FreeCalypso > hg > fc-magnetite
view src/cs/layer1/cust0/l1_rf12.h @ 664:afcb1115b9b3
AT@SPENH command implemented in aci2
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 24 May 2020 07:38:44 +0000 |
parents | 92dbfa906f66 |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * * Filename l1_rf12.h * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #ifndef __L1_RF_H__ #define __L1_RF_H__ #include "fc-target.h" #define RF_RITA_10 0x2030 // Check with TIDK //#define RF_HW_BAND_EGSM //#define RF_HW_BAND_DCS #define RF_HW_BAND_PCS 0x4 #define RF_HW_BAND_DUAL_US 0x80 #define RF_HW_BAND_DUAL_EXT 0x20 //#define RF_HW_BAND_SUPPORT (0x0020 | RF_HW_BAND_PCS) // radio_band_support E-GSM/DCS + PCS // radio_band_support E-GSM/DCS + GSM850/PCS #define RF_HW_BAND_SUPPORT (RF_HW_BAND_DUAL_EXT | RF_HW_BAND_DUAL_US) // L1 RF SW Multiband configuration //-------------------------- // RF_SW_MULTIBAND_SUPPORT values #define SINGLE_BAND_900 1 #define SINGLE_BAND_1800 2 #define SINGLE_BAND_850 3 #define SINGLE_BAND_1900 4 #define DUAL_BAND_900_1800 5 #define DUAL_BAND_850_1900 6 #define TRI_BAND_900_1800_1900 7 #define TRI_BAND_850_1900_1800 8 #define QUAD_BAND 9 //IMPORTANT !: To change RF_SW_MULTIBAND_SUPPORT value, it must be synchronized with other multiband settings in the software // To match the protocol stack settings( e.g EF_RFCAP ) in order to make sure that the value of STD sent in MPHC_INIT_L1_REQ is supported by L1 // And also match the RF HW support: RF_HW_BAND_SUPPORT #define RF_SW_MULTIBAND_SUPPORT QUAD_BAND // Generate band dependancy options #define RF_SW_BAND900 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_900)||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_900_1800) \ ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_900_1800_1900) ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND) ) #define RF_SW_BAND1800 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_1800) ||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_900_1800) \ ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_900_1800_1900) ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_850_1900_1800) \ ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND)) #define RF_SW_BAND850 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_850)||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_850_1900) \ ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_850_1900_1800) ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND)) #define RF_SW_BAND1900 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_1900)||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_850_1900) \ ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_900_1800_1900)||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_850_1900_1800) \ ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND)) /************************************/ /* SYNTHESIZER setup time... */ /************************************/ #define RX_SYNTH_SETUP_TIME (PROVISION_TIME - TRF_R1)//RX Synthesizer setup time in qbit. #define TX_SYNTH_SETUP_TIME (- TRF_T1) //TX Synthesizer setup time in qbit. /************************************/ /* time for TPU scenario ending... */ /************************************/ // // The following values are used to take into account any TPU activity AFTER // BDLON (or BDLENA) down (for RX) and BULON down (for TX) // - If there are no TPU commands after BDLON (or BDLENA) down and BULON down, // these defines must be ZERO // - If there IS some TPU command after BDLON (or BDLENA) and BULON down, // these defines must be equal to the time difference (in qbits) between // the BDLON (or BDLENA) or BULON time and the last TPU command on // the TPU scenario #define RX_TPU_SCENARIO_ENDING 0 // execution time of AFTER BDLENA down #define TX_TPU_SCENARIO_ENDING 0 // execution time of AFTER BULON down /******************************************************/ /* TXPWR configuration... */ /* Fixed TXPWR value when GSM management is disabled. */ /******************************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) // #define FIXED_TXPWR ((0xFC<<6) | AUXAPC | FALSE) // TXPWR=10, value=252 //#define FIXED_TXPWR ((0x65<<6) | AUXAPC | FALSE) #define FIXED_TXPWR ((0x74<<6) | AUXAPC | FALSE) // TXPWR=15 #endif /************************************/ /* ANALOG delay (in qbits) */ /************************************/ #define DL_DELAY_RF 1 // time spent in the Downlink global RF chain by the modulated signal #define UL_DELAY_1RF 7 // time spent in the first uplink RF block #define UL_DELAY_2RF 0 // time spent in the second uplink RF block #if (ANLG_FAM == 1) #define UL_ABB_DELAY 3 // modulator input to output delay #endif #if ((ANLG_FAM == 2) || (ANLG_FAM == 3)) #define UL_ABB_DELAY 3 // modulator input to output delay #endif /************************************/ /* TX Propagation delay... */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) #define PRG_TX (DL_DELAY_RF + UL_DELAY_2RF + (GUARD_BITS*4) + UL_DELAY_1RF + UL_ABB_DELAY) // = 40 #endif /************************************/ /* Initial value for APC DELAY */ /************************************/ #if (ANLG_FAM == 1) //#define APCDEL_DOWN (32 - GUARD_BITS*4) // minimum value: 2 #define APCDEL_DOWN 2 // minimum value: 2 #define APCDEL_UP (6+5) // minimum value: 6 #endif #if (ANLG_FAM == 2) || (ANLG_FAM == 3) //#define APCDEL_DOWN (32 - GUARD_BITS*4) // minimum value: 2 #define APCDEL_DOWN (2+0) // minimum value: 2 #define APCDEL_UP (6+3+1) // minimum value: 6 // REMOVE // Jerome Modif for ARF7: (6+3) instead of (6+8) #endif #define GUARD_BITS 7 /************************************/ /* Initial value for AFC... */ /************************************/ #define EEPROM_AFC ((150)*8) // F13.3 required!!!!! (default : -952*8, initial deviation of -2400 forced) #define SETUP_AFC_AND_RF 6 // AFC converges in 2 frames and RF BAND GAP stable after 4 frames // Rita (RF=12) LDO wakeup requires 6 frames /************************************/ /* Baseband registers */ /************************************/ #if (ANLG_FAM == 1) // Omega registers values will be programmed at 1st DSP communication interrupt #define C_DEBUG1 0x0001 // Enable f_tx delay of 400000 cyc DEBUG #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE) // Value at reset #define C_VBUCTRL ((0x106 << 6) | VBUCTRL | TRUE) // Uplink gain amp 0dB, Sidetone gain to mute #define C_VBDCTRL ((0x026 << 6) | VBDCTRL | TRUE) // Downlink gain amp 0dB, Volume control 0 dB // RITA does not need an APCOFFSET because the PACTRL is internal: // REMOVE //#define C_APCOFF 0x1016 | (0x3c << 6) | TRUE // value at reset-Changed from 0x0016- CR 27.12 #define C_APCOFF ((0x040 << 6) | APCOFF | TRUE) #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE) // value at reset #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE) // value at reset #define C_DAI_ON_OFF (0x000) // value at reset #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE) // value at reset #define C_VBCTRL ((0x00B << 6) | VBCTRL | TRUE) // VULSWITCH=1, VDLAUX=1, VDLEAR=1 // BULRUDEL will be initialized on rach only .... #define C_APCDEL1 (((APCDEL_DOWN-2) << 11) | ((APCDEL_UP-6) << 6) | APCDEL1) #define C_BBCTRL ((0x181 << 6) | BBCTRL | TRUE) // OUTLEV1=OUTLEV1=SELVMID1=SELVMID0=1 for B-sample 'modified' #endif #if (ANLG_FAM == 2) // IOTA registers values will be programmed at 1st DSP communication interrupt #define C_DEBUG1 0x0001 // Enable f_tx delay of 400000 cyc DEBUG #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE) // Value at reset #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE) // Uplink gain amp 3 dB, Sidetone gain to -17dB #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE) // Downlink gain amp 0dB, Volume control -12 dB // RITA does not need an APCOFFSET because the PACTRL is internal: // REMOVE //#define C_APCOFF 0x1016 | (0x3c << 6) | TRUE // x2 slope 128 #if (RF_PA == 0 || RF_PA == 3) || defined(CONFIG_TARGET_PIRELLI) #define C_APCOFF ((0x040 << 6) | APCOFF | TRUE) // x2 slope 128 #elif defined(CONFIG_TARGET_C1XX) #define C_APCOFF ((0x060 << 6) | APCOFF | TRUE) // x2 slope 128 #elif defined(CONFIG_TARGET_J100) #define C_APCOFF ((0x074 << 6) | APCOFF | TRUE) // x2 slope 128 #elif (RF_PA == 1 || RF_PA == 2 || RF_PA == 4) #define C_APCOFF ((0x070 << 6) | APCOFF | TRUE) // x2 slope 128 #endif #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE) // value at reset #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE) // value at reset #define C_DAI_ON_OFF ((0x000 << 6) | APCOFF | TRUE) // value at reset #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE) // value at reset // audio patch for H2-sample: #if (RAZ_VULSWITCH_REGAUDIO == 1) #define C_VBCTRL1 ((0x003 << 6) | VBCTRL1 | TRUE) // VBDFAUXG = 1, VULSWITCH=0, VDLAUX=1, VDLEAR=1 // jkb h2sample change #else #define C_VBCTRL1 ((0x00B << 6) | VBCTRL1 | TRUE) // VULSWITCH=1, VDLAUX=1, VDLEAR=1 #endif #define C_VBCTRL2 ((0x000 << 6) | VBCTRL2 | TRUE) // MICBIASEL=0, VDLHSO=0, MICAUX=0 // BULRUDEL will be initialized on rach only .... #define C_APCDEL1 (((APCDEL_DOWN-2) << 11) | ((APCDEL_UP-6) << 6) | APCDEL1) #define C_APCDEL2 ((0x000 << 6) | APCDEL2 | TRUE) // #define C_BBCTRL ((0x2C1 << 6) | BBCTRL | TRUE) // Internal autocalibration, Output common mode=1.35V // Monoslot, Vpp=8/15*Vref #define C_BULGCAL ((0x000 << 6) | BULGCAL | TRUE) // IAG=0 dB, QAG=0 dB #endif #if (ANLG_FAM == 3) // SYREN registers values will be programmed at 1st DSP communication interrupt #define C_DEBUG1 0x0001 // Enable f_tx delay of 400000 cyc DEBUG #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE) // Value at reset #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE) // Uplink gain amp 3dB, Sidetone gain to -17 dB #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE) // Downlink gain amp 0dB, Volume control -12 dB #if (RF_PA == 0 || RF_PA == 3) #define C_APCOFF ((0x040 << 6) | APCOFF | TRUE) // x2 slope 128 #elif (RF_PA == 1 || RF_PA == 2 || RF_PA == 4) #define C_APCOFF ((0x070 << 6) | APCOFF | TRUE) // x2 slope 128 #endif #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE) // value at reset #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE) // value at reset #define C_DAI_ON_OFF ((0x000 << 6) | APCOFF | TRUE) // value at reset #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE) // value at reset #define C_VBCTRL1 ((0x108 << 6) | VBCTRL1 | TRUE) // VULSWITCH=1 AUXI 28,2 dB #define C_VBCTRL2 ((0x001 << 6) | VBCTRL2 | TRUE) // HSMIC on, SPKG gain @ 2,5dB // BULRUDEL will be initialized on rach only .... #define C_APCDEL1 (((APCDEL_DOWN-2) << 11) | ((APCDEL_UP-6)<<6) | APCDEL1) #define C_APCDEL2 ((0x000 << 6) | APCDEL2 | TRUE) // #define C_BBCTRL ((0x2C1 << 6) | BBCTRL | TRUE) // Internal autocalibration, Output common mode=1.35V // Monoslot, Vpp=8/15*Vref #define C_BULGCAL ((0x000 << 6) | BULGCAL | TRUE) // IAG=0 dB, QAG=0 dB #define C_VBPOP ((0x004 << 6) | VBPOP | TRUE) // HSOAUTO enabled only #define C_VAUDINITD 2 // vaud_init_delay init 2 frames #define C_VAUDCTRL ((0x000 << 6) | VAUDCTRL | TRUE) // Init to zero #define C_VAUOCTRL ((0x155 << 6) | VAUOCTRL | TRUE) // Speech on all outputs #define C_VAUSCTRL ((0x000 << 6) | VAUSCTRL | TRUE) // Init to zero #define C_VAUDPLL ((0x000 << 6) | VAUDPLL | TRUE) // Init to zero // SYREN registers values programmed by L1 directly through SPI (ABB_on) #define C_BBCFG (0x44) // Syren Like BDLF Filter - DC OFFSET removal OFF #endif /************************************/ /* Automatic frequency compensation */ /************************************/ /********************* C_Psi_sta definition *****************************/ /* C_Psi_sta = (2*pi*Fr) / (N * Fb) */ /* (1) = (2*pi*V*ppm*0.9) / (N*V*Fb) */ /* regarding Vega V/N = 2.4/4096 */ /* regarding VCO ppm/V = 16 / 1 (average slope of the VCO) */ /* (1) = (2*pi*2.4*16*0.9) / (4096*1*270.83) */ /* = 0.000195748 */ /* C_Psi_sta_inv = 1/C_Psi_sta = 5108 */ /************************************************************************/ #ifdef CONFIG_TARGET_PIRELLI /* matching Pirelli's fw as read out via rftr 9 */ #define C_Psi_sta_inv 6974L // (1/C_Psi_sta) #define C_Psi_st 8L // C_Psi_sta * 0.8 F0.16 #define C_Psi_st_32 492713L // F0.32 #define C_Psi_st_inv 8717L // (1/C_Psi_st) #elif defined(CONFIG_TARGET_GTAMODEM) || defined(CONFIG_TARGET_FCFAM) /* * We calibrate our VCXO per unit following OM's precedent, * thus the compiled-in AFC params don't really matter on FC/OM targets, * but let's put in some numbers that are representative of our VCXO, * as opposed to the totally wrong numbers corresponding to the * significantly different VCXO on the original Leonardo. */ #define C_Psi_sta_inv 3462L // (1/C_Psi_sta) #define C_Psi_st 15L // C_Psi_sta * 0.8 F0.16 #define C_Psi_st_32 992326L // F0.32 #define C_Psi_st_inv 4328L // (1/C_Psi_st) #else /* original TCS211 values */ #define C_Psi_sta_inv 5419L // (1/C_Psi_sta) #define C_Psi_st 10L // C_Psi_sta * 0.8 F0.16 #define C_Psi_st_32 634112L // F0.32 #define C_Psi_st_inv 6773L // (1/C_Psi_st) #endif #if (VCXO_ALGO == 1) // Linearity parameters #ifdef CONFIG_TARGET_COMPAL /* matching Compal's fw as read out via rftr 9 */ #define C_AFC_DAC_CENTER ((1000)*8) #define C_AFC_DAC_MIN ((-500)*8) #define C_AFC_DAC_MAX ((2500)*8) #else /* original TCS211 values */ #define C_AFC_DAC_CENTER ((111)*8) #define C_AFC_DAC_MIN ((-1196)*8) #define C_AFC_DAC_MAX ((1419)*8) #endif #define C_AFC_SNR_THR 2560 // 1/0.4 * 2**10 #endif typedef struct { WORD16 eeprom_afc; UWORD32 psi_sta_inv; UWORD32 psi_st; UWORD32 psi_st_32; UWORD32 psi_st_inv; #if (VCXO_ALGO) // VCXO adjustment parameters // Parameters used when assuming linearity WORD16 dac_center; WORD16 dac_min; WORD16 dac_max; WORD16 snr_thr; #endif } T_AFC_PARAMS; /************************************/ /* Swap IQ definitions... */ /************************************/ /* 0=No Swap, 1=Swap RX only, 2=Swap TX only, 3=Swap RX and TX */ #if (RF_PG == R_PG_10) // PG 1.0 -> 1 (Swap RX only) // GSM 850 => TX is ALWAYS swapped compared to GSM 900 #define SWAP_IQ_GSM 1 #define SWAP_IQ_DCS 1 #define SWAP_IQ_PCS 1 #define SWAP_IQ_GSM850 3 // Swap TX compared to GSM 900 #else // All PG versions ABOVE 1.0 -> 0 (No Swap) // GSM 850 => TX is ALWAYS swapped compared to GSM 900 #define SWAP_IQ_GSM 0 #define SWAP_IQ_DCS 0 #define SWAP_IQ_PCS 0 #define SWAP_IQ_GSM850 2 // Swap TX compared to GSM 900 #endif /************************************/ /************************************/ // typedef /************************************/ /************************************/ /*************************************************************/ /* Define structure for apc of TX Power ******/ /*************************************************************/ typedef struct { // pcm-file "rf/tx/level.gsm|dcs" UWORD16 apc; // 0..31 UWORD8 ramp_index; // 0..RF_TX_RAMP_SIZE UWORD8 chan_cal_index; // 0..RF_TX_CHAN_CAL_TABLE_SIZE } T_TX_LEVEL; /************************************/ /* Automatic Gain Control */ /************************************/ /* Define structure for sub-band definition of TX Power ******/ typedef struct { UWORD16 upper_bound; //highest physical arfcn of the sub-band WORD16 agc_calib; // AGC for each TXPWR }T_RF_AGC_BAND; /************************************/ /* Ramp definitions */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) typedef struct { UWORD8 ramp_up [16]; // Ramp-up profile UWORD8 ramp_down [16]; // Ramp-down profile } T_TX_RAMP; #endif // RF structure definition //======================== // Number of bands supported #define GSM_BANDS 2 #define MULTI_BAND1 0 #define MULTI_BAND2 1 // RF table sizes #define RF_RX_CAL_CHAN_SIZE 10 // number of AGC sub-bands #define RF_RX_CAL_TEMP_SIZE 11 // number of temperature ranges #define RF_TX_CHAN_CAL_TABLE_SIZE 4 // channel calibration table size #define RF_TX_NUM_SUB_BANDS 8 // number of sub-bands in channel calibration table #define RF_TX_LEVELS_TABLE_SIZE 32 // level table size #define RF_TX_RAMP_SIZE 16 // number of ramp definitions #define RF_TX_CAL_TEMP_SIZE 5 // number of temperature ranges #define AGC_TABLE_SIZE 20 #define MIN_AGC_INDEX 6 #define TEMP_TABLE_SIZE 131 // number of elements in ADC->temp conversion table // RX parameters and tables //------------------------- // AGC parameters and tables typedef struct { UWORD16 low_agc_noise_thr; UWORD16 high_agc_sat_thr; UWORD16 low_agc; UWORD16 high_agc; UWORD8 il2agc_pwr[121]; UWORD8 il2agc_max[121]; UWORD8 il2agc_av[121]; } T_AGC; // Calibration parameters typedef struct { UWORD16 g_magic; UWORD16 lna_att; UWORD16 lna_switch_thr_low; UWORD16 lna_switch_thr_high; } T_RX_CAL_PARAMS; // RX temperature compensation typedef struct { WORD16 temperature; WORD16 agc_calib; } T_RX_TEMP_COMP; // RF RX structure typedef struct { T_AGC agc; } T_RF_RX; //common // RF RX structure typedef struct { T_RX_CAL_PARAMS rx_cal_params; T_RF_AGC_BAND agc_bands[RF_RX_CAL_CHAN_SIZE]; T_RX_TEMP_COMP temp[RF_RX_CAL_TEMP_SIZE]; } T_RF_RX_BAND; // TX parameters and tables //------------------------- // TX temperature compensation typedef struct { WORD16 temperature; #if (ORDER2_TX_TEMP_CAL==1) WORD16 a; WORD16 b; WORD16 c; #else WORD16 apc_calib; #endif } T_TX_TEMP_CAL; // Ramp up and ramp down delay typedef struct { UWORD16 up; UWORD16 down; } T_RAMP_DELAY; typedef struct { UWORD16 arfcn_limit; WORD16 chan_cal; } T_TX_CHAN_CAL; // RF TX structure typedef struct { T_RAMP_DELAY ramp_delay; UWORD8 guard_bits; // number of guard bits needed for ramp up UWORD8 prg_tx; } T_RF_TX; //common // RF TX structure typedef struct { T_TX_LEVEL levels[RF_TX_LEVELS_TABLE_SIZE]; T_TX_CHAN_CAL chan_cal_table[RF_TX_CHAN_CAL_TABLE_SIZE][RF_TX_NUM_SUB_BANDS]; T_TX_RAMP ramp_tables[RF_TX_RAMP_SIZE]; T_TX_TEMP_CAL temp[RF_TX_CAL_TEMP_SIZE]; } T_RF_TX_BAND; // band structure typedef struct { T_RF_RX_BAND rx; T_RF_TX_BAND tx; UWORD8 swap_iq; } T_RF_BAND; // RF structure typedef struct { // common for all bands UWORD16 rf_revision; UWORD16 radio_band_support; T_RF_RX rx; T_RF_TX tx; T_AFC_PARAMS afc; } T_RF; /************************************/ /* MADC definitions */ /************************************/ // Omega: 5 external channels if touch screen not used, 3 otherwise enum ADC_INDEX { ADC_VBAT, ADC_VCHARG, ADC_ICHARG, ADC_VBACKUP, ADC_BATTYP, ADC_BATTEMP, ADC_ADC3, // name of this ?? ADC_RFTEMP, ADC_ADC4, ADC_INDEX_END // ADC_INDEX_END must be the end of the enums }; typedef struct { WORD16 converted[ADC_INDEX_END]; // converted UWORD16 raw[ADC_INDEX_END]; // raw from ADC } T_ADC; /************************************/ /* MADC calibration */ /************************************/ typedef struct { UWORD16 a[ADC_INDEX_END]; WORD16 b[ADC_INDEX_END]; } T_ADCCAL; // Conversion table: ADC value -> temperature typedef struct { UWORD16 adc; // ADC reading is 10 bits WORD16 temp; // temp is in approx. range -30..+80 } T_TEMP; typedef struct { char *name; void *addr; int size; } T_CONFIG_FILE; typedef struct { char *name; // name of ffs file suffix T_RF_BAND *addr; // address to default flash structure UWORD16 max_carrier; // max carrier UWORD16 max_txpwr; // max tx power } T_BAND_CONFIG; typedef struct { UWORD8 band[GSM_BANDS]; // index to band address UWORD8 txpwr_tp; // tx power turning point UWORD16 first_arfcn; // first index } T_STD_CONFIG; enum GSMBAND_DEF { BAND_NONE, BAND_EGSM900, BAND_DCS1800, BAND_PCS1900, BAND_GSM850, // put new bands here BAND_GSM900 //last entry }; /************************************/ /* ABB (Omega) Initialization */ /************************************/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2)) #define ABB_TABLE_SIZE 16 #elif (ANLG_FAM == 3) #define ABB_TABLE_SIZE 22 #endif // Note that this translation is probably not needed at all. But until L1 is // (maybe) changed to simply initialize the ABB from a table of words, we // use this to make things more easy-readable. #if (ANLG_FAM == 1) enum ABB_REGISTERS { ABB_AFCCTLADD = 0, ABB_VBUCTRL, ABB_VBDCTRL, ABB_BBCTRL, ABB_APCOFF, ABB_BULIOFF, ABB_BULQOFF, ABB_DAI_ON_OFF, ABB_AUXDAC, ABB_VBCTRL, ABB_APCDEL1 }; #elif (ANLG_FAM == 2) enum ABB_REGISTERS { ABB_AFCCTLADD = 0, ABB_VBUCTRL, ABB_VBDCTRL, ABB_BBCTRL, ABB_BULGCAL, ABB_APCOFF, ABB_BULIOFF, ABB_BULQOFF, ABB_DAI_ON_OFF, ABB_AUXDAC, ABB_VBCTRL1, ABB_VBCTRL2, ABB_APCDEL1, ABB_APCDEL2 }; #elif (ANLG_FAM == 3) enum ABB_REGISTERS { ABB_AFCCTLADD = 0, ABB_VBUCTRL, ABB_VBDCTRL, ABB_BBCTRL, ABB_BULGCAL, ABB_APCOFF, ABB_BULIOFF, ABB_BULQOFF, ABB_DAI_ON_OFF, ABB_AUXDAC, ABB_VBCTRL1, ABB_VBCTRL2, ABB_APCDEL1, ABB_APCDEL2, ABB_VBPOP, ABB_VAUDINITD, ABB_VAUDCTRL, ABB_VAUOCTRL, ABB_VAUSCTRL, ABB_VAUDPLL }; #endif #endif