FreeCalypso > hg > fc-magnetite
view src/cs/system/template/gsm_ds_fuj4d_lj3.template @ 632:d968a3216ba0
new tangomdm build target
TCS211/Magnetite built for target leonardo runs just fine on the Tango-based
Caramel board, but a more proper tangomdm build target is preferable in order
to better market these Tango modems to prospective commercial customers. The
only differences are in GPIO and MCSI config:
* MCSI is enabled in the tangomdm build config.
* GPIO 1 is loudspeaker amplifier control on Leonardo, but on Tango platforms
it can be used for anything. On Caramel boards this GPIO should be
configured as an output driving high.
* GPIO 2 needs to be configured as Calypso input on Leonardo, but on Tango
platforms it can be used for anything. On Caramel boards this GPIO should be
configured as an output, either high or low is OK.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sat, 04 Jan 2020 19:27:41 +0000 |
parents | 945cf7f506b2 |
children |
line wrap: on
line source
/* * Integrated Protocol Stack Linker command file (all components) * * Target : ARM * * Copyright (c) Texas Instruments 2002, Condat 2002 * */ -c /* Autoinitialize variables at runtime */ /*********************************/ /* SPECIFY THE SYSTEM MEMORY MAP */ /*********************************/ MEMORY { /* CS0: Flash 8 Mbytes ****************************************************/ /* Interrupt Vectors Table */ I_MEM (RXI) : org = 0x00000000 len = 0x00000100 /* Boot Sector */ B_MEM (RXI) : org = 0x00000100 len = 0x00001f00 /* Magic Word for Calypso Boot ROM */ MWC_MEM (RXI) : org = 0x00002000 len = 0x00000004 fill = 0x0000001 /* Program Memory */ P_MEM1 (RXI) : org = 0x00010000 len = 0x00000700 P_MEM2 (RXI) : org = 0x00010700 len = 0x00000004 P_MEM3 (RXI) : org = 0x00010704 len = 0x001ef8fc P_MEM4 (RXI) : org = 0x00200000 len = 0x00120000 /* FFS Area */ FFS_MEM (RX) : org = 0x00320000 len = 0x000D0000 /**************************************************************************/ /* CS1: External SRAM 1 Mbytes ********************************************/ /* Data Memory */ D_MEM1 (RW) : org = 0x01000000 len = 0x00100000 /**************************************************************************/ /* CS2: External SRAM 8 Mbytes ********************************************/ /* Data Memory */ D_MEM2 (RW) : org = 0x01800000 len = 0x00800000 /**************************************************************************/ /* CS6: Calypso Internal SRAM 512 kbytes **********************************/ /* Code & Variables Memory */ S_MEM (RXW) : org = 0x00800000 len = 0x00080000 /**************************************************************************/ } /***********************************************/ /* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */ /***********************************************/ /* * Since the bootloader directly calls the INT_Initialize() routine located * in int.s, this int.s code must always be mapped at the same address * (usually in the second flash sector). Its length is about 0x500 bytes. * Then comes the code that need to be loaded into the internal RAM. */ SECTIONS { .intvecs : {} > I_MEM /* Interrupt Vectors Table */ .monitor : > B_MEM /* Monitor Constants & Code */ { $(CONST_BOOT_LIB) } .inttext : {} > P_MEM1 /* int.s Code */ .bss_dar : > D_MEM1 /* DAR SWE Variables */ { $(BSS_DAR_LIB) } /* * The .bss section should not be split to ensure it is initialized to 0 * each time the SW is reset. So the whole .bss is mapped either in D_MEM1 * or in D_MEM2. */ .bss : > D_MEM1 | D_MEM2 /* Global & Static Variables */ { $(BSS_BOOT_LIB) } /* * All .bss sections, which must be mapped in internal RAM must be * grouped in order to initialized the corresponding memory to 0. * This initialization is done in int.s file before calling the Nucleus * routine. */ GROUP { S_D_Mem /* Label of start address of .bss section in Int. RAM */ .DintMem { /* * .bss sections of the application */ $(BSS_LIBS) } E_D_Mem /* Label of end address of .bss section in Int. RAM */ } > S_MEM /* * .text and .const sections which must be mapped in internal RAM. */ .ldfl : {} > P_MEM2 /* Used to know the start load address */ GROUP load = P_MEM3 | P_MEM4, run = S_MEM { S_P_Mem /* Label of start address of .text & .const sections in Int. RAM */ .PIntMem { /* * .text and .const sections of the application. * * The .veneer sections correspond exactly to .text:v&n sections * implementing the veneer functions. The .text:v$n -> .veneer * translation is performed by PTOOL software when PTOOL_OPTIONS * environement variable is set to veneer_section. */ $(CONST_LIBS) } E_P_Mem /* Label of end address of .text and .const sections in Int. RAM */ } /* * The rest of the code is mapped in flash, however the trampolines * load address should be consistent with .text. */ COMMENT2START `trampolines load = P_MEM3 | P_MEM4, run = S_MEM COMMENT2END .text : {} >> P_MEM3 | P_MEM4 /* Code */ /* * The rest of the constants is mapped in flash. * The .cinit section should not be split. */ .cinit : {} > P_MEM4 /* Initialization Tables */ .const : {} >> P_MEM4 | P_MEM3 /* Constant Data */ KadaAPI : {} >> P_MEM4 | P_MEM3 /* ROMized CLDC */ .javastack: {} >> D_MEM1 | D_MEM2 /* Java stack */ .stackandheap : > D_MEM1 /* System Stacks, etc... */ { /* Leave 20 32bit words for register pushes. */ . = align(8); . += 20 * 4; /* Stack for abort and/or undefined modes. */ exception_stack = .; /* Leave 38 32bit words for state saving on exceptions. */ _xdump_buffer = .; . += 38 * 4; . = align(8); /* Beginning of stacks and heap area - 2.75 kbytes (int.s) */ stack_segment = .; . += 0xB00; } .data : {} > D_MEM1 /* Initialized Data */ .sysmem : {} > D_MEM1 /* Dynamic Memory Allocation Area */ }