FreeCalypso > hg > fc-magnetite
view README @ 521:f9125919bbe4
README: update for Selenite
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 22 Jul 2018 19:10:47 +0000 |
parents | 1edb0615c439 |
children | 39a226a06196 |
line wrap: on
line source
FreeCalypso Magnetite firmware project ====================================== As of A.D. 2018, FC Magnetite is the primary official Calypso firmware source tree for the FreeCalypso family of projects. This maintained and evolving source can be built in many different configurations for several different hardware targets, and is currently used in the following ways: * The official production firmwares for our fully supported GSM+GPRS modem products (FCDEV3B and the modem part of Openmoko devices) are built from this source tree. See doc/Modem-configs for this mode of usage. * The work in progress toward a future complete FreeCalypso phone handset (also known as a Libre Dumbphone) is being done in this source tree. See doc/Handset-goal for more info about this project direction. * One can play with FreeCalypso and get a taste for it using certain hardware that used to be readily available and which most people in the phone hacking scene already have: Motorola C1xx and Pirelli DP-L10. Firmware images of the "hacking toy" sort can be built for these devices from the present source tree, and one can exercise most of the functions and capabilities of FreeCalypso (with the notable exception of CSD and GPRS) on this historical but available-to-most-people hardware. See doc/C1xx-Howto, doc/Pirelli-Howto and doc/Voice-pseudo-modem for more information. * If anyone besides the Mother has an original TI-made D-Sample hardware kit for Calypso software development, we are doing the best we can to support running our FreeCalypso firmware on this original TI hardware - see doc/D-Sample for more information. Functionality ============= TI's GSM mobile station firmware architecture supports two ways in which the GSM device may be controlled: via AT commands from an external host and/or via a local UI on devices with LCD & keypad hardware. (I said "and/or" because the two mechanisms can coexist.) The code we got from TI (TCS211 and TCS3.2) is very solid and mature in the modem configuration (control via AT commands only, no UI, no battery management, no traditional handset on/off control), but the additional code layers that are needed for handset products but not for modems came in a very rough "proof of concept" condition, nowhere close to a usable product. In FC Magnetite we further maintain and support the solid code base we got for the modem functionality, and we are also working to improve the support for handset products and bring it into a practically usable state. At the present time the handset firmware work is on hold, paused until we design and build the first prototype version of our own FreeCalypso handset hardware. The reason for this hold is that we are not able to use TI's original development board (see doc/D-Sample for the issues), hence we need to build our own hardware that will serve in its place. Until then we focus on maintaining and supporting the good working modem functionality. Both TI's original modem fw (TCS211) and our recreation thereof in this Magnetite project support not only voice calls and SMS, but also CSD, fax and GPRS. This advanced functionality is fully supported on our own GSM MS development board (FCDEV3B), where both Calypso UARTs are presented directly to the developer, as well as on the embedded Calypso modem in Openmoko GTA01/02 smartphones, where the AT command channel with CSD, fax and GPRS capabilities is connected to the phone's application processor. Build system ============ Even though FC Magnetite is essentially unchanged TCS211 code base and builds using TI's proprietary TMS470 compiler under Wine, the build system is entirely new. TI's TCS211 build system, called BuSyB, works by way of a Java tool generating a customized makefile for each desired build configuration, based on lots of magic contained in a big repository of XML files. There are a bunch of Perl scripts involved as well. The Java tool that does the heavy lifting exists only as compiled Java bytecode sans source, and the surrounding Perl scripts aren't very understandable either. And the whole thing thoroughly assumes a Windows environment (drive letters, backslashes, case-insensitive file system) throughout. As a result, when working with TCS211 fw with its original build system, we had to treat these BuSyB-generated makefiles almost as being blobs in themselves: regenerating a makefile from XML magic required major effort, there were some bugs in the makefile generation which we couldn't fix and thus we had to edit the makefiles manually after each regeneration - it was an utter mess, and absolutely not an acceptable way to build a forward-looking, community- serving project. In FC Magnetite I have recreated the relevant parts of the TCS211 build system, using Bourne shell magic instead of Java and XML. Just like TI's BuSyB, ours is a makefile generation system: in order to compile the firmware in a particular desired configuration, you run a shell script to select the config you would like. This shell script will create a dedicated build directory tree to fully contain this build, and populate it with generated Makefiles and some other bits - then you go into the just-created build directory and run make there. The source and build trees are thus cleanly separated. See doc/Compiling for detailed instructions. Another key difference from our previous TCS211-based firmware offerings is that even though we still have to run TI's compiler binaries under Wine, the Wine invokation has been moved from the top (root) of the build process to the bottom leaves. With our previous TCS211-based works you would run Wine at the top, and then the entire build process would proceed in the Windows environment, using Windows versions of make and other nonsense. Not so in FC Magnetite: in this firmware project all shell scripts, Makefiles, Perl scripts and other build system accessories run at the native Unix level, and Wine is only invoked at the lowest level by individual tool wrappers: for example, TI's compiler binary cl470.exe is encapsulated in a Unix shell script called cl470 that invokes Wine to run the Windows binary, presenting the illusion of a native Unix tool to all upper levels. As yet another defenestration measure, all source files are checked into this tree with Unix line endings. Two versions of the G23M protocol stack ======================================= A major component of all functional firmware configurations is the mass of code that implements layers 2 and 3 of the GSM+GPRS protocol stack, called G23M. In FC Magnetite we have the option of using one of two different versions of this key firmware component: * The original G23M version from Openmoko: this version is believed to be very stable because it has been used (successfully to the best of our knowledge) by Openmoko, and it came from TI's TCS211 program that officially targeted the Calypso chipset - but it exists only as binary object libraries with no corresponding source. The lack of source means no ability to change the feature configuration (what is enabled and what is disabled), very difficult to debug if something does go wrong - all of the usual problems of software without source. * A newer version from TI's TCS3/LoCosto program. This version came to us in the form of full C source, and because this fw component is chipset- independent (unlike L1), we have successfully produced a TCS2/TCS3 hybrid in which the new G23M code from TCS3.2 is grafted onto the chipsetsw foundation from TCS211, which we have reconstructed into full C source form as well. Each of the two G23M PS versions also has its own version of the Application Control Interface (ACI) layer to go with it, which we call aci2 and aci3 - except that in the case of ACI, we have the full source for both versions. Furthermore, in the case of firmware builds that have the phone UI layers enabled (BMI and MFW, sitting on top of ACI), we likewise have different TCS2 and TCS3 versions of these BMI and MFW layers, also with full source for both versions. Thus the chipsetsw foundation is always the same TCS211, but then we bifurcate: we can build either a pure TCS211 config using TCS211 versions of G23M PS (blobs), ACI (source) and MFW+BMI (source), or a TCS2/TCS3 hybrid config using the new TCS3 versions of G23M PS, ACI and MFW+BMI, all in full C source form. The new TCS2/TCS3 hybrid config is the way forward, as our goal is to have no blobs in our firmware - having the full source is a prerequisite for maintaining a software product. FC Magnetite supports building both configurations in order to facilitate the transition. As of this writing, the hybrid config is believed to have reached feature parity with Openmoko-mimicking classic and l1reconst configs, i.e., unless we missed or broke something, every feature that worked correctly on Openmoko's original modem should work just as well with our hybrid firmware. All functionality (both standard and OM-custom) that can be tested in our lab appears to work flawlessly; the new hybrid modem fw now needs to be tested by a larger number of users in real-life usage. Other blobs =========== The TCS2/TCS3 hybrid firmware is built almost entirely from source; the only components which are linked in the form of prebuilt libraries are GPF, Nucleus and the TMS470 compiler's equivalent of libc/libgcc. It needs to be noted that these components are so stable and configuration-independent that they were used mostly in prebuilt library form even inside TI. In the case of GPF we've got the corresponding source for most of the modules within those libs; for the few modules for which the original source has been lost (OSL and OSX), we have a reconstructed source and one can build a Magnetite config (hybrid-gpf) that uses these reconstructed versions of OSL and OSX instead of the blobs, but we are not 100% confident in the quality of this reconstruction, hence this hybrid-gpf config is currently considered experimental, not production. In the case of Nucleus we likewise have another version of it in full source form which has been proven good in other FreeCalypso firmware projects, but it is not used in Magnetite. Blob-free, gcc-built version ============================ For those who require or desire a firmware version that is completely free of any blobs and builds with a FLOSS compiler, we now have a new experimental firmware project called FreeCalypso Selenite: https://bitbucket.org/falconian/fc-selenite FC Selenite is based on FC Magnetite (just the modem functionality, no work-in- progress phone UI, and only the hybrid code version), but it uses the new full-source version of Nucleus and our reconstructed versions of OSL and OSX, and it offers the option of building either with the original TMS470 compiler or with gcc. The gcc-built version also uses entirely new implementations of all assembly components and linker script magic, as the two toolchain environments are entirely different in this regard. This new Selenite firmware is expected to fully supplant our earlier and now completely unmaintained Citrine fw (our first attempt at gcc-built fw), but it is still highly experimental: as of this writing, GPRS does not work at all in Selenite-gcc (Citrine does not have any GPRS support either), and even the GSM-only config with GPRS disabled exhibits some intermittent glitches. Thus the stable production fw is still TMS470-built FC Magnetite for the time being. Further reading =============== For various instructions and notes specific to this FreeCalypso Magnetite firmware, look in the doc directory. For more information about the overall FreeCalypso project and our hardware building aspirations, go to our website: https://www.freecalypso.org/