view src/g23m-aci/uart/uart_rxp.c @ 638:cab2f315827e

FFS dev.c: added Spansion PL032J to the "generic" table With the discovery of first GTM900 and then Tango, it now appears that Openmoko was not the only manuf after all who kept TI's TCS211 firmware largely intact (as opposed to changing it beyond all recognition like Compal, Chi-Mei and BenQ did), thus we are now getting new "alien" targets on which we reuse the original manuf's FFS with IMEI and RF calibration tables as if it were native. On these targets we use the original device table for FFS, even though we previously thought that it would never apply to any target other than dsample, leonardo and gtamodem. We have previously added Samsung K5L33xxCAM (a new kind of multi-ID device) to the generic table to support its use in Huawei GTM900-B modules; now we got news that some slightly older GTM900-B specimen used S71PL032J instead, so we are now adding PL032J as well.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 30 Jan 2020 17:45:48 +0000
parents 53929b40109c
children
line wrap: on
line source

/*
+-----------------------------------------------------------------------------
|  Project :
|  Modul   :
+-----------------------------------------------------------------------------
|  Copyright 2002 Texas Instruments Berlin, AG
|                 All rights reserved.
|
|                 This file is confidential and a trade secret of Texas
|                 Instruments Berlin, AG
|                 The receipt of or possession of this file does not convey
|                 any rights to reproduce or disclose its contents or to
|                 manufacture, use, or sell anything it may describe, in
|                 whole, or in part, without the specific written consent of
|                 Texas Instruments Berlin, AG.
+-----------------------------------------------------------------------------
|  Purpose :  This modul is part of the entity UART and implements all
|             functions to handles the incoming primitives as described in
|             the SDL-documentation (RX-statemachine)
+-----------------------------------------------------------------------------
*/

#ifndef UART_RXP_C
#define UART_RXP_C
#endif /* !UART_RXP_C */

#define ENTITY_UART

#ifndef FF_MULTI_PORT
/*==== INCLUDES =============================================================*/

#ifdef WIN32
#include "nucleus.h"
#endif /* WIN32 */
#include "typedefs.h"   /* to get Condat data types */
#include "vsi.h"        /* to get a lot of macros */
#include "macdef.h"     /* to get a lot of macros */
#include "custom.h"
#include "gsm.h"        /* to get a lot of macros */
#include "cnf_uart.h"   /* to get cnf-definitions */
#include "mon_uart.h"   /* to get mon-definitions */
#include "prim.h"       /* to get the definitions of used SAP and directions */
#include "dti.h"        /* to get dti lib */
#include "pei.h"        /* to get PEI interfac */
#ifdef _TARGET_
#include "uart/serialswitch.h"
#include "uart/traceswitch.h"
#else /* _TARGET_ */
#include "serial_dat.h" /* to get definitions of serial driver */
#endif /* _TARGET_ */
#include "uart.h"       /* to get the global entity definitions */

#include "uart_rxf.h"   /* to get rx functions */

#include "uart_kers.h"   /* to get ker signals */
#include "uart_dtxs.h"   /* to get dtx signals */

#ifdef _SIMULATION_
#include <stdio.h>      /* to get sprintf */
#include "uart_rxp.h"   /* to get rx_readdata */
#endif /* _SIMULATION_ */
/*==== CONST ================================================================*/

/*==== LOCAL VARS ===========================================================*/

/*==== PRIVATE FUNCTIONS ====================================================*/

/*==== PUBLIC FUNCTIONS =====================================================*/



/*
+------------------------------------------------------------------------------
| Function    : rx_uart_driver_received_ind
+------------------------------------------------------------------------------
| Description : Handles the primitive UART_DRIVER_RECEIVED_IND
|
| Parameters  : *uart_device - affected device database
|
+------------------------------------------------------------------------------
*/
GLOBAL void rx_uart_driver_received_ind ( T_UART_DATA* uart_device )
{
  USHORT    i;
  BOOL      continuous;
  T_DLC*    dlc;
  T_desc2*  temp_desc = NULL;
  ULONG     line_states;

  TRACE_EVENT( "rx_uart_driver_received_ind()" );

  /*
   * set affected instance
   */
  uart_data = uart_device;

  /*
   * inform about new line states
   */
  if(uart_data->rx.lines NEQ uart_data->rx.prev_lines)
  {
    /*
     * convert line states and send it
     */
    line_states = 0;
    if(uart_data->rx.lines & X_MASK)
    {
      line_states|= UART_X_RX_MASK;
      if(!(uart_data->rx.prev_lines & X_MASK))
      {
        TRACE_EVENT("RX Flow Control: stop");
      }
    }
    else if(uart_data->rx.prev_lines & X_MASK)
    {
      TRACE_EVENT("RX Flow Control: start");
    }

    if(uart_data->rx.lines & SA_MASK)
    {
      line_states|= UART_SA_RX_MASK;
      if(!(uart_data->rx.prev_lines & SA_MASK))
      {
        TRACE_EVENT("DTR: drop");
      }
    }
    else if(uart_data->rx.prev_lines & SA_MASK)
    {
      TRACE_EVENT("DTR: on");
    }

    if(uart_data->rx.lines & SB_MASK)
    {
      line_states|= UART_SB_RX_MASK;
      if(!(uart_data->rx.prev_lines & SB_MASK))
      {
        TRACE_EVENT("RTS: off");
      }
    }
    else if(uart_data->rx.prev_lines & SB_MASK)
    {
      TRACE_EVENT("RTS: on");
    }

    if(uart_data->rx.lines & ESC_MASK)
    {
      line_states|= UART_ESC_RX_MASK;
      TRACE_EVENT("Escape Sequence detected");
    }

    if(uart_data->rx.lines & BRK_MASK)
    {
      line_states|= UART_BRK_RX_MASK;
      line_states|= (((uart_data->rx.lines & BRK_LEN_MASK)
                     >> BRKLEN) << UART_BRKLEN_RX_POS);
      TRACE_EVENT("Break detected");
    }
    /*
     * store new line states
     */
    uart_data->rx.lines&= ~(ESC_MASK |
                            BRK_MASK |
                            BRK_LEN_MASK);
    uart_data->rx.prev_lines = uart_data->rx.lines;
    /*
     * inform MMI
     */
    sig_rx_ker_line_states_ind(line_states);
  }

  switch( GET_STATE( UART_SERVICE_RX ) )
  {
    case RX_READY:
      dlc = &uart_data->dlc_table[UART_CONTROL_INSTANCE];
      if(uart_data->rx.dlc_instance NEQ UART_EMPTY_INSTANCE)
      {
        uart_data->rx.dlc_instance  = UART_EMPTY_INSTANCE;
        uart_data->rx.analyze_state = UART_RX_ERROR;
        /*
         * if ISR has read out some data
         * inform all channels about data reception
         */
        if(uart_data->rx.read_permission)
        {
          for(i = 0; i <= UART_MAX_NUMBER_OF_CHANNELS; i++)
          {
            switch(uart_data->dlc_table[i].receive_process)
            {
              case UART_RX_PROCESS_READY:
              case UART_RX_PROCESS_COMPLETE:
                /*
                 * inform all channels about data reception
                 */
                uart_data->dlc_table[i].receive_process = UART_RX_PROCESS_STOP;
                temp_desc = uart_data->dlc_table[i].receive_data;
                uart_data->dlc_table[i].receive_data = NULL;
                if(i EQ UART_CONTROL_INSTANCE)
                {
                  /*
                   * Control channel
                   */
                  sig_rx_ker_data_received_ind(
                    temp_desc,
                    uart_data->dlc_table[i].receive_pos);
                }
                else
                {
                  /*
                   * Data channel
                   */
                  uart_data->dtx = uart_data->dlc_table[i].dtx;
                  sig_rx_dtx_data_received_ind(
                    temp_desc,
                    uart_data->dlc_table[i].receive_pos);
                }
                /* fall through */
              case UART_RX_PROCESS_STOP:
                /*
                 * add new channels which want to receive
                 */
                if(uart_data->dlc_table[i].receive_data)
                  uart_data->dlc_table[i].receive_process = UART_RX_PROCESS_READY;
                break;

              default:
                TRACE_EVENT_P2("Unexpected DLC process state: %d | uart_rxp.c(%d)",
                               dlc->receive_process, __LINE__);
                break;
            }
          }
        }
      }
      else
      {
        switch(dlc->receive_process)
        {
          case UART_RX_PROCESS_READY:
          case UART_RX_PROCESS_COMPLETE:
            /*
             * if ISR has read out some data
             * inform channel about data reception
             */
            if(uart_data->rx.read_permission)
            {
              /*
               * inform channel about data reception
               */
              dlc->receive_process = UART_RX_PROCESS_STOP;
              temp_desc            = dlc->receive_data;
              dlc->receive_data    = NULL;
              uart_data->dtx       = dlc->dtx;
              sig_rx_dtx_data_received_ind(temp_desc, dlc->receive_pos);
            }
            /* fall through */
          case UART_RX_PROCESS_STOP:
            /*
             * add new channel which want to receive
             */
            if(dlc->receive_data)
              dlc->receive_process = UART_RX_PROCESS_READY;
            break;

          default:
            TRACE_EVENT_P2("Unexpected DLC process state: %d | uart_rxp.c(%d)",
                                               dlc->receive_process, __LINE__);
            break;
        }
      }
      if(dlc->receive_process EQ UART_RX_PROCESS_STOP)
      {
        uart_data->rx.receive_state = UART_RX_NOT_RECEIVING;
        break;
      }

#ifdef _SIMULATION_
      if(rx_inpavail(uart_data->device) > 0)
#else /* _SIMULATION_ */
      if(UF_InpAvail (uart_data->device) > 0)
#endif /* _SIMULATION_ */
      {
        /*
         * inform channel about reading
         */
        uart_data->rx.read_permission = TRUE;
        uart_data->dtx                = dlc->dtx;
        sig_rx_dtx_receiving_ind();
      }
      else
        uart_data->rx.read_permission = FALSE;

      if(uart_data EQ (&(uart_data_base[0])))
      {
        TRACE_EVENT("UF_ReadData()");
#ifdef _SIMULATION_
        rx_readdata(0);
#else /* _SIMULATION_ */
        UF_ReadData (uart_data->device, sm_suspend, rx_readOutFunc_0);
#endif /* else _SIMULATION_ */
      }
#ifdef FF_TWO_UART_PORTS
      else if(uart_data EQ (&(uart_data_base[1])))
      {
        TRACE_EVENT("UF_ReadData()");
#ifdef _SIMULATION_
        rx_readdata(1);
#else /* _SIMULATION_ */
        UF_ReadData (uart_data->device, sm_suspend, rx_readOutFunc_1);
#endif /* else _SIMULATION_ */
      }
#endif /* FF_TWO_UART_PORTS */
      else
      {
        TRACE_ERROR("wrong value of uart_data");
      }
      break;

    case RX_MUX:
      if(uart_data->rx.dlc_instance EQ UART_EMPTY_INSTANCE)
      {
        uart_data->rx.dlc_instance  = UART_CONTROL_INSTANCE;
        uart_data->rx.analyze_state = UART_RX_ERROR;
      }
      continuous = FALSE;
      for(i = 0; i <= UART_MAX_NUMBER_OF_CHANNELS; i++)
      {
        dlc = &uart_data->dlc_table[i];
        switch(dlc->receive_process)
        {
          case UART_RX_PROCESS_READY:
          case UART_RX_PROCESS_COMPLETE:
            /*
             * if ISR has read out some data
             * inform all channels about data reception
             */
            if(uart_data->rx.read_permission)
            {
              dlc->receive_process = UART_RX_PROCESS_STOP;
              temp_desc            = dlc->receive_data;
              dlc->receive_data    = NULL;
              if(i EQ UART_CONTROL_INSTANCE)
              {
                /*
                 * Control channel
                 */
                sig_rx_ker_data_received_ind(temp_desc, dlc->receive_pos);
              }
              else
              {
                /*
                 * Data channel
                 */
                uart_data->dtx = dlc->dtx;
                sig_rx_dtx_data_received_ind(temp_desc, dlc->receive_pos);
              }
            }
            /* fall through */
          case UART_RX_PROCESS_STOP:
            /*
             * add new channels which want to receive
             */
            if(dlc->receive_data)
              dlc->receive_process = UART_RX_PROCESS_READY;
            break;

          default:
            TRACE_EVENT_P2("Unexpected DLC process state: %d, uart_rxp.c(%d)",
                                              dlc->receive_process, __LINE__);
            break;
}
        if(dlc->receive_process NEQ UART_RX_PROCESS_STOP)
          continuous = TRUE;
      }
      /*
       * check whether there is a channel to receive
       */
      if(continuous NEQ TRUE)
      {
        uart_data->rx.receive_state = UART_RX_NOT_RECEIVING;
        break;
      }
#ifdef _SIMULATION_
      if(rx_inpavail(uart_data->device) > 0)
#else /* _SIMULATION_ */
      if(UF_InpAvail (uart_data->device) > 0)
#endif /* _SIMULATION_ */
      {
        /*
         * inform each channel about reading
         */
        uart_data->rx.read_permission = TRUE;
        for(i = 0; i <= UART_MAX_NUMBER_OF_CHANNELS; i++)
        {
          if(uart_data->dlc_table[i].receive_process EQ UART_RX_PROCESS_READY)
          {
            if(i EQ UART_CONTROL_INSTANCE)
            {
              /*
               * Control channel
               */
              sig_rx_ker_receiving_ind();
            }
            else
            {
              /*
               * Data channel
               */
              uart_data->dtx = uart_data->dlc_table[i].dtx;
              sig_rx_dtx_receiving_ind();
            }
          }
        }
      }
      else
        uart_data->rx.read_permission = FALSE;

      if(uart_data EQ (&(uart_data_base[0])))
      {
        TRACE_EVENT("UF_ReadData()");
#ifdef _SIMULATION_
        rx_readdata(0);
#else /* _SIMULATION_ */
        UF_ReadData (uart_data->device, sm_suspend, rx_readOutFunc_0);
#endif /* else _SIMULATION_ */
      }
#ifdef FF_TWO_UART_PORTS
      else if(uart_data EQ (&(uart_data_base[1])))
      {
        TRACE_EVENT("UF_ReadData()");
#ifdef _SIMULATION_
        rx_readdata(1);
#else /* _SIMULATION_ */
        UF_ReadData (uart_data->device, sm_suspend, rx_readOutFunc_1);
#endif /* else _SIMULATION_ */
      }
#endif /* FF_TWO_UART_PORTS */
      else
      {
        TRACE_ERROR("wrong value of uart_data");
      }
      break;

    default:
      TRACE_ERROR( "UART_DRIVER_RECEIVED_IND unexpected" );
      break;
  }
} /* rx_uart_driver_received_ind() */



#ifdef _SIMULATION_
/*
+------------------------------------------------------------------------------
| Function    : rx_dti_data_test_ind
+------------------------------------------------------------------------------
| Description : Handles the primitive DTI_DATA_TEST_IND
|
| Parameters  : *dti_data_test_ind - Ptr to primitive payload
|
+------------------------------------------------------------------------------
*/
GLOBAL void rx_dti_data_test_ind ( T_DTI2_DATA_TEST_IND *dti_data_test_ind )
{
  char          buf[100];
  T_reInstMode  reInstall;
  USHORT        size[2];
  USHORT        pos;
  USHORT        i;
  T_UART_DATA*  uart_device;

  TRACE_FUNCTION( "rx_dti_data_test_ind" );

  /*
   * set UART instance
   */
  uart_device = &(uart_data_base[UART_TEST_C_ID_1]);
  /*
   * copy data to simulation buffer
   */
  MFREE_DESC2(uart_device->rx.sim_buffer);
  MALLOC(uart_device->rx.sim_buffer, (USHORT)(sizeof(T_desc2) - 1 +
                                     (dti_data_test_ind->sdu.l_buf >> 3)));
  memcpy(uart_device->rx.sim_buffer->buffer,
         &dti_data_test_ind->sdu.buf[dti_data_test_ind->sdu.o_buf >> 3],
         dti_data_test_ind->sdu.l_buf >> 3);
  uart_device->rx.sim_buffer->len  = dti_data_test_ind->sdu.l_buf >> 3;
  uart_device->rx.sim_buffer->next = (ULONG)NULL;
  uart_device->rx.sim_pos          = 0;
  /*
   * trace output
   */
  sprintf(buf, "UART device %d:", dti_data_test_ind->link_id);
  TRACE_FUNCTION( buf );
  i   = 0;
  pos = uart_device->rx.sim_pos;
  while(pos < uart_device->rx.sim_buffer->len)
  {
    i+= sprintf(&buf[i], "0x%02x, ", uart_device->rx.sim_buffer->buffer[pos]);
    pos++;
    if(i > 80)
    {
      TRACE_FUNCTION( buf );
      i = 0;
    }
    else if(pos >= uart_device->rx.sim_buffer->len)
    {
      TRACE_FUNCTION( buf );
    }
  }
  /*
   * set values for ISR
   */
  uart_device->rx.source[0] = &uart_device->rx.sim_buffer->buffer[
                              uart_device->rx.sim_pos];
  uart_device->rx.source[1] = NULL;
  size[0]                   = uart_device->rx.sim_buffer->len -
                              uart_device->rx.sim_pos;
  size[1]                   = 0;

  /*
   * call actual function
   */
  rx_readOutFunc_0 (FALSE, &reInstall, 1, uart_device->rx.source, size, 0);

  /*
   * store return values
   */
  if(size[0] EQ 0)
  {
    MFREE_DESC2(uart_device->rx.sim_buffer);
    uart_device->rx.sim_buffer = NULL;
  }
  else
    uart_device->rx.sim_pos = uart_device->rx.sim_buffer->len - size[0];

  /*
   * free the primitive
   */
  PFREE(dti_data_test_ind);
} /* rx_dti_data_test_ind() */



/*
+------------------------------------------------------------------------------
| Function    : rx_readdata
+------------------------------------------------------------------------------
| Description : Simulates a UF_ReadData() call.
|
| Parameters  : caller - calling UART instance
|
+------------------------------------------------------------------------------
*/
GLOBAL void rx_readdata (UBYTE caller)
{
  T_reInstMode  reInstall;
  USHORT        size[2];
  T_UART_DATA*  uart_device;

  TRACE_FUNCTION( "rx_readdata" );

  /*
   * set UART instance
   */
  uart_device = &(uart_data_base[caller]);

  if(uart_device->rx.sim_buffer EQ NULL)
  {
    /*
     * send DTI_GETDATA_REQ
     */
    PALLOC (dti_getdata_req, DTI2_GETDATA_REQ);
    dti_getdata_req->link_id = LINK_READDATA_PORT_1; /* for usual read_data */
    PSEND (hCommMMI, dti_getdata_req);
  }
  else
  {
    /*
     * set values for ISR
     */
    uart_device->rx.source[0] = NULL;
    uart_device->rx.source[1] = &uart_device->rx.sim_buffer->buffer[
                                 uart_device->rx.sim_pos];
    size[0]                   = 0;
    size[1]                   = uart_device->rx.sim_buffer->len -
                                uart_device->rx.sim_pos;

    /*
     * call actual function
     */
    if(caller EQ 0)
    {
      rx_readOutFunc_0 (FALSE, &reInstall, 2, uart_device->rx.source, size, 0);
    }
#ifdef FF_TWO_UART_PORTS
    else if(caller EQ 1)
    {
      rx_readOutFunc_1 (FALSE, &reInstall, 2, uart_device->rx.source, size, 0);
    }
#endif /* FF_TWO_UART_PORTS */
    else
    {
      TRACE_ERROR("wrong caller value");
    }

    /*
     * store return values
     */
    if(size[1] EQ 0)
    {
      MFREE_DESC2(uart_device->rx.sim_buffer);
      uart_device->rx.sim_buffer = NULL;
    }
    else
      uart_device->rx.sim_pos = uart_device->rx.sim_buffer->len - size[1];
  }
} /* rx_readdata() */



/*
+------------------------------------------------------------------------------
| Function    : rx_inpavail
+------------------------------------------------------------------------------
| Description : Simulates a UF_InpAvail() call.
|
| Parameters  : caller - calling UART instance
|
| Return      : number of octets in Input Queue
|
+------------------------------------------------------------------------------
*/
GLOBAL USHORT rx_inpavail (UBYTE caller)
{
  T_UART_DATA*  uart_device;

  TRACE_FUNCTION( "rx_inpavail" );

  /*
   * set UART instance
   */
  uart_device = &(uart_data_base[caller]);

  if(uart_device->rx.sim_buffer)
    return uart_device->rx.sim_buffer->len - uart_device->rx.sim_pos;
  else
    return 0;
} /* rx_inpavail() */
#endif /* _SIMULATION_ */
#endif /* !FF_MULTI_PORT */