s; // Did a session of measures performed in the 1s period static UWORD8 state; static UWORD32 reporting_period; // Parameter used in "reporting_period" computation #if (FF_L1_FAST_DECODING == 1) if (l1a_apihisr_com.fast_decoding.deferred_control_req == TRUE) { /* Do not execute l1s_meas_manager if a fast decoding IT is scheduled */ return; } #endif /*#if (FF_L1_FAST_DECODING == 1)*/ #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_IT_DSP) { #endif //==================================================== // RESET MEASUREMENT MACHINES WHEN ABORT EXECUTED. //==================================================== if(l1s.dsp_ctrl_reg & CTRL_ABORT) // ABORT task has been controlled, which reset the MCU/DSP communication. // We must rewind any measurement activity. { // Aborted measurements have to be rescheduled nbr_meas += l1pa_l1ps_com.cr_freq_list.ms_ctrl_d + l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd; // Rewind "next_to_ctrl" counter to come back to the next carrier to // measure. l1pa_l1ps_com.cr_freq_list.next_to_ctrl = l1pa_l1ps_com.cr_freq_list.next_to_read; // Reset flags. l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = 0; l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = 0; } #if (GSM_IDLE_RAM != 1) // Test if task is disabled and cr_msg != NULL, then de-allocate memory if (!(l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_CRMS_MEAS)) { if(cr_msg != NULL) { // Cell reselection measurement process has been stopped by L3 // Deallocate memory for the received message if msg not forwarded to L3. // ---------------------------------------------------------------------- os_free_sig(cr_msg); DEBUGMSG(status,NU_DEALLOC_ERR) cr_msg = NULL; } } #endif if((l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && (l1pa_l1ps_com.meas_param & P_CRMS_MEAS)) // Some changes occured on the Frequency list or the PAGING PARAMETERS have // changed. { // Reset Packet Cell Reselection semaphore. l1pa_l1ps_com.meas_param &= P_CRMS_MEAS_MASK; // Paging process has been interrupted by a L3 message // Deallocate memory for the received message if msg not forwarded to L3. // ---------------------------------------------------------------------- //Update Frequency list pointer l1pa_l1ps_com.cres_freq_list.alist = l1pa_l1ps_com.cres_freq_list.flist; // Rewind frequency list counters to come back to the first carrier of this // aborted session. l1pa_l1ps_com.cr_freq_list.next_to_read = 0; l1pa_l1ps_com.cr_freq_list.next_to_ctrl = 0; // Reset flags. l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = 0; l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = 0; // Initialize timer time_to_wake_up = 0; time_to_4s = 866; time_to_1s = 216; fn_update = l1s.actual_time.fn; // Initialize Reporting Period reporting_period = l1s.actual_time.fn; // Initialize Cell reselection state machine and parameters state = NULL_MEAS; session_done = 0; session_done_1s = 0; schedule_trigger = TRUE; nbr_meas = 0; init_meas = TRUE; } #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_IT_DSP) #endif // Packet Idle Cell Relselection Power Measurements fonction if P_CRMS_MEAS task still enabled. // In case L1S has switched in GPRS packet transfer mode and L1S_TRANSFER_DONE message hasn't been processed yet // by L1A, no control or read task shall be done. if ((l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_CRMS_MEAS) && (l1a_l1s_com.l1s_en_task[PDTCH] != TASK_ENABLED)) { #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_IT_DSP) { #endif // Update P_CRMS_MEAS timers { UWORD16 fn_diff; #define current_fn l1s.actual_time.fn // Compute Frame Number increment since last L1S activity if(current_fn >= fn_update) fn_diff = current_fn - fn_update; else fn_diff = (current_fn + MAX_FN) - fn_update; // Update timer time_to_4s -= fn_diff; if(time_to_4s <= 0) { time_to_4s += 866; session_done = 0; } time_to_1s -= fn_diff; if(time_to_1s <= 0) { time_to_1s += 216; session_done_1s = 0; } // Note: time to next meas position is negative during the meas. // session period time_to_wake_up -= fn_diff; fn_update = current_fn; } if(time_to_wake_up == 0) { // Schedule CR meas position for "PNP period >= 1s" case if(l1pa_l1ps_com.pccch.pnp_period >= 216) { switch (state) { case PCHTOTAL: case TOTAL: { nbr_meas = cr_list_size; // Measures is going to start, set "session_done" flag. // "session_done" flag must be set at the begining of a meas. session // in order to be able to detect crossing of the 4s boundary session_done = 1; } break; case NULL_MEAS: { nbr_meas = 0; } break; } } // Schedule CR meas position for "PNP period < 1s" case else { switch (state) { case NULL_MEAS: { nbr_meas = 0; } break; case MEAS: { UWORD8 max_nbmeas; WORD16 tpu_win_rest; UWORD16 power_meas_split; // Compute how many BP_SPLIT remains for cr list meas // Rem: we take into account the SYNTH load for 1st RX in next frame. // WARNING: only one RX activity is considered in next paging block !!! tpu_win_rest = FRAME_SPLIT - (RX_LOAD + l1_config.params.rx_synth_load_split); power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); max_nbmeas = 0; while(tpu_win_rest >= power_meas_split) { max_nbmeas ++; tpu_win_rest -= power_meas_split; } if (max_nbmeas > NB_MEAS_MAX_GPRS) max_nbmeas = NB_MEAS_MAX_GPRS; // There is no more PPCH block before end of 1s period. // End remaining carriers. nbr_meas = Min(remain_carrier, 4*max_nbmeas); // Measures is going to start, set "session_done" flag. // "session_done_1s" flag must be set at the begining of a meas. session // in order to be able to detect crossing of the 1s boundary session_done_1s = 1; } break; case MEASTOTAL: { nbr_meas = remain_carrier; // Measures is going to start, set "session_done" flag. // "session_done_1s" flag must be set at the begining of a meas. session // in order to be able to detect crossing of the 1s boundary session_done_1s = 1; } break; } } // End of else ("PNP period < 1s" case) } /* --------------------------------------------------------------------*/ /* CTRL and READ phase carrying out. "nbr_meas" measures are performed */ /* --------------------------------------------------------------------*/ // ******************** // READ task if needed // ******************** if(l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd) // Background measurements.... // A measure CTRL was performed 2 tdma earlier, read result now. { UWORD16 radio_freq_read; UWORD8 pm_read[NB_MEAS_MAX_GPRS]; UWORD8 i; #define next_to_read l1pa_l1ps_com.cr_freq_list.next_to_read // When a READ is performed we set dsp_r_page_used flag to // switch the read page. l1s_dsp_com.dsp_r_page_used = TRUE; l1_check_com_mismatch(CR_MEAS_ID); // Read power measurement result from DSP/MCU GPRS interface l1pddsp_meas_read(l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd, pm_read); for(i=0; i<l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd; i++) { radio_freq_read = l1pa_l1ps_com.cres_freq_list.alist->freq_list[next_to_read]; // Traces and debug. // ****************** #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) trace_fct(CST_READ_CR_MEAS, radio_freq_read); #endif l1_check_pm_error(pm_read[i], CR_MEAS_ID); // Get Input level corresponding to the used IL and pm result. IL_for_rxlev = l1pctl_pgc(((UWORD8)(pm_read[i])), l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i].il, l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i].lna, radio_freq_read); #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) RTTL1_FILL_MON_MEAS(pm_read[i], IL_for_rxlev, CR_MEAS_ID, radio_freq_read) #endif // Check that cr_msg hasn't been erased. if (cr_msg == NULL) { cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) cr_msg->SignalCode = L1P_CR_MEAS_DONE; } #if (GSM_IDLE_RAM != 1) // Fill reporting message. ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))-> ncell_meas[next_to_read].rxlev = l1s_encode_rxlev(IL_for_rxlev); #else // Fill reporting message. l1ps.ncell_meas_rxlev[next_to_read] = (WORD8) l1s_encode_rxlev(IL_for_rxlev); #endif // Increment "next_to_read" field for next measurement... if(++next_to_read >= cr_list_size) next_to_read = 0; }//end for // ********** // Reporting // ********** if(next_to_read == 0) { #if (GSM_IDLE_RAM == 1) // Check if memory for L1P_CR_MEAS_DONE msg is allocated if (cr_msg == NULL) { if (!READ_TRAFFIC_CONT_STATE) CSMI_TrafficControllerOn(); cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) cr_msg->SignalCode = L1P_CR_MEAS_DONE; } for(i=0; i<cr_list_size; i++) { ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->ncell_meas[i].rxlev = l1ps.ncell_meas_rxlev[i]; // Fill reporting message. } #endif // Fill BA identifier field. ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->list_id = l1pa_l1ps_com.cres_freq_list.alist->list_id; ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->nmeas = cr_list_size; // Compute and Fill reporting period value if(l1s.actual_time.fn > reporting_period) reporting_period = l1s.actual_time.fn - reporting_period; else reporting_period = l1s.actual_time.fn - reporting_period + MAX_FN; ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->reporting_period = (UWORD16)reporting_period; reporting_period = l1s.actual_time.fn; // send L1P_CR_MEAS_DONE message... os_send_sig(cr_msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) // Reset pointer for debugg. cr_msg = NULL; } // Trigger measurement scheduler when meas. session is completed. // Note: A meas. session includes all carriers of the list "PNP period >= 1s case" // or only a sub-set of the CR freq list "PNP period < 1s case" if(!(l1pa_l1ps_com.cr_freq_list.ms_ctrl) && !(l1pa_l1ps_com.cr_freq_list.ms_ctrl_d)) schedule_trigger = TRUE; }// end of READ #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_IT_DSP) #endif // ********** // CTRL task // ********** #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_AWAITED) { #endif if (nbr_meas > 0) { if(l1s.forbid_meas < 2) { UWORD8 max_nbmeas; UWORD8 nb_meas_to_perform; UWORD16 radio_freq_ctrl; UWORD8 i; UWORD8 pw_position = 0; // indicates first time slot in frame available for PM WORD16 tpu_win_rest; UWORD16 power_meas_split; #define next_to_ctrl l1pa_l1ps_com.cr_freq_list.next_to_ctrl // Compute how many BP_SPLIT remains for cr list meas // Rem: we take into account the SYNTH load for 1st RX in next frame. tpu_win_rest = FRAME_SPLIT - l1s.tpu_win; power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); max_nbmeas = 0; while(tpu_win_rest >= power_meas_split) { max_nbmeas ++; tpu_win_rest -= power_meas_split; } // Compute number of PM allowed in the Frame // Test if we are on a Paging frame if(l1pa_l1ps_com.cr_freq_list.pnp_ctrl > 0) pw_position = 1; // Test if PRACH controlled in the same frame if(l1s.tpu_win >= ((3 * BP_SPLIT) + l1_config.params.tx_ra_load_split + l1_config.params.rx_synth_load_split)) { pw_position = 4; } // Compute Number of measures to perform nb_meas_to_perform = cr_list_size - next_to_ctrl; if(nb_meas_to_perform > max_nbmeas) nb_meas_to_perform = max_nbmeas; if(nb_meas_to_perform > NB_MEAS_MAX_GPRS) nb_meas_to_perform = NB_MEAS_MAX_GPRS; if (nb_meas_to_perform > nbr_meas) nb_meas_to_perform = nbr_meas; for(i=0; i<nb_meas_to_perform; i++) { UWORD8 lna_off; WORD8 agc; UWORD8 input_level; #if (L1_FF_MULTIBAND == 1) UWORD16 operative_radio_freq; #endif radio_freq_ctrl = l1pa_l1ps_com.cres_freq_list.alist->freq_list[next_to_ctrl]; #if (L1_FF_MULTIBAND == 0) // Get AGC according to the last known IL. input_level = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].input_level; agc = Cust_get_agc_from_IL(radio_freq_ctrl,input_level >> 1, PWR_ID); lna_off = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].lna_off; // Memorize the IL and LNA used for AGC setting. //l1pa_l1ps_com.cr_freq_list.used_il_lna[i] = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset]; l1pa_l1ps_com.cr_freq_list.used_il_lna[i].il = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].input_level; l1pa_l1ps_com.cr_freq_list.used_il_lna[i].lna = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].lna_off; #else // L1_FF_MULTIBAND = 1 below operative_radio_freq = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq_ctrl); input_level = l1a_l1s_com.last_input_level[operative_radio_freq].input_level; lna_off = l1a_l1s_com.last_input_level[operative_radio_freq].lna_off; agc = Cust_get_agc_from_IL(radio_freq_ctrl,input_level >> 1, PWR_ID); // Memorize the IL and LNA used for AGC setting. //l1pa_l1ps_com.cr_freq_list.used_il_lna[i] = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset]; l1pa_l1ps_com.cr_freq_list.used_il_lna[i].il = l1a_l1s_com.last_input_level[operative_radio_freq].input_level; l1pa_l1ps_com.cr_freq_list.used_il_lna[i].lna = l1a_l1s_com.last_input_level[operative_radio_freq].lna_off; #endif // #if (L1_FF_MULTIBAND == 0) else #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) trace_fct(CST_CTRL_CR_MEAS, -1); #endif #if(RF_FAM == 61) // Locosto DCO #if (PWMEAS_IF_MODE_FORCE == 0) cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , input_level, radio_freq_ctrl, if_threshold); #else if_ctl = IF_120KHZ_DSP; dco_algo_ctl_pw_temp = DCO_IF_0KHZ; #endif dco_algo_ctl_pw |= ( (dco_algo_ctl_pw_temp & 0x03)<< (i*2)); #endif // tpu pgm: 1 measurement only. l1dtpu_meas(radio_freq_ctrl, agc, lna_off, l1s.tpu_win, l1s.tpu_offset,INACTIVE #if(RF_FAM == 61) ,L1_AFC_SCRIPT_MODE ,if_ctl #endif ); // increment carrier counter for next measurement... if(++next_to_ctrl >= cr_list_size) next_to_ctrl = 0; #if L2_L3_SIMUL #if (DEBUG_TRACE == BUFFER_TRACE_OFFSET_NEIGH) buffer_trace(4, l1s.actual_time.fn, radio_freq_ctrl, l1s.tpu_win, 0); #endif #endif // Increment tpu window identifier. l1s.tpu_win += (l1_config.params.rx_synth_load_split + PWR_LOAD); } // End for(...nb_meas_to_perform) #if(RF_FAM == 61) l1ddsp_load_dco_ctl_algo_pw(dco_algo_ctl_pw); #endif // Program DSP, in order to performed nb_meas_to_perform measures // Second argument specifies if a Rx burst will be received in this frame l1pddsp_meas_ctrl(nb_meas_to_perform, pw_position); // Update d_debug timer l1s_dsp_com.dsp_db_w_ptr->d_debug = (l1s.debug_time + 2) ; // Flag measurement control. // ************************** // Set flag "ms_ctrl" to nb_meas_to_perform. // It will be used as 2 tdma delayed to trigger Read phase. l1pa_l1ps_com.cr_freq_list.ms_ctrl = nb_meas_to_perform; // Flag DSP and TPU programmation. // ******************************** // Set "CTRL_MS" flag in the controle flag register. l1s.tpu_ctrl_reg |= CTRL_MS; l1s.dsp_ctrl_reg |= CTRL_MS; // Update nbr_meas nbr_meas -= nb_meas_to_perform; // Update remainig measurements to performed according meas done //remain_carrier -= nb_meas_to_perform; } // End of test on is PBCCHS, FB/SB or BCCHN task active } //end ctrl #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_AWAITED) if (l1ps_macs_com.usf_status != USF_IT_DSP) { #endif // If it's time, update time to next measures position and state // Two cases are considered: "pnp_period >= 1s" and "pnp_period < 1s" if(schedule_trigger) { BOOL condition = FALSE; schedule_trigger = FALSE; // Compute time to next session of measures for "PNP period >= 1s" case if(l1pa_l1ps_com.pccch.pnp_period >= 216) { while(!condition) { switch(state) { case NULL_MEAS: { #if (GSM_IDLE_RAM != 1) // Check if memory for L1P_CR_MEAS_DONE msg is allocated if (cr_msg == NULL) { cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) cr_msg->SignalCode = L1P_CR_MEAS_DONE; } #endif if((l1pa_l1ps_com.pccch.time_to_pnp > ((866 * session_done) + time_to_4s)) && (l1pa_l1ps_com.pccch.pnp_period >= 866)) { state = TOTAL; time_to_wake_up = (433 + time_to_4s * session_done); condition = TRUE; } else { state = PCHTOTAL; time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; condition = TRUE; } } break; case TOTAL: case PCHTOTAL: state = NULL_MEAS; break; } } } // End of "PNP period >= 1s" case else // Compute time to next session of measures for "PNP period < 1s" case { while(!condition) { switch(state) { case NULL_MEAS: { // Let's assume a small frequency list size // and a PNP period such that PM are performed // on first PPCH block and then stopped. PM activity // must be re-scheduled at the end of PPCH block. if((l1pa_l1ps_com.pccch.time_to_pnp < time_to_1s) && !(init_meas)) { time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; schedule_trigger = TRUE; condition = TRUE; } else { #if (GSM_IDLE_RAM == 0) // Check if memory for L1P_CR_MEAS_DONE msg is allocated if (cr_msg == NULL) { cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) cr_msg->SignalCode = L1P_CR_MEAS_DONE; } #endif state = MEAS; time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; remain_carrier = (WORD8)cr_list_size; condition = TRUE; } } break; case MEAS: { UWORD8 max_nbmeas; WORD16 tpu_win_rest; UWORD16 power_meas_split; // Compute how many BP_SPLIT remains for cr list meas // Rem: we take into account the SYNTH load for 1st RX in next frame. // WARNING: only one RX activity is considered in next paging block !!! tpu_win_rest = FRAME_SPLIT - (RX_LOAD + l1_config.params.rx_synth_load_split); power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); max_nbmeas = 0; while(tpu_win_rest >= power_meas_split) { max_nbmeas ++; tpu_win_rest -= power_meas_split; } if (max_nbmeas > NB_MEAS_MAX_GPRS) max_nbmeas = NB_MEAS_MAX_GPRS; // Update number of remaining carrier to measure. // Note: std.nbmeas provides max nbr of PM / TDMA remain_carrier -= 4 * max_nbmeas; if(remain_carrier <= 0) state = NULL_MEAS; else { if((l1pa_l1ps_com.pccch.time_to_pnp >= time_to_1s) || !(session_done_1s)) { state = MEASTOTAL; time_to_wake_up = 1; condition = TRUE; } else { time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; condition = TRUE; } } } break; case MEASTOTAL: { #if (GSM_IDLE_RAM != 1) // Check if memory for L1P_CR_MEAS_DONE msg is allocated if (cr_msg == NULL) { cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); DEBUGMSG(status,NU_ALLOC_ERR) cr_msg->SignalCode = L1P_CR_MEAS_DONE; } #endif state = MEAS; time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; remain_carrier = (WORD8)cr_list_size; condition = TRUE; } break; } } // End of while } // End of else ("PNP period < 1s" case) } // End of if(schedule_trigger) #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_IT_DSP) if (l1ps_macs_com.usf_status != USF_AWAITED) { #endif // Update time to next L1S task if((l1pa_l1ps_com.cr_freq_list.ms_ctrl) || (l1pa_l1ps_com.cr_freq_list.ms_ctrl_d)) { // Still some measurement results to get from DSP l1a_l1s_com.time_to_next_l1s_task = 0; } else { // No more measurements to read, next session of meas must // be at time_to_wake_up Select_min_time(time_to_wake_up, l1a_l1s_com.time_to_next_l1s_task); } // Clear controlled flag pnp_ctrl. //------------------------------- l1pa_l1ps_com.cr_freq_list.pnp_ctrl = 0; // C W R pipeline management. //--------------------------- l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = l1pa_l1ps_com.cr_freq_list.ms_ctrl_d; l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = l1pa_l1ps_com.cr_freq_list.ms_ctrl; l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; // C W R pipeline management. //--------------------------- { UWORD8 i; for(i=0; i<NB_MEAS_MAX_GPRS; i++) { l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i] = l1pa_l1ps_com.cr_freq_list.used_il_lna_d[i]; l1pa_l1ps_com.cr_freq_list.used_il_lna_d [i] = l1pa_l1ps_com.cr_freq_list.used_il_lna [i]; } } #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_AWAITED) #endif } // End of if: P_CRMS_MEAS enable and associated semaphore = 0. } //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_END #endif #if (MOVE_IN_INTERNAL_RAM == 0) // Must be followed by the pragma used to duplicate the funtion in internal RAM //#pragma DUPLICATE_FOR_INTERNAL_RAM_START /*-------------------------------------------------------*/ /* l1ps_transfer_meas_manager() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* Whilst in Packet Transfer mode, MS shall continuously */ /* monitor all the BCCH carriers as indicated by a */ /* frequency list (BA(GPRS), Network Control frequency */ /* list and Extended list) and the BCCH carrier of the */ /* serving cell. Received signal level is used to monitor*/ /* the specified neighbour BCCH carriers. */ /* */ /* Receive signal level measurement samples shall be */ /* performed according to the following conditions: */ /* */ /* 1) At least 1 measure shall be done every TDMA, */ /* 2) Up to 2 TDMA frames per PDCH multiframe may be */ /* omitted if required for BSIC decoding, */ /* 3) Running average value (RLA_P) is based on a 5s */ /* period and includes at least 5 measure samples, */ /* 4) The same number of measures shall be taken for all */ /* BCCH carriers except: */ /* i) For the Serving Cell, where at least 6 measures */ /* shall be taken per MF52, */ /* ii) if PC_MEAS_CHAN indicates that power control */ /* measures shall be made on BCCH. */ /* 5) Measures used to compute RLA_P shall as far as */ /* possible be uniformly distributed, */ /*-------------------------------------------------------*/ void l1ps_transfer_meas_manager() { UWORD8 IL_for_rxlev; static xSignalHeaderRec *tcr_msg = NULL; static BOOL tcr_meas_removed = FALSE; #define tcr_next_to_read l1pa_l1ps_com.tcr_freq_list.tcr_next_to_read #define tcr_next_to_ctrl l1pa_l1ps_com.tcr_freq_list.tcr_next_to_ctrl #define last_stored_tcr_to_read l1pa_l1ps_com.tcr_freq_list.last_stored_tcr_to_read #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_IT_DSP) { #endif // Test if task is disabled and cr_msg != NULL, then de-allocate memory if(tcr_msg != NULL) { if(!(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS)) { // Neighbour measurement process has been stopped by L3 // Deallocate memory for the received message if msg not forwarded to L3. // ---------------------------------------------------------------------- os_free_sig(tcr_msg); DEBUGMSG(status,NU_DEALLOC_ERR) tcr_msg = NULL; } } #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_IT_DSP) #endif if(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) { #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_IT_DSP) { #endif // Increment l1pa_l1ps_com.tcr_freq_list.cres_meas_report if(++l1pa_l1ps_com.tcr_freq_list.cres_meas_report > 103) l1pa_l1ps_com.tcr_freq_list.cres_meas_report = 0; // Check if it's first time, Neighbour Measurement process is launched. // Then initialize fn_report counter and reset semaphore. if(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS) { // Initialize counter used to report measurements l1pa_l1ps_com.tcr_freq_list.cres_meas_report = 0; // Reset Neighbour Measurements semaphore l1pa_l1ps_com.meas_param &= P_TCRMS_MEAS_MASK; } //==================================================== // RESET MEASUREMENT MACHINES WHEN SYNCHRO EXECUTED. //==================================================== if(l1s.tpu_ctrl_reg & CTRL_SYNC) // SYNCHRO task has been executed. // -> Reset measures made on serving cell, // -> Rewind pointer used in Neighbour Cell measurement, // -> return. { // Reset Neighbour Cell measurement machine. // Rewind "next_to_ctrl" counter to come back to the next carrier to // measure. tcr_next_to_ctrl = tcr_next_to_read; // Reset flags. l1pa_l1ps_com.tcr_freq_list.ms_ctrl = 0; l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = 0; l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd = 0; // Reset measures made on beacon frequency. l1pa_l1ps_com.tcr_freq_list.beacon_meas = 0; } // ******************* // Message Allocation // ******************* // The reporting message must be allocated before READ phase. if(l1pa_l1ps_com.tcr_freq_list.cres_meas_report == 2) { // Memory allocation if (tcr_msg == NULL) { // alloc L1P_TCR_MEAS_DONE message... tcr_msg = os_alloc_sig(sizeof(T_MPHP_TCR_MEAS_IND)); DEBUGMSG(status,NU_ALLOC_ERR) tcr_msg->SignalCode = L1P_TCR_MEAS_DONE; } l1pa_l1ps_com.tcr_freq_list.first_pass_flag = TRUE; } //------------------------------------------------------ // READ and CTRL phase of the Neighbour Measurement task //------------------------------------------------------ //----------- // READ phase //----------- // Test if Measurment has been removed (ms_ctrl_d forced to 0) during // previous frame, then switch DSP read page. if (tcr_meas_removed) { l1s_dsp_com.dsp_r_page_used = TRUE; tcr_meas_removed = FALSE; } // Background measurements.... // A measurement controle was performed 2 tdma earlier, read result now!! if(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd != 0) { UWORD16 radio_freq_read; UWORD8 pm_read; #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) trace_fct(CST_READ_TCR_MEAS, (UWORD32)(-1)); #endif l1_check_com_mismatch(TCR_MEAS_ID); // When a read is performed, we set dsp_r_page_used flag to // switch the read page l1s_dsp_com.dsp_r_page_used = TRUE; // Read power measurement result from DSP/MCU GPRS interface l1pddsp_meas_read(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd, &pm_read); l1_check_pm_error(pm_read, TCR_MEAS_ID); radio_freq_read = l1pa_l1ps_com.cres_freq_list.alist->freq_list[tcr_next_to_read]; // Get Input level corresponding to the used IL and pm result. IL_for_rxlev = l1pctl_pgc(((UWORD8) (pm_read)), l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.il, l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.lna, radio_freq_read); #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) RTTL1_FILL_MON_MEAS(pm_read, IL_for_rxlev, TCR_MEAS_ID, radio_freq_read) #endif if(l1pa_l1ps_com.tcr_freq_list.first_pass_flag) { // Fill reporting message: Store RXLEV ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_level[tcr_next_to_read] = l1s_encode_rxlev(IL_for_rxlev); ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_nbmeas[tcr_next_to_read] = 1; } else { // Fill reporting message: Accumulate RXLEV ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_level[tcr_next_to_read] += l1s_encode_rxlev(IL_for_rxlev); ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_nbmeas[tcr_next_to_read] += 1; } // Increment "next_to_read" field for next measurement... if(++tcr_next_to_read >= l1pa_l1ps_com.cres_freq_list.alist->nb_carrier) { tcr_next_to_read = 0; } // First pass has been completed on all BA list, reset "first_pass_flag" if(tcr_next_to_read == last_stored_tcr_to_read) l1pa_l1ps_com.tcr_freq_list.first_pass_flag = FALSE; } // End of READ phase // ************************ // Reporting & List Update // ************************ if(l1pa_l1ps_com.tcr_freq_list.cres_meas_report == 1) { if(tcr_msg != NULL) { // Fill TCR list identifier field. ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->list_id = l1pa_l1ps_com.cres_freq_list.alist->list_id; // send L1P_TCR_MEAS_DONE message... os_send_sig(tcr_msg, L1C1_QUEUE); DEBUGMSG(status,NU_SEND_QUEUE_ERR) // Reset pointer for debugg. tcr_msg = NULL; } // Update Frequency list pointer and reset new list flag if(l1pa_l1ps_com.tcr_freq_list.new_list_present) { //Update Frequency list pointer l1pa_l1ps_com.cres_freq_list.alist = l1pa_l1ps_com.cres_freq_list.flist; // Test if a Meas has been controlled in previous frame // Then set tcr_meas_removed flag in order to switch DSP read page in next frame if(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d != 0) { tcr_meas_removed = TRUE; } // Reset pointer tcr_next_to_ctrl = 0; tcr_next_to_read = 0; l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = 0; // Reset New list flag l1pa_l1ps_com.tcr_freq_list.new_list_present = FALSE; } // While reporting, save Last "tcr_next_to_read" value to know when reset "first_pass_flag" last_stored_tcr_to_read = tcr_next_to_read; } //----------- // CTRL phase //----------- // CTRL phase is divided in two parts according measures allocated by MACS. // CTRL phase must then be exported in CTRL PDTCH function except for the Idle // frame where no PDTCH are programmed. // A measure can be performed during the idle frame, only if FB/SB/PTCCH // and Interference Measurement task is not active. if(!(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS)) { if((l1s.actual_time.t2 == 24) || (l1s.actual_time.t2 == 11)) { if(l1s.forbid_meas == 0) { #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) trace_fct(CST_CTRL_TCR_MEAS_2,(UWORD32)(-1)); #endif l1ps_tcr_ctrl(0); } } } #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_IT_DSP) #endif #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_AWAITED) { #endif // Pipe Manager l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd = l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d; l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = l1pa_l1ps_com.tcr_freq_list.ms_ctrl; l1pa_l1ps_com.tcr_freq_list.ms_ctrl = 0; #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_AWAITED) #endif } // End of if(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) /*****************************/ /* PC_MEAS_CHAN measurements */ /*****************************/ // If PC_MEAS_CHAN = 1, then BCCH serving cell carrier must be // measured at least 6 times per MF52. // CTRL of Serving Cell Carrier is performed two TDMA earlier. if(l1pa_l1ps_com.transfer.aset->pc_meas_chan == FALSE) { #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_IT_DSP) { #endif if(l1s.tpu_ctrl_reg & CTRL_SYNC) // SYNCHRO task has been executed. { l1ps.pc_meas_chan_ctrl = FALSE; } //----------- // READ phase //----------- if ((l1ps.pc_meas_chan_ctrl == TRUE) && ((l1s.actual_time.t2 == 3) || (l1s.actual_time.t2 == 11) || (l1s.actual_time.t2 == 20))) { UWORD8 pm_read; l1_check_com_mismatch(PC_MEAS_CHAN_ID); // When a read is performed, we set dsp_r_page_used flag to // switch the read page l1s_dsp_com.dsp_r_page_used = TRUE; // Read power measurement result from DSP/MCU GPRS interface l1pddsp_meas_read(1, &pm_read); #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) trace_fct(CST_READ_PC_MEAS_CHAN,(UWORD32)(-1)); #endif l1_check_pm_error(pm_read, PC_MEAS_CHAN_ID); l1ps.pc_meas_chan_ctrl = FALSE; // Get Input level corresponding to the used IL and pm result. IL_for_rxlev = l1pctl_pgc(((UWORD8 )(pm_read)), l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.il, l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.lna, l1a_l1s_com.Scell_info.radio_freq); #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) RTTL1_FILL_MON_MEAS(pm_read, IL_for_rxlev, PC_MEAS_CHAN_ID, l1a_l1s_com.Scell_info.radio_freq) #endif if (l1a_l1s_com.mode == PACKET_TRANSFER_MODE) // Store RXLEV, before to pass it to maca_power_control() function.. l1pa_l1ps_com.tcr_freq_list.beacon_meas = l1s_encode_rxlev(IL_for_rxlev); } //----------- // CTRL phase //----------- // In two phase access, PC_MEAS_CHAN measurements can be done... if((l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED) && (l1pa_l1ps_com.transfer.aset->allocated_tbf == TWO_PHASE_ACCESS)) if (l1s.task_status[NP].current_status != ACTIVE) // avoid conflict with Normal Paging if (l1s.task_status[EP].current_status != ACTIVE) // avoid conflict with Extended Paging { // Measurement on the beacon if((l1s.actual_time.t2 == 1) || (l1s.actual_time.t2 == 9) || (l1s.actual_time.t2 == 18)) { // Measurement programming // ts 4 is specified for DSP interface ONLY because the power activity // must be programmed after RX and/or TX activity (no multislot) #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) trace_fct(CST_CTRL_PC_MEAS_CHAN, (UWORD32)(-1)); #endif l1ps_bcch_meas_ctrl(4); } } #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_IT_DSP) #endif } // End of Meas made on BCCH serving cell #if FF_L1_IT_DSP_USF if (l1ps_macs_com.usf_status != USF_AWAITED) { #endif if((l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) || (l1ps.pc_meas_chan_ctrl == TRUE)) { // C W R pipeline management. //--------------------------- l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd = l1pa_l1ps_com.tcr_freq_list.used_il_lna_d; l1pa_l1ps_com.tcr_freq_list.used_il_lna_d = l1pa_l1ps_com.tcr_freq_list.used_il_lna; } #if FF_L1_IT_DSP_USF } // if (l1ps_macs_com.usf_status != USF_AWAITED) #endif } //#pragma DUPLICATE_FOR_INTERNAL_RAM_END #endif // MOVE_IN_INTERNAL_RAM //#pragma DUPLICATE_FOR_INTERNAL_RAM_START #endif //#pragma DUPLICATE_FOR_INTERNAL_RAM_END