FreeCalypso > hg > fc-magnetite
view src/cs/layer1/cfile/l1_pwmgr.c @ 680:ee3ac8c617cb
armio.c: set GPIO2 output high initially
On TI-canonical platforms GPIO2 is DCD modem control output. In TI's
original code the AI_InitIOConfig() function called from Init_Target()
would configure GPIO2 as an output and set the initial output value to
low, but then the init code in uartfax.c called from Init_Serial_Flows()
would immediately change it to high, corresponding to DCD not asserted.
The result is a momentary asserted-state glitch on the DCD output.
The present change eliminates this glitch, setting DCD output to
not-asserted initially like it should be.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 25 Jun 2020 03:17:43 +0000 |
parents | b24d42baa30d |
children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1_PWMGR.C * * Filename l1_pwmgr.c * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #define L1_PWMGR_C //#pragma DUPLICATE_FOR_INTERNAL_RAM_START #include "timer/timer2.h" #include "armio/armio.h" //omaps00090550 #include "l1_macro.h" #include "l1_confg.h" #if (OP_L1_STANDALONE == 1) #include "uart/serialswitch_core.h" #else #include "uart/serialswitch.h" #endif #if (OP_L1_STANDALONE == 0) #include "sim/sim.h" #include "rv_swe.h" #endif #if (CODE_VERSION == SIMULATION) #include "l1_types.h" #include "l1_const.h" #if (CHIPSET == 12) || (CHIPSET == 15) #include "inth/sys_inth.h" #include "sys_dma.h" #include "ulpd.h" #include "clkm.h" // typedef volatile unsigned short REG_UWORD16; //omaps00090550 #define REG16(A) (*(REG_UWORD16*)(A)) #else #include "inth/iq.h" #endif #if TESTMODE #include "l1tm_defty.h" #endif // TESTMODE #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif // AUDIO_TASK #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif //ADDED FOR AAC #if (L1_AAC == 1) #include "l1aac_defty.h" #endif #include "l1_defty.h" #include "l1_varex.h" #include "l1_tabs.h" #include "cust_os.h" #include "l1_msgty.h" #include "l1_proto.h" #include "ulpd.h" #include "l1_trace.h" #if L1_GPRS #include "l1p_cons.h" #include "l1p_msgt.h" #include "l1p_deft.h" #include "l1p_vare.h" #endif // L1_GPRS #include <stdio.h> #include "sim_cfg.h" #include "sim_cons.h" #include "sim_def.h" #include "sim_var.h" //omaps00090550 #include "nucleus.h" extern NU_TASK L1S_task; STATUS status; #else // NO SIMULATION #include "l1_types.h" #include "l1_const.h" #include "abb/abb.h" #include "dma/sys_dma.h" #if (OP_BT == 1) #include "hci_ll_simul.h" #endif #if TESTMODE #include "l1tm_defty.h" #endif // TESTMODE #if (AUDIO_TASK == 1) #include "l1audio_const.h" #include "l1audio_cust.h" #include "l1audio_defty.h" #endif // AUDIO_TASK #if (L1_GTT == 1) #include "l1gtt_const.h" #include "l1gtt_defty.h" #endif #if (L1_MP3 == 1) #include "l1mp3_defty.h" #endif #if (L1_MIDI == 1) #include "l1midi_defty.h" #endif //ADDED FOR AAC #if (L1_AAC == 1) #include "l1aac_defty.h" #endif #include "l1_defty.h" #include "l1_varex.h" #include "l1_tabs.h" #include "sys_types.h" #include "tpudrv.h" #include "cust_os.h" #include "l1_msgty.h" #include "l1_proto.h" #include "l1_trace.h" #include "timer/timer.h" #if (CHIPSET == 12) || (CHIPSET == 15) #include "timer/timer_sec.h" #include "inth/sys_inth.h" /* FreeCalypso: massive #if (CHIPSET == 15) chunk removed */ #else //(CHIPSET == 12) || (CHIPSET == 15) #include "inth/iq.h" #include "inth/inth.h" #endif // #include "timer1.h" #include "ulpd/ulpd.h" #include "clkm/clkm.h" #include "memif/mem.h" #if L2_L3_SIMUL #include "hw_debug.h" #endif #if (OP_WCP == 1) && (OP_L1_STANDALONE != 1) #include "csmi/sleep.h" #endif // OP_WCP #if (W_A_CALYPSO_PLUS_SPR_19599 == 1) #include "sys_memif.h" #endif #if (GSM_IDLE_RAM != 0) #if (OP_L1_STANDALONE == 1) #include "csmi_simul.h" #else #include "csmi/csmi.h" #endif #endif #if (CHIPSET == 15) #include "drp_api.h" #endif #endif // NO SIMULATION #if (CODE_VERSION != SIMULATION) // for PTOOL compatibility extern void INT_DisableIRQ(void); extern void INT_EnableIRQ(void); extern void l1dmacro_RF_sleep(void); extern void l1dmacro_RF_wakeup(void); WORD32 l1s_get_HWTimers_ticks(void); // file timer1.h SYS_UWORD16 Dtimer1_Get_cntlreg(void); void Dtimer1_AR(unsigned short Ar); void Dtimer1_PTV(unsigned short Ptv); void Dtimer1_Clken(unsigned short En); void Dtimer1_Start (unsigned short startStop); void Dtimer1_Init_cntl (SYS_UWORD16 St, SYS_UWORD16 Reload, SYS_UWORD16 clockScale, SYS_UWORD16 clkon); SYS_UWORD16 Dtimer1_WriteValue (SYS_UWORD16 value); SYS_UWORD16 Dtimer1_ReadValue (void); #endif void l1s_wakeup(void); BOOL l1s_compute_wakeup_ticks(void); void l1s_recover_Frame(void); UWORD8 Cust_recover_Os(void); void l1s_recover_HWTimers(void); UWORD8 Cust_check_system(void); void f_arm_sleep_cmd(UWORD8 d_sleep_mode); //#if (TRACE_TYPE == 2) || (TRACE_TYPE == 3) extern void L1_trace_string(char *s); extern void L1_trace_char (char s); //#endif extern UWORD16 slp_debug_flag; #if (GSM_IDLE_RAM != 0) extern void l1s_trace_mftab(void); #endif #if (CODE_VERSION != SIMULATION) && (CHIPSET == 15) extern T_DRP_REGS_STR *drp_regs; #endif #if L1_GPRS WORD32 l1s_get_next_gauging_in_Packet_Idle(void); #endif //#pragma DUPLICATE_FOR_INTERNAL_RAM_END #if !((MOVE_IN_INTERNAL_RAM == 1) && (GSM_IDLE_RAM !=0)) // MOVE TO INTERNAL MEM IN CASE GSM_IDLE_RAM enabled //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_START // KEEP IN EXTERNAL MEM otherwise /************************************************************/ /* Macros for power management */ /************************************************************/ #define MIN(min, operand1) \ if (operand1 <= min) min = operand1; // ex: RATIO T32khz/T4.33Mhz = 132.2428385417 // => root = integer part of the ratio // = 132 // => frac = fractionnal part of the ratio multiplied by 65536 rounded to make it integer // = 0.2428385417 * 65536 (Cf. ULPD specification) // = 0.2428385417 * 2^16 // = 15914.66666689 = 15914 #define RATIO(HF,LF, root, frac) \ root = (UWORD32)(HF/LF); \ frac = (UWORD32)(((HF - (root*LF)) << 16) / LF); // previous ratio with frac + 0.5 #if 0 /* original LoCosto code */ #define RATIO2(HF,LF, root, frac) \ if(LF){ \ root = (UWORD32)(HF/LF); \ frac = (UWORD32)((((HF - (root*LF)) << 16) + 0.5*LF) / LF);} #else /* FreeCalypso TCS211 reconstruction */ #define RATIO2(HF,LF, root, frac) \ { \ root = (UWORD32)(HF/LF); \ frac = (UWORD32)((((HF - (root*LF)) << 16) + 0.5*LF) / LF);} #endif #define HFTHEO(LF, root, frac, hftheo) \ hftheo = root*LF + ((frac*LF) >>16); #define SUM(HF, LF, nb, ind) \ LF=HF=0; \ for(ind=0; ind<nb; ind++) \ { \ LF = LF +l1s.pw_mgr.histo[ind][0]; \ HF = HF +l1s.pw_mgr.histo[ind][1]; \ } #if 0 /* FreeCalypso TCS211 reconstruction */ T_PWMGR_DEBUG l1_pwmgr_debug; #endif /* FreeCalypso: massive #if (CHIPSET == 15) chunk removed */ // l1ctl_pgm_clk32() // convert ratio in 4.33Mhz and pgm INC_FRAC,INC_SIXTEEN. void l1ctl_pgm_clk32(UWORD32 nb_hf, UWORD32 nb_32khz) { #if (CODE_VERSION != SIMULATION) if (l1_config.pwr_mngt == PWR_MNGT) { UWORD32 inc_sixteen= 0, inc_frac=0, lf; // REM: nb_hf is the real value of the high frequency (ex in nbr of 65Mhz clock) // To compute the ratio, nb_hf must be expressed in nbr of clock 4.33 Mhz // that's why nb_hf is divided by 3*l1_config.dpll // RATIO2(nb_hf/(3*l1_config.dpll),nb_32khz,inc_sixteen,inc_frac); // this line above is equal to the ligne below: lf=(UWORD32)(3*l1_config.dpll*nb_32khz); RATIO2(nb_hf,lf,inc_sixteen,inc_frac); // integer part ULDP_INCSIXTEEN_UPDATE(inc_sixteen); // fractional part ULDP_INCFRAC_UPDATE(inc_frac); } #endif } // l1ctl_gauging() // Description: management of the gauging results // At RESET state reset histogram and then go to INIT. // At INIT state, go back to RESET on each */ // gauging > +- 100 ppm. If NB_INIT good gauging go to ACQUIS state. // At ACQUIS state, go back to RESET on each gauging > (+- 20ppm +- 1us). If NB_ACQU good gauging */ // go to UPDATE state. Allow deep sleep feature. // At UPDATE state, count consecutive gauging >+- 1 us. // If MAX_BAD_GAUGING results go back to RESET. // Otherwise re-enable deep sleep feature and reset bad results counter. void l1ctl_gauging ( UWORD32 nb_32khz, UWORD32 nb_hf) { if (l1_config.pwr_mngt == PWR_MNGT) { enum states { RESET = 0, INIT = 1, ACQUIS = 2, UPDATE = 3 }; static UWORD8 bad_count; // bad gauging values static UWORD8 gauging_state= RESET; // RESET,INIT, ACQUIS, UPDATE static UWORD8 nb_gaug; // number of gauging in ACQUIS static UWORD8 idx,i; // index static UWORD32 root, frac; // ratio of HF and LF average UWORD32 sumLF, sumHF; // sum of HF and LF counts double nbHF_theo; // AFC or TEMPERATURE variation //if ( (ABS( (WORD32)(l1s.pw_mgr.previous_afc-l1s.afc) ) > AFC_VARIATION) || // (ABS( (WORD32)(l1s.pw_mgr.previous_temp-l1s.afc) > TEMP_VARIATION) ) // gauging_state = RESET; // reset state machine if not in IDLE mode #if L1_GPRS if ((l1a_l1s_com.l1s_en_task[NP] != TASK_ENABLED) && (l1a_l1s_com.l1s_en_task[PNP] != TASK_ENABLED)) gauging_state = RESET; #else if ((l1a_l1s_com.l1s_en_task[NP] != TASK_ENABLED) ) gauging_state = RESET; #endif switch (gauging_state) { case RESET: { UWORD8 i; // Reset Histogram for (i=0; i < SIZE_HIST; i++) { l1s.pw_mgr.histo[i][0] = 0; l1s.pw_mgr.histo[i][1] = 0; } idx = 0; l1s.pw_mgr.enough_gaug= FALSE; // forbid Deep sleep gauging_state = INIT; nb_gaug = NB_INIT; // counter for ACQUIS state bad_count = 0; // reset count of BAD gauging #if (TRACE_TYPE != 0) l1_trace_gauging_reset(); #endif } case INIT: { // Acquire NB_INIT gauging wtw +- 100 ppm if (l1a_l1s_com.mode != I_MODE) return; // compute clocks ratio from measurements. RATIO(nb_hf,nb_32khz,root,frac) // allow [-500ppm,+100ppm] derive on 32Khz at startup. #if 0 /* really old code, apparently */ if ( (root > l1s.pw_mgr.c_clk_min || (root == l1s.pw_mgr.c_clk_min && frac >= l1s.pw_mgr.c_clk_init_min) ) && (root < l1s.pw_mgr.c_clk_max || (root == l1s.pw_mgr.c_clk_max && frac <= l1s.pw_mgr.c_clk_init_max ) ) #elif 1 /* TCS211 reconstruction */ if ( (root == l1s.pw_mgr.c_clk_min && frac >= l1s.pw_mgr.c_clk_init_min ) || (root == l1s.pw_mgr.c_clk_max && frac <= l1s.pw_mgr.c_clk_init_max ) #else /* LoCosto code */ if ( ( l1s.pw_mgr.c_clk_min == l1s.pw_mgr.c_clk_max && frac >= l1s.pw_mgr.c_clk_init_min && frac <= l1s.pw_mgr.c_clk_init_max ) || ( l1s.pw_mgr.c_clk_min != l1s.pw_mgr.c_clk_max && ( (root == l1s.pw_mgr.c_clk_min && frac >= l1s.pw_mgr.c_clk_init_min ) || (root > l1s.pw_mgr.c_clk_min && root < l1s.pw_mgr.c_clk_max ) || (root == l1s.pw_mgr.c_clk_max && frac <= l1s.pw_mgr.c_clk_init_max ) ) ) #endif ) { l1s.pw_mgr.histo[idx ][0] = nb_32khz; // init histo with the number of 32kHz l1s.pw_mgr.histo[idx++][1] = nb_hf; // init histo with the number of hf (13Mhz) #if (CODE_VERSION == SIMULATION) #if (TRACE_TYPE==5) trace_ULPD("Gauging INIT Case ", l1s.actual_time.fn); #endif #endif } else { // out of the allowed derive -> reset idx=0; #if (TRACE_TYPE != 0) l1_trace_gauging_reset(); #endif } if (idx == NB_INIT) { // enough measurement -> ACQUIS state gauging_state = ACQUIS; // compute clk ratio on count average SUM(sumHF,sumLF, NB_INIT,i) // returns sumHF and sumLF RATIO(sumHF,sumLF,root, frac) // returns root and frac*2E16, computed on the average } } break; case ACQUIS: { // Acquire NB_ACQU gauging at +-25ppm // with jitter +- 1 us UWORD8 n; // from nb_32khz "measured" // compute nbHF_theo HFTHEO(nb_32khz,root,frac,nbHF_theo) if ( (nb_hf >= (nbHF_theo - l1s.pw_mgr.c_delta_hf_acquis)) && (nb_hf <= (nbHF_theo + l1s.pw_mgr.c_delta_hf_acquis)) ) { l1s.pw_mgr.histo[idx][0] = nb_32khz; l1s.pw_mgr.histo[idx++][1] = nb_hf; idx = idx % SIZE_HIST; // compute clk ratio on count average if(++nb_gaug >= SIZE_HIST) n=SIZE_HIST; else n= nb_gaug; SUM(sumHF,sumLF, n,i) RATIO(sumHF,sumLF,root, frac) #if (CODE_VERSION == SIMULATION) #if (TRACE_TYPE==5) trace_ULPD("Gauging ACQUIS Case ", l1s.actual_time.fn); #endif #endif if ( nb_gaug == (NB_INIT+NB_ACQU)) // NB_ACQU good gauging { gauging_state = UPDATE; // UPDATE state l1s.pw_mgr.enough_gaug = TRUE; // allow Deep sleep l1ctl_pgm_clk32(sumHF,sumLF); // clocks ratio in 4.33Mhz } } else { gauging_state = RESET; } } break; case UPDATE: { // Update gauging histogram // compute nbHF theoric for ratio_avg HFTHEO(nb_32khz,root,frac,nbHF_theo) if ( (nb_hf >= (nbHF_theo-l1s.pw_mgr.c_delta_hf_update)) && (nb_hf <= (nbHF_theo+l1s.pw_mgr.c_delta_hf_update)) ) { l1s.pw_mgr.histo[idx][0] = nb_32khz; l1s.pw_mgr.histo[idx++][1] = nb_hf; // compute clk ratio on count average SUM(sumHF,sumLF, SIZE_HIST,i) l1ctl_pgm_clk32(sumHF,sumLF); // clocks ratio in 4.33Mhz l1s.pw_mgr.enough_gaug = TRUE; // allow Deep sleep bad_count = 0; // reset count of BAD gauging #if (CODE_VERSION == SIMULATION) #if (TRACE_TYPE==5) trace_ULPD("Gauging UPDATE Case ", l1s.actual_time.fn); #endif #endif } else { bad_count ++; if (bad_count >= MAX_BAD_GAUGING) gauging_state = RESET; l1s.pw_mgr.enough_gaug= FALSE; // forbid Deep sleep } idx = idx % SIZE_HIST; } break; } #if (TRACE_TYPE != 0) // Trace gauging // save parameters in the corresponding structure l1s.pw_mgr.state = gauging_state; l1s.pw_mgr.lf = nb_32khz ; // WARNING WARNING, this case gauging_state == UPDATE modify the algo. // In case of trace the parameter root and frac are refresh. // it is not the case if no trace and it seems there is mistake #if 0 /* FreeCalypso TCS211 reconstruction */ if (gauging_state == UPDATE) { RATIO2(sumHF,sumLF,root,frac); } #endif //End of Warning. l1s.pw_mgr.hf = nb_hf ; l1s.pw_mgr.root = root ; l1s.pw_mgr.frac = frac ; #endif // End Trace gauging } } /* GAUGING_Handler() */ /* Description: update increment counter for 32Khz */ /* This interrupt function computes the ratio between */ /* HF/32Khz gauging counters and program ULPD increment */ /* values. */ void GAUGING_Handler(void) { #if (CODE_VERSION != SIMULATION) if (l1_config.pwr_mngt == PWR_MNGT) { UWORD32 nb_32khz, nb_hf; // Gauging task is ended l1s.pw_mgr.gauging_task = INACTIVE; #if (CHIPSET == 12) || (CHIPSET == 15) F_INTH_DISABLE_ONE_IT(C_INTH_ULPD_GAUGING_IT); // Mask ULPD GAUGING int. #else INTH_DISABLEONEIT(IQ_ULPD_GAUGING); // Mask ULPD GAUGING int. #endif // Number of 32 Khz clock at the end of the gauging nb_32khz = ((*( UWORD16 *)ULDP_COUNTER_32_MSB_REG) * 65536) + (*( UWORD16 *)ULDP_COUNTER_32_LSB_REG); // Number of high frequency clock at the end of the gauging // Convert it in nbr of 13 Mhz clocks (5*13=65Mhz) nb_hf = ( ((*( UWORD16 *)ULDP_COUNTER_HI_FREQ_MSB_REG) * 65536) + (*( UWORD16 *)ULDP_COUNTER_HI_FREQ_LSB_REG) ); // Divide by PLL ratio l1ctl_gauging(nb_32khz, nb_hf); } #else //Simulation part // Gauging task is ended l1s.pw_mgr.gauging_task = INACTIVE; l1ctl_gauging(DEFAULT_32KHZ_VALUE,DEFAULT_HFMHZ_VALUE); #endif } // l1s_get_HWTimers_ticks() // Description: // evaluate the loading of the HW Timers for dep sleep // BIG SLEEP: timers CLK may be stopped (user dependant) // DEEP SLEEP:timers CLK and WTCHDOG CLK are stopped // CLKS are enabled after VTCX0+SLICER+13MHZ // setup time WORD32 l1s_get_HWTimers_ticks(void) { #if (CODE_VERSION != SIMULATION) WORD32 timer1,timer2,watchdog,HWTimer; #if (CHIPSET == 12) || (CHIPSET == 15) WORD32 watchdog_sec; #endif UWORD16 cntlreg; UWORD16 modereg; WORD32 old = 0; // read Hercules Timers & Watchdog //================================================= // Tint = Tclk * (LOAD_TIM+1) * 2^(PTV+1) // Tclk = 1.2308us for Fclk=13Mhz // PTV = X (pre-scaler field) //------------------------------------------------- timer1 = timer2 = watchdog = HWTimer = -1; #if (CHIPSET == 12) || (CHIPSET == 15) watchdog_sec = -1; #endif cntlreg = Dtimer1_Get_cntlreg(); // AND 0x1F if ( (cntlreg & D_TIMER_RUN) == D_TIMER_RUN) { #if 0 /* match TCS211 object */ cntlreg = cntlreg&0x1F; #endif cntlreg >>= 2; // take PTV cntlreg = 1 << (cntlreg+1); timer1 = (WORD32) ( ((Dtimer1_ReadValue()+1) * cntlreg * 0.0012308) / 4.615 ); if (timer1 <= MIN_SLEEP_TIME) return(0); old = Dtimer1_ReadValue(); HWTimer = timer1; } cntlreg = Dtimer2_Get_cntlreg(); if ( (cntlreg & D_TIMER_RUN) == D_TIMER_RUN) { #if 0 /* match TCS211 object */ cntlreg = cntlreg&0x1F; #endif cntlreg >>= 2; // take PTV cntlreg = 1 << (cntlreg+1); timer2 = (WORD32) ( ((Dtimer2_ReadValue()+1) * cntlreg * 0.0012308) / 4.615 ); if (timer2 <= MIN_SLEEP_TIME) return(0); if (HWTimer == -1) HWTimer = timer2; else MIN(HWTimer,timer2) } cntlreg = TIMER_Read(0); // AND 0x0f80 modereg = TIMER_Read(2); if ( (cntlreg & TIMER_ST) || (modereg & TIMER_WDOG)) { // in watchdog mode PTV is forced to 7 if ( modereg & TIMER_WDOG ) cntlreg |= TIMER_PTV; cntlreg = (cntlreg & TIMER_PTV) >> 9; // take PTV cntlreg = 1 << (cntlreg+1); watchdog = (WORD32) ( ((TIMER_ReadValue()+1) * cntlreg * 0.001078) / 4.615 ); if (watchdog <= MIN_SLEEP_TIME) return(0); if (HWTimer == -1) HWTimer = watchdog; else MIN(HWTimer,watchdog) } #if (CHIPSET == 12) || (CHIPSET == 15) /* * Secure Watchdog Timer management */ cntlreg = TIMER_SEC_Read(0); // AND 0x0f80 modereg = TIMER_SEC_Read(2); if ( (cntlreg & TIMER_ST) || (modereg & TIMER_WDOG)) { // in watchdog mode PTV is forced to 7 if ( modereg & TIMER_WDOG ) cntlreg |= TIMER_PTV; cntlreg = (cntlreg & TIMER_PTV) >> 9; // take PTV cntlreg = 1 << (cntlreg+1); watchdog_sec = (WORD32) ( ((TIMER_SEC_ReadValue()+1) * cntlreg * 0.001078) / 4.615 ); if (watchdog_sec <= MIN_SLEEP_TIME) return(0); if (HWTimer == -1) HWTimer = watchdog_sec; else MIN(HWTimer,watchdog_sec) } #endif return (HWTimer); #else // simulation part return (-1); // no HW timer in simulation #endif } #if (GSM_IDLE_RAM != 0) // Compile only if GSM_IDLE_RAM enabled void l1s_adapt_traffic_controller(void) { BOOL l1s_extram; UWORD8 nb_bitmap; T_L1S_GSM_IDLE_INTRAM * gsm_idle_ram_ctl; gsm_idle_ram_ctl = &(l1s.gsm_idle_ram_ctl); l1s_extram = FALSE; for(nb_bitmap=0; ((nb_bitmap < SIZE_TAB_L1S_MONITOR) && (l1s_extram == FALSE)); nb_bitmap++) { if (nb_bitmap == 1) { l1s_extram |= (((INT_RAM_GSM_IDLE_L1S_PROCESSES1 ^ gsm_idle_ram_ctl->task_bitmap_idle_ram[nb_bitmap]) & gsm_idle_ram_ctl->task_bitmap_idle_ram[nb_bitmap]) != 0); }else { l1s_extram |= (gsm_idle_ram_ctl->task_bitmap_idle_ram[nb_bitmap] != 0); } } if ((l1s_extram != FALSE) && (!READ_TRAFFIC_CONT_STATE)) { CSMI_TrafficControllerOn(); #if (TRACE_TYPE==1) || (TRACE_TYPE==4) { l1s_trace_mftab(); } #endif } } #endif UWORD32 last_wakeup = 0; UWORD8 wakeup_type; // Type of the interrupt UWORD8 why_big_sleep; // Type of the big sleep extern UWORD16 int_id; // l1s_sleep_manager() // Description: // evaluate the loading of the system // - SIM, UART, LCD .... // - Nucleus tasks, Hisrs, timers // - Timer1, Timer2, Watchdog // program Big or Deep sleep void l1s_sleep_manager() { //UWORD8 temp=0; OMAPS00090550 UWORD16 temp_clear_intr; // fn when l1s_sleep_manager function is called #if (CODE_VERSION != SIMULATION) UWORD32 sleep_time = l1s.actual_time.fn_mod42432; #else UWORD32 sleep_time = l1s.actual_time.fn; #endif if (l1_config.pwr_mngt == PWR_MNGT) { // Power management is enabled WORD32 min_time, HWtimer,wake_up_time,min_time_gauging; WORD32 afc_fix; static UWORD32 previous_sleep = CLOCK_STOP; #if (W_A_CALYPSO_PLUS_SPR_19599 == 1) BOOL extended_page_mode_state = 0; //Store state of extended page mode #endif WORD32 time_from_last_wakeup, min_time_from_last_wakeup; UWORD32 sleep_mode; #if (OP_BT == 1) WORD32 hci_ll_status; #endif // init for trace and debug why_big_sleep = BIG_SLEEP_DUE_TO_UNDEFINED; wakeup_type = WAKEUP_FOR_UNDEFINED; /* * FreeCalypso change: TI's original code implemented logic to * suppress both big and deep sleep (i.e., retry on the next frame) * if less than 7 frames have elapsed since the last wakeup and * if the previous sleep cycle was CLOCK_STOP. We are changing * this logic in two ways: the check has been moved up here * (originally the check code was way down, wasting work on other * logic if there will be no sleep anyway), and we additionally * suppress both big and deep sleep (effecting retry on the next * frame) if the previous sleep cycle was FRAME_STOP and less than * 5 frames have elapsed since wakeup. The reason for the latter * addition is that we now allow big sleep while UART and/or SIM * activity timers are running (suppressing deep sleep), and * holding off for 5 frames before going into another big sleep * keeps us from fluttering in and out of big sleep as the external * host or the SIM is trying to talk to us. */ time_from_last_wakeup = (sleep_time - last_wakeup + 42432) % 42432; if (previous_sleep == CLOCK_STOP) min_time_from_last_wakeup = 7; else min_time_from_last_wakeup = 5; if (time_from_last_wakeup < min_time_from_last_wakeup) return; //================================================= // check System (SIM, UART, LDC ..... ) //================================================= sleep_mode = Cust_check_system(); if (sleep_mode == DO_NOT_SLEEP) return; #if (CODE_VERSION != SIMULATION) //================================================= // Protect System structures // must be called BEFORE INT_DisableIRQ() while // Nucleus does not restore IRQ/FIQ bits !!!! //================================================= OS_system_protect(); //================================================= // Disable IRQ //================================================= INT_DisableIRQ(); #endif // NOT SIMULATION //================================================= // check OS loading //================================================= min_time = OS_get_inactivity_ticks(); //================================================= // check HW Timers loading //================================================= HWtimer= l1s_get_HWTimers_ticks(); //================================================= // check next gauging task for Packet Idle //================================================= #if L1_GPRS min_time_gauging = l1s_get_next_gauging_in_Packet_Idle(); #else min_time_gauging = -1; // not used #endif #if (OP_BT == 1) hci_ll_status = hci_ll_ok_for_sleep(); #endif // check if immediate activity planned // 0 means immediate activity // in case big sleep is choosen (sleep mode == FRAME_STOP) because of UART or SIM, // return and wait end of this activity (few TDMA frames) then check on next TDMA frames // if MS can go in deep sleep /* * FreeCalypso change: we no longer abstain from big sleep because of UART * and SIM activity timers, i.e., when deep sleep is suppressed because of * either of those, we go into big sleep instead. We also do big sleep * if deep sleep is disallowed because of the backlight or charging. * However, if the UART issue is not the running activity timer, but some * output being drained from the Tx FIFO, for that case our new code in * Cust_check_system() will return DO_NOT_SLEEP (checked above), causing * us to retry on the next frame and hopefully go into deep sleep after * another frame or two. */ if ( !min_time || !HWtimer || !min_time_gauging #if 0 /* FreeCalypso change */ || (sleep_mode != CLOCK_STOP) #endif #if (OP_BT == 1) || !hci_ll_status #endif ) { #if (CODE_VERSION != SIMULATION) OS_system_Unprotect(); // free System structure // Enable all IRQ INT_EnableIRQ(); // Wake up UART SER_WakeUpUarts(); // Wake up Uarts #endif return; } //================================================= // Select sleep duration .... //================================================= // remember: -1 means no activity planned //l1a_l1s_com.time_to_next_l1s_task is UW32, min_time is W32. Max value of l1a_l1s_com.time_to_next_l1s_task will be 2p31 //and ,min_time max value will be 2p30. If min_time > l1a_l1s_com.time_to_next_l1s_task, //means MSB of l1a_l1s_com.time_to_next_l1s_task is zero. so, we can use- uw32_store_next_time & 0x7FFFFFFF if (min_time == -1) min_time = l1a_l1s_com.time_to_next_l1s_task; else MIN(min_time, l1a_l1s_com.time_to_next_l1s_task) if (HWtimer != -1) MIN(min_time, HWtimer) if (min_time_gauging != -1) MIN(min_time, min_time_gauging) #if (TRACE_TYPE !=0 ) && (TRACE_TYPE != 2) && (TRACE_TYPE != 3) // to trace the Wake up source // depending of min_time choose the wakeup_type wakeup_type = WAKEUP_FOR_OS_TASK; if (min_time == l1a_l1s_com.time_to_next_l1s_task) wakeup_type = WAKEUP_FOR_L1_TASK; if (min_time == HWtimer) wakeup_type = WAKEUP_FOR_HW_TIMER_TASK; if (min_time == min_time_gauging) wakeup_type = WAKEUP_FOR_GAUGING_TASK; #endif //================================================= // Choose DEEP or BIG SLEEP //================================================= if ( ((l1s.pw_mgr.mode_authorized == DEEP_SLEEP) && (sleep_mode == CLOCK_STOP)) || ((l1s.pw_mgr.mode_authorized == ALL_SLEEP) && (sleep_mode == CLOCK_STOP)) ) { // Check now gauging histogramme or if in inactive period of cell selection #if (W_A_DSP_IDLE3 == 1) && (CODE_VERSION!=SIMULATION) if (((l1s.pw_mgr.enough_gaug == TRUE) || (l1a_l1s_com.mode == CS_MODE0)) && ( l1s_dsp_com.dsp_ndb_ptr->d_dsp_state == C_DSP_IDLE3)) #else #if (CHIPSET == 12) || (CHIPSET == 15) if (((l1s.pw_mgr.enough_gaug == TRUE) || (l1a_l1s_com.mode == CS_MODE0)) && !CLKM_READ_nIDLE3) #else if ((l1s.pw_mgr.enough_gaug == TRUE) || (l1a_l1s_com.mode == CS_MODE0)) #endif #endif l1s.pw_mgr.sleep_performed = CLOCK_STOP; else { // BIG SLEEP is chosen : check the reason l1s.pw_mgr.sleep_performed = FRAME_STOP; if (l1s.pw_mgr.enough_gaug != TRUE) why_big_sleep = BIG_SLEEP_DUE_TO_GAUGING; else why_big_sleep = BIG_SLEEP_DUE_TO_DSP_TRACES; } } if (l1s.pw_mgr.mode_authorized == BIG_SLEEP || l1s.pw_mgr.mode_authorized == BIG_SMALL_SLEEP) why_big_sleep = BIG_SLEEP_DUE_TO_SLEEP_MODE; if ( ((l1s.pw_mgr.mode_authorized == BIG_SLEEP) && (sleep_mode >= FRAME_STOP)) || ((l1s.pw_mgr.mode_authorized == BIG_SMALL_SLEEP) && (sleep_mode >= FRAME_STOP)) || ((l1s.pw_mgr.mode_authorized >= DEEP_SLEEP) && (sleep_mode == FRAME_STOP)) ) l1s.pw_mgr.sleep_performed = FRAME_STOP; /* FreeCalypso change: check moved up and extended */ #if 0 if ((previous_sleep == CLOCK_STOP) && (time_from_last_wakeup < 7)) { #if (CODE_VERSION != SIMULATION) OS_system_Unprotect(); // free System structure INT_EnableIRQ(); // Enable all IRQ SER_WakeUpUarts(); // Wake up Uarts #endif // NOT SIMULATION return; } #endif // update previous sleep previous_sleep = l1s.pw_mgr.sleep_performed; #if (CODE_VERSION != SIMULATION) #if (CHIPSET == 12) || (CHIPSET == 15) F_INTH_DISABLE_ONE_IT(C_INTH_FRAME_IT); // mask Frame int. #else INTH_DISABLEONEIT(IQ_FRAME); // mask Frame int. #endif #endif //===================================================== // if CLOCK_STOP : stop RF, TPU, asleep Omega, DPLL, SPI // if FRAME_STOP : asleep Omega, SPI //===================================================== #if (CODE_VERSION != SIMULATION) if ( l1s.pw_mgr.sleep_performed == CLOCK_STOP ) { // ==== STop RF and TPU..... =================== //L1_trace_string("Proceeding to Deep Sleep\n"); l1dmacro_RF_sleep(); // (*(volatile UWORD16 *)l1s_tpu_com.reg_cmd) =TPU_CTRL_RESET | // TSP_CTRL_RESET |TPU_CTRL_CLK_EN; // (*(volatile UWORD16 *)l1s_tpu_com.reg_cmd) =0; //===== SET default value for gauging ========= // If we have come in here during the inactive period of cell // selection, then load the ULPD timers with default values // (used when the MS lost the network: in this case the deep sleep may be used) if (l1a_l1s_com.mode == CS_MODE0) { l1ctl_pgm_clk32(DEFAULT_HFMHZ_VALUE, DEFAULT_32KHZ_VALUE); } } //============================================== // disable DPLL (do not provide clk to DSP & RIF (RIF)) //============================================== #if ((CHIPSET ==4) || (CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12) || (CHIPSET == 15)) // disable DPLL (do not provide clk to DSP & RIF (Bridge)) ( * (volatile SYS_UWORD16 *) CLKM_CNTL_CLK) |= CLKM_DPLL_DIS | CLKM_BRIDGE_DIS; #endif //============================================== // if CLOCK_STOP or FRAME-STOP : Asleep OMEGA (ABB) //============================================== afc_fix = ABB_sleep(l1s.pw_mgr.sleep_performed, l1s.afc); #if (OP_BT == 1) hci_ll_go_to_sleep(); #endif //================================================= // STop SPI ..... //================================================= *((volatile UWORD16 *)MEM_SPI)&=0xFFFE; // SPI CLK DISABLED #endif // NOT SIMULATION //================================================= // CQ19599: For Calypso+ chipset, extended page mode // shall be disabled before entering deep sleep and // restored at wake up //================================================= #if (W_A_CALYPSO_PLUS_SPR_19599 == 1) extended_page_mode_state = (BOOL) f_memif_extended_page_mode_read_bit(); f_memif_extended_page_mode_disable(); #endif //================================================= // Init the timer : // // a margin of 4 frames (>MIN_SLEEP_TIME) is taken // when evaluating system loading, because 1 frame // is lost for wakeup only, and because sleep // duration less than 1 frame is not worth .... // // 1 2 3 4 5 6 7 8 // SLEEP_CTRL SLEEP WAKEUP TASK (RF,Timer, ...) // //================================================= //ULPD Timer can be loaded up to MAX_GSM_TIMER (possible in CS_MODE0) if ( l1s.pw_mgr.sleep_performed == CLOCK_STOP ) { // DEEP SLEEP -> need time to setup afc and rf wake_up_time = min_time - l1_config.params.setup_afc_and_rf; } else // BIG SLEEP wake_up_time = min_time - 1; #if (CODE_VERSION != SIMULATION) if ( wake_up_time >= MAX_GSM_TIMER) ULDP_TIMER_INIT(MAX_GSM_TIMER); else ULDP_TIMER_INIT(wake_up_time); ULDP_TIMER_LD; // Load the timer // BUG3060. Clear pending IQ_TGSM from ULPD. This could happen in case ULPD was frozen // with zero into its GSM counter. In that case, the interrupt is still pending // and if it is not cleared, it wakes the board up just after switching the clock. // Clear it into the ULPD... // The ULDP_GSM_TIMER_IT_REG is a read only register and is cleared on //reading the register. temp_clear_intr =(* (volatile UWORD16 *) ULDP_GSM_TIMER_IT_REG) & ULPD_IT_TIMER_GSM; // ... and next into the INTH. (must be done in this order #if (CHIPSET == 12) || (CHIPSET == 15) F_INTH_RESET_ONE_IT(C_INTH_TGSM_IT); F_INTH_ENABLE_ONE_IT(C_INTH_TGSM_IT); #else INTH_RESETONEIT(IQ_TGSM); // clear TDMA IRQ INTH_ENABLEONEIT(IQ_TGSM); // Unmask ULPD GSM int. #endif #if (GSM_IDLE_RAM != 0) if (READ_TRAFFIC_CONT_STATE) { CSMI_TrafficControllerOff(); } #endif ULDP_TIMER_START; // start count down #if (GSM_IDLE_RAM_DEBUG == 1) (*( volatile unsigned short* )(0xFFFE4802)) &= ~ (1 << 2); // GPIO-2=0 #endif if ( l1s.pw_mgr.sleep_performed == CLOCK_STOP ) // DEEP SLEEP { #if (OP_WCP == 1) && (OP_L1_STANDALONE != 1) // specific sleep for WCP arm7_deep_sleep(); #else // NO OP_WCP #if (W_A_CALYPSO_BUG_01435 == 1) f_arm_sleep_cmd(DEEP_SLEEP); #else *((volatile UWORD16 *)CLKM_ARM_CLK) &= ~(CLKM_DEEP_SLEEP); // set deep sleep mode #endif #endif // OP_WCP } else { // BIG SLEEP / l1s.pw_mgr.sleep_performed == FRAME_STOP //========================================================== //Shut down PERIPHERALS clocks UWIRE and ARMIO if authorized //========================================================== UWORD16 clocks_stopped; //OMAPS90550- new clocks_stopped = (l1s.pw_mgr.clocks & l1s.pw_mgr.modules_status); if((clocks_stopped & ARMIO_CLK_CUT) == ARMIO_CLK_CUT) *((volatile UWORD16 *)ARMIO_CNTL_REG) &= ~(ARMIO_CLOCKEN); if((clocks_stopped & UWIRE_CLK_CUT) == UWIRE_CLK_CUT) *((volatile UWORD16 *)(MEM_UWIRE + 0x8)) &= ~(0x0001); #if (W_A_CALYPSO_BUG_01435 == 1) f_arm_sleep_cmd(BIG_SLEEP); #else *((volatile UWORD16 *)CLKM_ARM_CLK) &= ~(CLKM_MCLK_EN); // set big sleep mode #endif } #else // Simulation part l1s.pw_mgr.sleep_duration = wake_up_time; hw.deep_sleep_en = 1; status = NU_Suspend_Task(&L1S_task); // check status value... if (status) { #if (TRACE_TYPE==5) sprintf(errormsg,"Error somewhere in the L1S application to suspend : deep sleep\n"); log_sim_error(ERR); #endif EXIT; } #endif // SIMULATION //================================================= // Wake-up procedure //================================================= // Restore L1 data base, Nucleus, HW Timers .... //================================================= #if (GSM_IDLE_RAM_DEBUG == 1) (*( volatile unsigned short* )(0xFFFE4802)) |= (1 << 2); // GPIO-2=1 #endif l1s_wakeup(); last_wakeup = l1s.actual_time.fn_mod42432; if (last_wakeup == sleep_time) // sleep duration == 0 -> wakeup in the same frame as sleep wakeup_type = WAKEUP_ASYNCHRONOUS_SLEEP_DURATION_0; #if (GSM_IDLE_RAM != 0) // Update counters with sleep duration -> will be used case expiration in next wake up phase before traffic controller is enabled by msg sending gsm_idle_ram_ctl->os_load -= (l1s.pw_mgr.sleep_duration); gsm_idle_ram_ctl->hw_timer -= (l1s.pw_mgr.sleep_duration); if (l1s.pw_mgr.wakeup_type != WAKEUP_FOR_L1_TASK) { if (!READ_TRAFFIC_CONT_STATE) { CSMI_TrafficControllerOn(); } } #endif //================================================= //if CLOCK_STOP : restart TPU and RF.... //================================================= #if (CODE_VERSION != SIMULATION) if ( l1s.pw_mgr.sleep_performed == CLOCK_STOP ) { // (*(volatile UWORD16 *)l1s_tpu_com.reg_cmd) = TPU_CTRL_CLK_EN; UWORD8 local_sleep_status; l1dmacro_RF_wakeup(); } #if ((CHIPSET ==4) || (CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11)) // enable DPLL (provide clk to DSP & RIF(Bridge) in small/big sleep) // On CALYPSO, BRIDGE clock can be cut according to the ARM sleep mode even during DMA transfer ( * (volatile SYS_UWORD16 *) CLKM_CNTL_CLK) &= ~(CLKM_DPLL_DIS | CLKM_BRIDGE_DIS); #elif (CHIPSET == 12) // Nothing to be done because if DSP wants clock, it will exit from IDLE3 mode, which wakes up the DPLL #elif (CHIPSET == 15) ( * (volatile SYS_UWORD16 *) CLKM_CNTL_CLK) &= ~(CLKM_DPLL_DIS); #endif //================================================= //if CLOCK_STOP or FRAME-STOP : ReStart SPI //================================================= *((volatile UWORD16 *)MEM_SPI)|=0x0001; // SPI CLK ENABLED //================================================= // Wake up ABB //================================================= ABB_wakeup(l1s.pw_mgr.sleep_performed, l1s.afc); #if (OP_BT == 1) hci_ll_wake_up(); #endif #endif //CODE VERSION //================================================= // CQ19599: For Calypso+ chipset, restore the extended // page mode if it was enabled before entering in sleep //================================================= #if (W_A_CALYPSO_PLUS_SPR_19599 == 1) if ( extended_page_mode_state != 0 ) f_memif_extended_page_mode_enable(); #endif #if (OP_L1_STANDALONE == 0) /*GC_Wakeup(); OMAPS00134004*/ #endif #if (CODE_VERSION != SIMULATION) //================================================= // enable IRQ //================================================= OS_system_Unprotect(); #endif #if (TRACE_TYPE != 0) if (l1a_l1s_com.mode != CS_MODE0) // in this mode the trace prevent from going to deep sleep due to UART activity { #if (GSM_IDLE_RAM == 0) l1_trace_sleep(sleep_time, l1s.actual_time.fn_mod42432, l1s.pw_mgr.sleep_performed, wakeup_type, why_big_sleep); #else l1_trace_sleep_intram(sleep_time, l1s.actual_time.fn_mod42432, l1s.pw_mgr.sleep_performed, wakeup_type, why_big_sleep); #if (TRACE_TYPE==1) || (TRACE_TYPE==4) l1s_trace_mftab(); #endif #endif } #endif #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) trace_info.sleep_performed = TRUE; #endif #if (CODE_VERSION != SIMULATION) //================================================= // enable IRQ //================================================= INT_EnableIRQ(); //================================================= // Be careful:in case of asynchronous wake-up after sleep // an IT_TDMA may be unmasked and executed just after OS_system_Unprotect(). // As we already are inside an hisr(), it implies the execution of an another hisr(). // In order to avoid issues with the execution of an hisr() inside the hisr() // do not add code here after !!! // if possible respect this rule ! //================================================= //================================================= // wake-up UARTs //this function must be call after the UART interrupt, //it means after the function INT_EnableIRQ() //================================================= { #if (GSM_IDLE_RAM != 0) // Traffic controller has to be enabled before calling SER_WakeUpUarts // as this function can access the external RAM. // Reset the flag that will indicates if an interrup will put the traffic // controller ON during that time. l1s.gsm_idle_ram_ctl.trff_ctrl_enable_cause_int = FALSE; if (!READ_TRAFFIC_CONT_STATE) { flag_traffic_controller_state = 1; CSMI_TrafficControllerOn(); } #endif SER_WakeUpUarts(); // Wake up Uarts #if (GSM_IDLE_RAM != 0) // The traffic controller state shall be restored as it was before // calling SER_WakeUpUarts. Do not disable it if an interrup occured // in between and activated the traffic controller. if ((flag_traffic_controller_state == 1) && (l1s.gsm_idle_ram_ctl.trff_ctrl_enable_cause_int == FALSE)) { CSMI_TrafficControllerOff(); } flag_traffic_controller_state = 0; #endif } #endif // NOT SIMULATION } } // l1s_wakeup() */ // Description: wake-up of the MCU from GSM Timer it OR unscheduled wake-up // This function read the TPU timer and fix the : // - system clock // - Nucleus timers // - L1 frame counter // - L1 next task counter // - Hardware timers void l1s_wakeup(void) { #if (CODE_VERSION != SIMULATION) if (l1_config.pwr_mngt == PWR_MNGT) { // Restore interrupts .... #if (CHIPSET == 12) || (CHIPSET == 15) // mask TGSM int. F_INTH_DISABLE_ONE_IT(C_INTH_TGSM_IT); #else INTH_DISABLEONEIT(IQ_TGSM); // mask TGSM int. #endif #if (CHIPSET == 12) || (CHIPSET == 15) int_id = ((* (SYS_UWORD16 *) C_INTH_B_IRQ_REG) & C_INTH_SRC_NUM);// For debug: Save IRQ that causes the waking up if ( int_id >= 256 ) int_id = ((* (SYS_UWORD16 *) C_INTH_B_FIQ_REG) & C_INTH_SRC_NUM)+100; #else int_id = ((* (SYS_UWORD16 *) INTH_B_IRQ_REG) & INTH_SRC_NUM);// For debug: Save IRQ that causes the waking up if ( int_id >= 256 ) int_id = ((* (SYS_UWORD16 *) INTH_B_FIQ_REG) & INTH_SRC_NUM)+100; #endif // clear pending IQ_FRAME it and unmask it #if (CHIPSET == 12) || (CHIPSET == 15) F_INTH_RESET_ONE_IT(C_INTH_FRAME_IT); F_INTH_ENABLE_ONE_IT(C_INTH_FRAME_IT); // Unmask FRAME int. #else INTH_RESETONEIT(IQ_FRAME); // clear TDMA IRQ INTH_ENABLEONEIT(IQ_FRAME); // Unmask FRAME int. #endif #if (CHIPSET == 8) // if deep sleep if ( l1s.pw_mgr.sleep_performed == CLOCK_STOP ) { UWORD8 i; // Loop with check whether DPLL is locked: 100 us max. for (i=0;i<16;i++) { if (DPLL_READ_DPLL_LOCK) break; } wait_ARM_cycles(convert_nanosec_to_cycles(50000)); // 50us // Enable DPLL //-------------------------------------------------- DPLL_SET_PLL_ENABLE; // Loop with check whether DPLL is locked: 100 us max. for (i=0;i<16;i++) { if (DPLL_READ_DPLL_LOCK) break; } wait_ARM_cycles(convert_nanosec_to_cycles(50000)); // 50us } // if deep sleep #endif // CHIPSET == 8 //================================================= //Restart PERIPHERALS clocks if necessary after a big sleep period // WARNING: restart other clocks modules!!! //================================================= #if(CHIPSET == 15) if(l1s.pw_mgr.sleep_performed == FRAME_STOP ) { //ABB_Wakeup_BS(); //Not Used //DBB_Wakeup_BS(); //Not Used } #else // if big sleep if ( l1s.pw_mgr.sleep_performed == FRAME_STOP ) { UWORD16 clocks_stopped; clocks_stopped = (l1s.pw_mgr.clocks & l1s.pw_mgr.modules_status); if((clocks_stopped & ARMIO_CLK_CUT) == ARMIO_CLK_CUT) *((volatile UWORD16 *)ARMIO_CNTL_REG) |= ARMIO_CLOCKEN; if((clocks_stopped & UWIRE_CLK_CUT) == UWIRE_CLK_CUT) *((volatile UWORD16 *)(MEM_UWIRE + 0x8)) |= 0x0001; } #endif /***************************************************/ /* Compute effective sleeping time .... */ /* */ /* sleep duration is */ /* - TIMER_INIT */ /* - or TIMER_INIT - TIMER_VALUE */ /* */ /* "frame_adjust" = TRUE for unschedules wake-up */ /* FALSE for scheduled wake-up */ /***************************************************/ l1s.pw_mgr.frame_adjust = l1s_compute_wakeup_ticks(); #if (TRACE_TYPE !=0 ) && (TRACE_TYPE != 2) && (TRACE_TYPE != 3) if ((l1s.pw_mgr.frame_adjust == TRUE)) wakeup_type = WAKEUP_BY_ASYNC_INTERRUPT; #endif /* Fix Frame */ l1s_recover_Frame(); /* Fix Hardware Timers */ /* */ /* GSM 1.0 : ntd - timer clock not cut */ /* */ /* GSM 1.5 : deep sleep - need to fix timers */ if (l1s.pw_mgr.sleep_performed == CLOCK_STOP) l1s_recover_HWTimers(); /* Fix Os */ if (Cust_recover_Os()) l1s.pw_mgr.Os_ticks_required = TRUE; } #else // SIMULATION part // update L1 timers (FN,...) l1s_recover_Frame(); #endif } /* l1s_wakeup_adjust() */ /* Description: 1 frame adjust a fter unscheduled wake-up */ /* This function fix the : */ /* - system clock */ /* - Nucleus timers */ /* - L1 frame counter */ /* - L1 next task counter */ /* - Hardware timers */ void l1s_wakeup_adjust () { #if (CODE_VERSION != SIMULATION) if (l1_config.pwr_mngt == PWR_MNGT) { UWORD32 previous_sleep_time; /***************************************************/ // Freeze GSM Timer .... */ /***************************************************/ ULDP_TIMER_FREEZE; /***************************************************/ // Compute effective sleeping time .... // // compute sleep duration // - TIMER_INIT // - or TIMER_INIT - TIMER_VALUE /***************************************************/ // save sleep duration that was computed at "unscheduled wakeup" previous_sleep_time = l1s.pw_mgr.sleep_duration; l1s_compute_wakeup_ticks(); // reset flag for adjustment request .... l1s.pw_mgr.frame_adjust = FALSE; // fix sleep duration // => compute difference with duration computed at // "unscheduled wakeup" l1s.pw_mgr.sleep_duration -= previous_sleep_time; // adjust system with 1 frame IF NECESSARY .... if (l1s.pw_mgr.sleep_duration) { /***************************************************/ /* Fix Frame */ /***************************************************/ l1s_recover_Frame(); /***************************************************/ /* Fix Os */ /***************************************************/ if (Cust_recover_Os()) l1s.pw_mgr.Os_ticks_required = TRUE; } } #endif } /*-------------------------------------------------------*/ /* l1s_compute_wakeup_Ticks() */ /*-------------------------------------------------------*/ /* */ /* Description: wake-up */ /* ------------ */ /* This function compute the sleep duration according to */ /* current value of count down counter. */ /* - if TIMER_VALUE = 0 it returns TIMER_INIT */ /* - else it returns TIMER_INIT-TIMER_VALUE*/ /* */ /*-------------------------------------------------------*/ BOOL l1s_compute_wakeup_ticks(void) { UWORD16 temp_clear_intr; #if (CODE_VERSION != SIMULATION) // read current value of count down counter l1s.pw_mgr.sleep_duration = READ_ULDP_TIMER_VALUE; // if count down=0 it's a scheduled wake-up.... if (l1s.pw_mgr.sleep_duration == 0) { // read sleeping planned value in TPU INIT register l1s.pw_mgr.sleep_duration = READ_ULDP_TIMER_INIT; // INTH is different from the ULPD interrupt -> aynchronous wakeup #if (CHIPSET == 12) || (CHIPSET == 15) if (int_id != C_INTH_TGSM_IT) #else if (int_id != IQ_TGSM) #endif { wakeup_type = WAKEUP_ASYNCHRONOUS_ULPD_0; // RESET IT_ULPD in ULPD module // The ULDP_GSM_TIMER_IT_REG is a read only register and is cleared on reading the register temp_clear_intr =(* (volatile UWORD16 *) ULDP_GSM_TIMER_IT_REG) & ULPD_IT_TIMER_GSM; #if (CHIPSET == 12) || (CHIPSET == 15) // RESET IQ_TGSM (IT_ULPD) in IT register F_INTH_RESET_ONE_IT(C_INTH_TGSM_IT); // RESET IQ_FRAME in IT register F_INTH_RESET_ONE_IT(C_INTH_FRAME_IT); int_id = C_INTH_TGSM_IT; #else // RESET IQ_TGSM (IT_ULPD) in IT register INTH_RESETONEIT(IQ_TGSM); // RESET IQ_FRAME in IT register INTH_RESETONEIT(IQ_FRAME); int_id = IQ_TGSM; #endif return(FALSE); } else return(FALSE); } else // Unscheduled wakeup { // read sleeping planned value in TPU INIT register & compute time elapsed l1s.pw_mgr.sleep_duration = READ_ULDP_TIMER_INIT - l1s.pw_mgr.sleep_duration; return(TRUE); } #else return(FALSE);//omaps00090550 #endif } /*-------------------------------------------------------*/ /* l1s_recover_Frame() */ /*-------------------------------------------------------*/ /* */ /* Description: adjust layer1 data from sleep duration */ /* ------------ */ /*-------------------------------------------------------*/ void l1s_recover_Frame(void) { if (l1_config.pwr_mngt == PWR_MNGT) { /***************************************************/ /* Fix Frame counters . */ /***************************************************/ l1s.debug_time += l1s.pw_mgr.sleep_duration; // used for debug and by L3 scenario. // Time... // Update "actual time". l1s_increment_time(&(l1s.actual_time), l1s.pw_mgr.sleep_duration); // Update "next time". l1s.next_time = l1s.actual_time; l1s_increment_time(&(l1s.next_time), 1); // Next time is actual_time + 1 #if L1_GPRS // Update "next plus time". l1s.next_plus_time = l1s.next_time; l1s_increment_time(&(l1s.next_plus_time), 1); // Next_plus time is next_time + 1 #endif #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) trace_fct(CST_L1S_ADJUST_TIME, (UWORD32)(-1)); #endif // Multiframe table... // Increment active frame % mftab size. l1s.afrm = (l1s.afrm + l1s.pw_mgr.sleep_duration) % MFTAB_SIZE; // Control function counters... // Increment frame count from last AFC update. l1s.afc_frame_count+= l1s.pw_mgr.sleep_duration; // reset counter to mask SNR/TOA results for 2 fr. #if (TOA_ALGO == 2) l1s.toa_var.toa_snr_mask=0; #else l1s.toa_snr_mask=0; #endif /***************************************************/ /* Fix next L1S task counter */ /***************************************************/ // Decrement time to next L1S task. if((l1a_l1s_com.time_to_next_l1s_task > 0) && (l1a_l1s_com.time_to_next_l1s_task < MAX_FN)) l1a_l1s_com.time_to_next_l1s_task -= l1s.pw_mgr.sleep_duration; } // l1_config.pwr_mngt == PWR_MNGT } /*-------------------------------------------------------*/ /* l1s_recover_HWTimers() */ /*-------------------------------------------------------*/ /* */ /* Description: adjust hardware timers from sleep */ /* ------------ duration */ /* */ /* Timers clocks are enabled after VTCX0+SLICER+13MHZ */ /* setup times. So sleep duration is : */ /* GSM TIMER - SETUP_FRAME + SETUP_SLICER + SETUP_VTCXO */ /* + SETUP_CLK13 */ /*-------------------------------------------------------*/ void l1s_recover_HWTimers(void) { #if (CODE_VERSION != SIMULATION) #define SETUP_FRAME_IN_CLK32 (SETUP_FRAME*4.615*32.768) #if (CHIPSET == 15) #define DELTA_TIME (0) #else #define DELTA_TIME (SETUP_FRAME_IN_CLK32 -SETUP_SLICER - SETUP_VTCXO) #endif if (l1_config.pwr_mngt == PWR_MNGT) { WORD32 timer1,timer2,timer; #if (CHIPSET == 12) || (CHIPSET == 15) WORD32 timer_sec; #endif UWORD16 cntlreg; UWORD16 modereg; double duration; //WORD32 old;- OMAPS 90550 new // read Hercules Timers & Watchdog //================================================= // Tint = Tclk * (LOAD_TIM+1) * 2^(PTV+1) // Tclk = 1.2308us for Fclk=13Mhz // PTV = 7 (pre-scaler field) //------------------------------------------------- cntlreg = Dtimer1_Get_cntlreg(); if ( (cntlreg & D_TIMER_RUN) == D_TIMER_RUN) { #if 0 /* match TCS211 object */ cntlreg = cntlreg&0x1F; #endif cntlreg >>= 2; // take PTV cntlreg = 1 << (cntlreg+1); // compute 2^(PTV+1) // convert sleep duration in HWTimers ticks.... duration = (l1s.pw_mgr.sleep_duration * 4.615 - (DELTA_TIME/32.768)) / (cntlreg * 0.0012308); #if 0 /* match TCS211 object */ if (duration < 0.0){ duration = 0.0; // This needs to be done for all the timers } #endif timer1 = Dtimer1_ReadValue() - (UWORD16) duration; Dtimer1_Start(0); Dtimer1_WriteValue(timer1); Dtimer1_Start(1); } cntlreg = Dtimer2_Get_cntlreg(); if ( (cntlreg & D_TIMER_RUN) == D_TIMER_RUN) { #if 0 /* match TCS211 object */ cntlreg = cntlreg&0x1F; #endif cntlreg >>= 2; // take PTV cntlreg = 1 << (cntlreg+1); // convert sleep duration in HWTimers ticks.... duration = (l1s.pw_mgr.sleep_duration * 4.615 - (DELTA_TIME/32.768)) / (cntlreg * 0.0012308); #if 0 /* match TCS211 object */ if (duration < 0.0){ duration = 0.0; // This needs to be done for all the timers } #endif timer2 = Dtimer2_ReadValue() - (UWORD16) duration; Dtimer2_Start(0); Dtimer2_WriteValue(timer2); Dtimer2_Start(1); } cntlreg = TIMER_Read(0); modereg = TIMER_Read(2); if ( (cntlreg & TIMER_ST) || (modereg & TIMER_WDOG)) { // in watchdog mode PTV is forced to 7 if ( modereg & TIMER_WDOG ) cntlreg |= TIMER_PTV; cntlreg = (cntlreg & TIMER_PTV) >> 9; // take PTV cntlreg = 1 << (cntlreg+1); // convert sleep duration in HWTimers ticks.... duration = (l1s.pw_mgr.sleep_duration * 4.615 - (DELTA_TIME/32.768)) / (cntlreg * 0.001078); timer = TIMER_ReadValue() - (UWORD16) duration; TIMER_START_STOP(0); TIMER_WriteValue(timer); TIMER_START_STOP(1); } #if (CHIPSET == 12) || (CHIPSET == 15) cntlreg = TIMER_SEC_Read(0); modereg = TIMER_SEC_Read(2); if ( (cntlreg & TIMER_ST) || (modereg & TIMER_WDOG)) { // in watchdog mode PTV is forced to 7 if ( modereg & TIMER_WDOG ) cntlreg |= TIMER_PTV; cntlreg = (cntlreg & TIMER_PTV) >> 9; // take PTV cntlreg = 1 << (cntlreg+1); // convert sleep duration in HWTimers ticks.... duration = (l1s.pw_mgr.sleep_duration * 4.615 - (DELTA_TIME/32.768)) / (cntlreg * 0.001078); timer_sec = TIMER_SEC_ReadValue() - (UWORD16) duration; TIMER_SEC_START_STOP(0); TIMER_SEC_WriteValue(timer_sec); TIMER_SEC_START_STOP(1); } #endif } #endif } /*-------------------------------------------------------*/ /* l1s_get_next_gauging_in_Packet_Idle() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* return the nbr of frames before the next gauging */ /* return -1 means no activity planned */ /*-------------------------------------------------------*/ #if L1_GPRS UWORD32 next_gauging_scheduled_for_PNP; // gauging for Packet Idle WORD32 l1s_get_next_gauging_in_Packet_Idle(void) { WORD32 next_gauging; // gauging performed with Normal Paging (we are in Idle mode) if (l1a_l1s_com.l1s_en_task[NP] == TASK_ENABLED) return (-1); // no activity planned // we are not in Packet Idle Mode if (l1a_l1s_com.l1s_en_task[PNP] != TASK_ENABLED) return (-1); // no activity planned next_gauging = next_gauging_scheduled_for_PNP - l1s.actual_time.fn ; if (next_gauging < 0) next_gauging+=MAX_FN; if (next_gauging <= MIN_SLEEP_TIME) return(0); return (next_gauging); } #endif /*-------------------------------------------------------*/ /* l1s_gauging_decision_with_PNP() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* */ /*-------------------------------------------------------*/ #if L1_GPRS BOOL l1s_gauging_decision_with_PNP(void) { #define TWO_SECONDS_IN_FRAME (UWORD16)(2000/4.615) /* reconstructed TCS211 code */ if (l1s.actual_time.fn >= next_gauging_scheduled_for_PNP) { next_gauging_scheduled_for_PNP = l1s.actual_time.fn + TWO_SECONDS_IN_FRAME; if (next_gauging_scheduled_for_PNP >= MAX_FN) next_gauging_scheduled_for_PNP -= MAX_FN; return (TRUE); } return (FALSE); // do not perform gauging } #endif /*-------------------------------------------------------*/ /* l1s_gauging_decision_with_NP() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* */ /*-------------------------------------------------------*/ BOOL l1s_gauging_decision_with_NP(void) { static UWORD8 time_to_gaug; // a paging is scheduled or , was scheduled but discarded by a higher priority task if (l1s.pw_mgr.paging_scheduled == TRUE) { l1s.pw_mgr.paging_scheduled = FALSE; // reset Flag. // A gauging session is needed : start gauging session with this paging bloc ! //Nina modify to save power, not forbid deep sleep, only force gauging in next paging // FreeCalypso TCS211 reconstruction: Nina's change reverted #if 1 if (l1s.pw_mgr.enough_gaug != TRUE) time_to_gaug = 0; #else if ((l1s.pw_mgr.enough_gaug != TRUE)||(l1s.force_gauging_next_paging_due_to_CCHR == 1)) { time_to_gaug = 0; l1s.force_gauging_next_paging_due_to_CCHR = 0; } #endif if (time_to_gaug > 0) { time_to_gaug--; // perform the gauging with an another paging. } else // perform the gauging with this paging { if (l1s.task_status[NP].current_status == ACTIVE ) { time_to_gaug = GAUG_VS_PAGING_RATE[l1a_l1s_com.bs_pa_mfrms-2]-1; return (TRUE); // gauging allowed } else // a gauging is scheduled to be perform here but the paging is missing { // (paging discarded by a higher priority task ?) l1s.pw_mgr.enough_gaug= FALSE; // forbid Deep sleep until next gauging } } } return (FALSE); // gauging not allowed } /*************************************************************/ /* Gauging task management : */ /* */ /* CALYPSO */ /* */ /* 9 8 7 6 5 4 3 2 1 0 */ /* C0 C1 C2 C3 C4 W R - - - */ /* | | */ /* | | */ /* |_ start gauging |_ stop gauging */ /* */ /*OTHERS: */ /* */ /* 11 10 9 8 7 6 5 4 3 2 1 0 */ /* C0 C1 C2 C3 C4 W R - - - - - */ /* | | | | | */ /* | | |_ start gauging |_ stop gauging */ /* | | | | */ /* | |_ (ITCOM) | |(ITCOM) */ /* | | */ /* |_ pgm PLL |_restore PLL */ /* */ /* */ /*************************************************************/ void l1s_gauging_task(void) { if (l1_config.pwr_mngt == PWR_MNGT) { /*************************************************************/ if (l1s.pw_mgr.gauging_task == ACTIVE) { /*************************************************************/ // COUNT = 10 ==> PLL is at 65 Mhz, start the gauging /*************************************************************/ #if (CHIPSET==7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12) || (CHIPSET == 15) // the gauging was started with the begining of the paging #else if (l1s.pw_mgr.gaug_count == (l1s.pw_mgr.gaug_duration-1)) { #if (CODE_VERSION != SIMULATION) ULDP_GAUGING_START; // start gauging #endif #if (TRACE_TYPE != 0) #if (GSM_IDLE_RAM != 0) l1_trace_gauging_intram(); #else l1_trace_gauging(); #endif #endif } #endif l1s.pw_mgr.gaug_count--; // decrement counter // When a MISC task is enabled L1S must be ran every frame // to be able to enable the frame interrupt for DSP l1a_l1s_com.time_to_next_l1s_task = 0; } /*************************************************************/ // REQUEST A GAUGING PROCESS ON EACH PAGING BLOCK // IN IDLE MODE ..... /*************************************************************/ else if (l1s.pw_mgr.gauging_task == INACTIVE ) { BOOL decision = FALSE; if (l1a_l1s_com.l1s_en_task[NP] == TASK_ENABLED) decision = l1s_gauging_decision_with_NP(); #if L1_GPRS else if (l1a_l1s_com.l1s_en_task[PNP] == TASK_ENABLED) decision = l1s_gauging_decision_with_PNP(); #endif if (decision == TRUE) { // gauging duration l1s.pw_mgr.gaug_count = l1s.pw_mgr.gaug_duration; #if (CHIPSET==7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12) || (CHIPSET == 15) // start ULPD gauging immediately with Calypso because we needn't IT_COM. #if (CODE_VERSION != SIMULATION) ULDP_GAUGING_START; #if (CHIPSET == 12) || (CHIPSET == 15) // Force the DPLL to be active ( * (volatile SYS_UWORD16 *) CLKM_CNTL_CLK) &= ~(CLKM_DPLL_DIS); #endif #endif #if (TRACE_TYPE != 0) #if (GSM_IDLE_RAM != 0) l1_trace_gauging_intram(); #else l1_trace_gauging(); #endif #endif #endif // DSP programmation ....... #if (DSP >= 33) #if (CHIPSET==4) l1s_dsp_com.dsp_ndb_ptr->d_pll_config |= B_32KHZ_CALIB; #endif #else l1s_dsp_com.dsp_ndb_ptr->d_pll_clkmod1 = CLKMOD2; // IDLE1 only for DSP #endif l1s.pw_mgr.gauging_task = ACTIVE; } } } } /*-------------------------------------------------------*/ /* l1s_gauging_task_end() */ /*-------------------------------------------------------*/ /* */ /* Description: */ /* ------------ */ /* stop the gauging activity */ /*-------------------------------------------------------*/ void l1s_gauging_task_end(void) { if (l1_config.pwr_mngt == PWR_MNGT) { /*************************************************************/ if (l1s.pw_mgr.gauging_task == ACTIVE) { /*************************************************************/ // COUNT = 1 ==> stop the gauging and free DSP idle modes.... /*************************************************************/ if (l1s.pw_mgr.gaug_count == 1) { // wait for end of gauging interrupt ... l1s.pw_mgr.gauging_task = WAIT_IQ; // Unmask ULPD GAUGING int. #if (CODE_VERSION != SIMULATION) #if (CHIPSET == 12) || (CHIPSET == 15) F_INTH_ENABLE_ONE_IT(C_INTH_ULPD_GAUGING_IT); #else INTH_ENABLEONEIT(IQ_ULPD_GAUGING); #endif ULDP_GAUGING_STOP; // stop ULPD gauging #if (CHIPSET == 12) || (CHIPSET == 15) // Allow the DPLL to be cut according to ARM sleep mode //( * (volatile SYS_UWORD16 *) CLKM_CNTL_CLK) |= (CLKM_DPLL_DIS); #endif #endif // DSP programmation : free IDLE modes... #if (DSP >= 33) #if (CHIPSET==4) l1s_dsp_com.dsp_ndb_ptr->d_pll_config &= ~B_32KHZ_CALIB; #endif #else l1s_dsp_com.dsp_ndb_ptr->d_pll_clkmod1 = CLKMOD1; #endif #if (CODE_VERSION == SIMULATION) // in order to simulate the Gauging interrupt GAUGING_Handler(); #if (TRACE_TYPE==5) trace_ULPD("Stop Gauging", l1s.actual_time.fn); #endif #endif } } } } //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_END #endif