FreeCalypso > hg > fc-magnetite
view src/cs/layer1/cust0/l1_cust.c @ 327:d7b25dca1266
.../drv_core/abb/abb.c: don't set backup battery bits in BCICONF
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 08 Dec 2017 03:05:19 +0000 |
parents | 50a15a54801e |
children | daddb933047d |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1_CUST.C * * Filename l1_cust.c * Version 3.66 * Date 03/21/03 * ************* Revision Controle System Header *************/ //#define GLOBAL #include "string.h" #include "l1_confg.h" #include "l1_const.h" #include "ulpd.h" #include "tm_defs.h" #include "l1_types.h" #include "l1_time.h" #include "l1_trace.h" #include "sys_types.h" #include "sim.h" #include "buzzer.h" #include "serialswitch.h" #include "abb.h" #if TESTMODE #include "l1tm_defty.h" #endif #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #include "l1_defty.h" #include "l1_msgty.h" #include "l1_tabs.h" #include "l1_varex.h" #if (VCXO_ALGO == 1) #include "l1_ctl.h" #endif #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) #include "spi_drv.h" #endif #if (RF==35) #include "tpudrv35.h" #include "l1_rf35.h" #include "l1_rf35.c" #endif #if (RF==12) #include "tpudrv12.h" #include "l1_rf12.h" #include "l1_rf12.c" #endif #if (RF==10) #include "tpudrv10.h" #include "l1_rf10.h" #include "l1_rf10.c" #endif #if (RF==8) #include "tpudrv8.h" #include "l1_rf8.h" #include "l1_rf8.c" #endif #if (RF==2) #include "l1_rf2.h" #include "l1_rf2.c" #endif // Nucleus functions extern INT TMD_Timer_State; extern UWORD32 TMD_Timer; // for big sleep extern UWORD32 TCD_Priority_Groups; extern VOID *TCD_Current_Thread; extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES]; extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES]; extern TC_PROTECT TCD_System_Protect; #if (L2_L3_SIMUL == 0) #define FFS_WORKAROUND 1 #else #define FFS_WORKAROUND 0 #endif #if (FFS_WORKAROUND == 1) #include "ffs.h" #else typedef signed int int32; typedef signed char effs_t; typedef int32 filesize_t; effs_t ffs_fwrite(const char *name, void *addr, filesize_t size); effs_t ffs_fread(const char *name, void *addr, filesize_t size); #endif // Import band configuration from Flash module (need to replace by an access function) //extern UWORD8 std; extern T_L1_CONFIG l1_config; extern T_L1S_GLOBAL l1s; #if (CODE_VERSION != SIMULATION) // Import serial switch configuration extern char ser_cfg_info[2]; #endif void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); void config_rf_rw_band(char type, UWORD8 read); void config_rf_read(char type); void config_rf_write(char type); enum { RF_ID = 0, ADC_ID = 1 }; /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Defines the location of rf-struct */ /* for each std. */ /*-------------------------------------------------------*/ const static T_BAND_CONFIG band_config[] = { /*ffs name, default addr, max carrier, min tx pwr */ {"",(T_RF_BAND *) 0,0,0},//undefined {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850 #if (RF == 10) {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment #endif {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry }; /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Defines the indices into band_config */ /* for each std. */ /*-------------------------------------------------------*/ const T_STD_CONFIG std_config[] = { /* band1 index, band2 index, txpwr turning point, first arfcn*/ { 0, 0, 0, 0 }, // std = 0 not used { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850 #if (RF == 10) { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900 #else { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900 #endif }; /*-------------------------------------------------------*/ /* Prototypes of external functions used in this file. */ /*-------------------------------------------------------*/ void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config); WORD16 Convert_l1_radio_freq (UWORD16 radio_freq); /*-------------------------------------------------------*/ /* Cust_recover_Os() */ /*-------------------------------------------------------*/ /* */ /* Description: adjust OS from sleep duration */ /* ------------ */ /* This function fix the : */ /* - system clock */ /* - Nucleus timers */ /* - xxxxxx (customer dependant) */ /*-------------------------------------------------------*/ UWORD8 Cust_recover_Os(void) { #if (CODE_VERSION != SIMULATION) UWORD32 current_system_clock; /***************************************************/ // Fix System clock and Nucleus Timers if any.... */ /***************************************************/ // Fix System clock .... current_system_clock = NU_Retrieve_Clock(); current_system_clock += l1s.pw_mgr.sleep_duration; NU_Set_Clock(current_system_clock); // Fix Nucleus timer (if needed) .... if (TMD_Timer_State == TM_ACTIVE) { TMD_Timer -= l1s.pw_mgr.sleep_duration; if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED; } /***************************************************/ // Cust dependant part ... */ /***************************************************/ //............. //............. //.............. return(TRUE); #endif } /*-------------------------------------------------------*/ /* Cust_check_system() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* GSM 1.5 : */ /* - authorize UWIRE clock to be stopped */ /* and write value in l1s.pw_mgr.modules_status. */ /* - authorize ARMIO clock to be stopped if the light is */ /* off and write value in l1s.pw_mgr.modules_status. */ /* - check if SIM clock have been stopped */ /* before allowing DEEP SLEEP. */ /* - check if UARTs are ready to enter deep sleep */ /* - choose the sleep mode */ /* */ /* Return: */ /* ------- */ /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */ /*-------------------------------------------------------*/ UWORD8 Cust_check_system(void) { extern UWORD8 why_big_sleep; #if (CODE_VERSION != SIMULATION) #if (L2_L3_SIMUL == 0) // Forbid deep sleep if the light is on if(LT_Status()) { //cut ARMIO and UWIRE clocks in big sleep l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON; return(FRAME_STOP); // BIG sleep } // Forbid deep sleep if the SIM and UARTs not ready if(SIM_SleepStatus()) { #endif if(SER_UartSleepStatus()) { return(CLOCK_STOP); // DEEP sleep } else why_big_sleep = BIG_SLEEP_DUE_TO_UART; #if (L2_L3_SIMUL == 0) } else why_big_sleep = BIG_SLEEP_DUE_TO_SIM; #endif // cut ARMIO and UWIRE clocks in big sleep l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; return(FRAME_STOP); // BIG sleep #else // Simulation part return(CLOCK_STOP); // DEEP sleep #endif } /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Read the RF configuration, tables etc. */ /* from FFS files. */ /*-------------------------------------------------------*/ const static T_CONFIG_FILE config_files_common[] = { #if (CODE_VERSION != SIMULATION) // The first char is NOT part of the filename. It is used for // categorizing the ffs file contents: // f=rf-cal, F=rf-config, // t=tx-cal, T=tx-config, // r=rx-cal, R=rx-config, // s=sys-cal, S=sys-config, "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc), "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support), #if (VCXO_ALGO == 1) "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16), #else "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32), #endif "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16), "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr), "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE), "s/sys/adccal", &adc_cal, sizeof(adc_cal), "S/sys/abb", &abb, sizeof(abb), "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info), #endif NULL, 0, 0 // terminator }; /*-------------------------------------------------------*/ /* Parameters: none */ /* Return: none */ /* Functionality: Read the RF configurations for */ /* each band from FFS files. These files */ /* are defined for one band, and and used */ /* for all bands. */ /*-------------------------------------------------------*/ const static T_CONFIG_FILE config_files_band[] = { // The first char is NOT part of the filename. It is used for // categorizing the ffs file contents: // f=rf-cal, F=rf-config, // t=tx-cal, T=tx-config, // r=rx-cal, R=rx-config, // s=sys-cal, S=sys-config, // generic for all bands // band[0] is used as template for all bands. "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables), "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels), "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table), "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp), "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands), "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp), "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params), NULL, 0, 0 // terminator }; void config_ffs_read(char type) { config_rf_read(type); config_rf_rw_band(type, 1); } void config_ffs_write(char type) { config_rf_write(type); config_rf_rw_band(type, 0); } void config_rf_read(char type) { const T_CONFIG_FILE *file = config_files_common; while (file->name != NULL) { if (type == '*' || type == file->name[0]) { ffs_fread(&file->name[1], file->addr, file->size); } file++; } } void config_rf_write(char type) { const T_CONFIG_FILE *file = config_files_common; while (file->name != NULL) { if (type == '*' || type == file->name[0]) { ffs_fwrite(&file->name[1], file->addr, file->size); } file++; } } void config_rf_rw_band(char type, UWORD8 read) { const T_CONFIG_FILE *f1 = config_files_band; UWORD8 i; WORD32 offset; char name[64]; char *p; UWORD8 std = l1_config.std.id; #if FFS_WORKAROUND == 1 struct stat_s stat; UWORD16 time; #endif for (i=0; i< GSM_BANDS; i++) { if(std_config[std].band[i] !=0 ) { f1 = &config_files_band[0]; while (f1->name != NULL) { offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes p = ((char *) &rf_band[i]) + offset; if (type == '*' || type == f1->name[0]) { strcpy(name, &f1->name[1]); strcat(name, "."); strcat(name, band_config[std_config[std].band[i]].name); if (read == 1) ffs_fread(name, p, f1->size); else //write == 0 { ffs_fwrite(name, p, f1->size); // wait until ffs write has finished #if FFS_WORKAROUND == 1 stat.inode = 0; time = 0; do { rvf_delay(10); // in milliseconds time += 10; ffs_stat(name, &stat); } while (stat.inode == 0 && time < 500); #endif } } f1++; } } } } /*-------------------------------------------------------*/ /* Cust_init_std() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Init Standard variable configuration */ /*-------------------------------------------------------*/ void Cust_init_std(void) { UWORD8 std = l1_config.std.id; UWORD8 band1, band2; T_RF_BAND *pt1, *pt2; band1 = std_config[std].band[0]; band2 = std_config[std].band[1]; //get these from std pt1 = band_config[band1].addr; pt2 = band_config[band2].addr; // copy rf-struct from default flash to ram memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND)); if(std_config[std].band[1] != BAND_NONE ) memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND)); // Read all RF and system configuration from FFS *before* we copy any of // the rf structure variables to other places, like L1. config_ffs_read('*'); l1_config.std.first_radio_freq = std_config[std].first_arfcn; if(band2!=0) l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1; else l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0 // if band2 is not used it is initialised with zeros l1_config.std.nbmax_carrier = band_config[band1].max_carrier; if(band2!=0) l1_config.std.nbmax_carrier += band_config[band2].max_carrier; l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr; l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr; l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp; l1_config.std.cal_freq1_band1 = 0; l1_config.std.cal_freq1_band2 = 0; l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic; l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att; l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low; l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high; l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq; l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic; l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att; l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low; l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high; l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq; l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1; // init variable indicating which radio bands are supported by the chosen RF l1_config.std.radio_band_support = rf.radio_band_support; } /*-------------------------------------------------------*/ /* Cust_init_params() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Init RF dependent paramters (AGC, TX) */ /*-------------------------------------------------------*/ void Cust_init_params(void) { #if (CODE_VERSION==SIMULATION) extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME; l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME; #else l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME; l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME; #endif // Convert SYNTH_SETUP_TIME into SPLIT. // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin. l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time; l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time; l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC; l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS; l1_config.params.tx_change_offset_time = TIME_OFFSET_TX - TA_MAX - l1_config.params.tx_synth_setup_time - EPSILON_OFFS; // TX duration = ramp up time + burst duration (data + tail bits) l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL; l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION; l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); // time for the end of RX and TX TPU scenarios l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING; l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING; // FB26 anchoring time is computed backward to leave only 6 qbit margin between // FB26 window and next activity (RX time tracking). // This margin is used as follow: // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD) // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD) // --------- // Total: 3 qbit l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time - #if (CODE_VERSION == SIMULATION) // simulator: end of scenario not included in window (no serialization) 1 - #else // RF dependent end of RX TPU scenario l1_config.params.rx_tpu_scenario_ending - #endif EPSILON_SYNC - TPU_SLEEP_LOAD - SERV_OFFS_REST_LOAD - FB26_ACQUIS_DURATION - PROVISION_TIME + TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE; l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time + PROVISION_TIME - l1_config.params.rx_synth_setup_time - EPSILON_OFFS; l1_config.params.guard_bits = rf.tx.guard_bits; l1_config.params.prg_tx_gsm = rf.tx.prg_tx; l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr; l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr; l1_config.params.low_agc = rf.rx.agc.low_agc; l1_config.params.high_agc = rf.rx.agc.high_agc; l1_config.params.il_min = IL_MIN; l1_config.params.fixed_txpwr = FIXED_TXPWR; l1_config.params.eeprom_afc = rf.afc.eeprom_afc; l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF; l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv; l1_config.params.psi_st = rf.afc.psi_st; l1_config.params.psi_st_32 = rf.afc.psi_st_32; l1_config.params.psi_st_inv = rf.afc.psi_st_inv; #if (CODE_VERSION == SIMULATION) #if (VCXO_ALGO == 1) l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm #endif #else #if (VCXO_ALGO == 1) l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count #endif #endif #if DCO_ALGO #if (RF == 10) // Enable DCO algorithm for direct conversion RFs l1_config.params.dco_enabled = TRUE; #else l1_config.params.dco_enabled = FALSE; #endif #endif #if (ANLG_FAM == 1) l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset #endif #if (ANLG_FAM == 2) l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset #endif #if (ANLG_FAM == 3) l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON" l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset #endif #if 0 /* present in MV100 version, but not in TCS211 */ // global variable for access to deep sleep time l1_config.params.sleep_time = 0; #endif } /************************************/ /* Automatic Gain Control */ /************************************/ /*-------------------------------------------------------*/ /* Cust_get_agc_from_IL() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : returns agc value */ /*-------------------------------------------------------*/ WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id) { WORD8 agc_value; // radio_freq currently not used // this parameter is passed in order to allow band dependent tables for specific RFs // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS) if (agc_index > 120) agc_index = 120; // Clip agc_index switch (table_id) { case MAX_ID: agc_value = rf.rx.agc.il2agc_max[agc_index]; break; case AV_ID: agc_value = rf.rx.agc.il2agc_av[agc_index]; break; case PWR_ID: agc_value = rf.rx.agc.il2agc_pwr[agc_index]; break; } return agc_value; } /*-------------------------------------------------------*/ /* Cust_get_agc_band */ /*-------------------------------------------------------*/ /* Parameters : radio_freq */ /* Return : band number */ /* Functionality : Computes the band for RF calibration */ /*-------------------------------------------------------*/ /*---------------------------------------------*/ #if (CODE_VERSION == SIMULATION) UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) #else UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) #endif { WORD32 i ; for (i=0;i<RF_RX_CAL_CHAN_SIZE;i++) { if (arfcn <= rf_band[gsm_band].rx.agc_bands[i].upper_bound) return(i); } // Should never happen! return(0); } /*-------------------------------------------------------*/ /* Cust_is_band_high */ /*-------------------------------------------------------*/ /* Parameters : arfcn */ /* Return : 0 if low band */ /* 1 if high band */ /* Functionality : Generic function which return 1 if */ /* arfcn is in the high band */ /*-------------------------------------------------------*/ UWORD8 Cust_is_band_high(UWORD16 radio_freq) { UWORD16 max_carrier; UWORD8 std = l1_config.std.id; max_carrier = band_config[std_config[std].band[0]].max_carrier; return(((radio_freq >= l1_config.std.first_radio_freq) && (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2); } /*-------------------------------------------------------*/ /* l1ctl_encode_delta2() */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ WORD8 l1ctl_encode_delta2(UWORD16 radio_freq) { WORD8 delta2_freq; UWORD16 i; UWORD16 arfcn; UWORD8 band; band = Cust_is_band_high(radio_freq); arfcn = Convert_l1_radio_freq(radio_freq); i = Cust_get_agc_band(arfcn,band); // delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib; //temperature compensation for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++) { if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature) { delta2_freq += rf_band[band].rx.temp[i].agc_calib; break; } } return(delta2_freq); } /************************************/ /* TX Management */ /************************************/ /*-------------------------------------------------------*/ /* Cust_get_ramp_tab */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq) { UWORD16 index_up, index_down, j; UWORD8 band; band = Cust_is_band_high(radio_freq); index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index; index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index; #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) for (j=0; j<16; j++) { a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) | ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) | 0x14; } #endif } /*-------------------------------------------------------*/ /* get_pwr_data */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : */ /*-------------------------------------------------------*/ #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq) { UWORD16 i,j; UWORD16 arfcn; UWORD8 band; #if(ORDER2_TX_TEMP_CAL==1) WORD16 pwr_data; #else UWORD16 pwr_data; #endif band = Cust_is_band_high(radio_freq); arfcn = Convert_l1_radio_freq(radio_freq); i = rf_band[band].tx.levels[txpwr].chan_cal_index; j=0; // get uncalibrated apc pwr_data = rf_band[band].tx.levels[txpwr].apc; while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit) j++; // channel calibrate apc pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128; // temperature compensate apc { T_TX_TEMP_CAL *pt; pt = rf_band[band].tx.temp; while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1))) pt++; #if(ORDER2_TX_TEMP_CAL==1) pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c if(pwr_data < 0) pwr_data = 0; #else pwr_data += pt->apc_calib; #endif } return(pwr_data); } #endif /*-------------------------------------------------------*/ /* Cust_Init_Layer1 */ /*-------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Load and boot the DSP */ /* Initialize shared memory and L1 data structures */ /*-------------------------------------------------------*/ void Cust_Init_Layer1(void) { T_MMI_L1_CONFIG cfg; // Get the current band configuration from the flash #if (OP_WCP==1) extern unsigned char ffs_GetBand(); cfg.std = ffs_GetBand(); #else // NO OP_WCP // cfg.std = std; cfg.std = STD; #endif // OP_WCP cfg.tx_pwr_code = 1; // sleep management configuration cfg.pwr_mngt = 0; cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep #if (CODE_VERSION != SIMULATION) cfg.dwnld = DWNLD; //external define from makefile #endif l1_initialize(&cfg); get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID); get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID); } /*****************************************************************************************/ /*************************** TESTMODE functions **********************************/ /*****************************************************************************************/ /*------------------------------------------------------*/ /* madc_hex_2_physical */ /*------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Function to convert MAD hexadecimal */ /* values into physical values */ /*------------------------------------------------------*/ void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy) { WORD16 i; UWORD16 y; WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1; WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */ //store raw ADC values memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw)); // Convert Vbat [mV] : direct equation with slope and offset compensation for (i = ADC_VBAT; i<ADC_RFTEMP; i++) adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; /*Convert RF Temperature [Celsius]: binsearch into a table*/ y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/ while((Smax-Smin) > 1 ) { if(y < temperature[index].adc) Smax=index; else Smin=index; index = (Smax+Smin)/2; } adc.converted[ADC_RFTEMP] = temperature[index].temp; for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++) adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; //store converted ADC values memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw)); } /*------------------------------------------------------*/ /* get_cal_from_nvmem */ /*------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Copy calibrated parameter to */ /* calibration structure in RAM */ /*------------------------------------------------------*/ void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) { } /*------------------------------------------------------*/ /* save_cal_from_nvmem */ /*------------------------------------------------------*/ /* Parameters : */ /* Return : */ /* Functionality : Copy calibrated structure from RAM */ /* into NV memory */ /*------------------------------------------------------*/ UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) { #if (OP_WCP == 1) // FFS backup implementation an Avenger 2 // Request MPU-S to backup the FFS // after full calibration of device extern void ffs_backup(void); ffs_backup(); #endif return (0); } #if (TRACE_TYPE == 4) /*------------------------------------------------------*/ /* l1_cst_l1_parameters */ /*------------------------------------------------------*/ /* Parameters : s: pointer on configuration string */ /* Return : nothing: global var are set */ /* Functionality : Set global L1 vars for dynamic trace */ /* and configuration */ /* */ /* This function is called when a CST message is sent */ /* from the Condat Panel. */ /*------------------------------------------------------*/ void l1_cst_l1_parameters(char *s) { /* a sample command string can be: L1_PARAMS=<1,2,3,4,5> or L1_PARAMS=<1,23,3E32,4,5> with n parameters (here: 5 params); n>=1 parameters are decoded as hexadecimal unsigned integers (UWORD16) */ UWORD8 uNParams = 0; /* Number of parameters */ UWORD32 aParam[10]; /* Parameters array */ UWORD8 uIndex = 0; /* *** retrieve all parameters *** */ while (s[uIndex] != '<') uIndex++; uIndex++; aParam[0] = 0; /* uIndex points on 1st parameter */ while (s[uIndex] != '>') { if (s[uIndex] == ',') { uNParams++; aParam[uNParams] = 0; } else { /* uIndex points on a parameter char */ UWORD8 uChar = s[uIndex]; aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */ if ((uChar>='0') && (uChar<='9')) aParam[uNParams] += (uChar - '0'); /* retrieve value */ else if ((uChar>='A') && (uChar<='F')) aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */ else if ((uChar>='a') && (uChar<='f')) aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */ } uIndex++; /* go to next char */ } /* increment number of params */ uNParams++; /* *** handle parameters *** */ /* 1st param: command type 2nd param: argument for command type */ switch (aParam[0]) { case 0: /* Trace setting */ /* The 2nd parameter contains the trace bitmap*/ if (uNParams >=2) trace_info.current_config->l1_dyn_trace = aParam[1]; else trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */ Trace_dyn_trace_change(); break; default: /* ignore it */ break; } // switch } #endif #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \ (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \ (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \ (CHIPSET == 11) || (CHIPSET == 12)) /*-------------------------------------------------------*/ /* power_down_config() : temporary implementation !!! */ /*-------------------------------------------------------*/ /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */ /* clocks to be cut in BIG sleep */ /* Return : */ /* Functionality : set the l1s variables */ /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */ /* according to the desired mode. */ /*-------------------------------------------------------*/ void power_down_config(UWORD8 sleep_mode, UWORD16 clocks) { #if (OP_L1_STANDALONE == 1) if(sleep_mode != NO_SLEEP) #endif { l1_config.pwr_mngt = PWR_MNGT; l1s.pw_mgr.mode_authorized = sleep_mode; l1s.pw_mgr.clocks = clocks; } #if (OP_L1_STANDALONE == 0) l1s.pw_mgr.enough_gaug = FALSE; #endif } #endif