FreeCalypso > hg > fc-selenite
comparison src/cs/drivers/drv_app/uart/uartfax.c @ 0:b6a5e36de839
src/cs: initial import from Magnetite
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 15 Jul 2018 04:39:26 +0000 |
parents | |
children | 397e3a3274ea |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:b6a5e36de839 |
---|---|
1 /******************************************************************************* | |
2 * | |
3 * UARTFAX.C | |
4 * | |
5 * This driver allows to control the UARTs of chipset 1.5 for fax and data | |
6 * services. It performs flow control: RTS/CTS, XON/XOFF. | |
7 * | |
8 * On C & D-Sample, DCD and DTR signals are supported on UART modem only with 2 | |
9 * I/Os. | |
10 * | |
11 * On E-Sample, DCD and DTR signals are directly handled by Calypso+. | |
12 * | |
13 * On Calypso, RTS and CTS are supported on both UARTs. | |
14 * | |
15 * On Calypso+, RTS and CTS are supported on UART Modem1 & IrDA. UART Modem2 is | |
16 * not available through DB9 connector on E-Sample. | |
17 * | |
18 * (C) Texas Instruments 1999 - 2003 | |
19 * | |
20 ******************************************************************************/ | |
21 | |
22 /* | |
23 * E-Sample | |
24 * | |
25 * UART Modem1 UART Irda | |
26 * | |
27 * DB9 Calypso+ DB9 Calypso+ | |
28 * | |
29 * 1 DCD DCD output 1 1, 6 and 4 are connected together on DB9 | |
30 * 2 RX TX output 2 RX TX2 output | |
31 * 3 TX RX input 3 TX RX2 input | |
32 * 4 DTR DSR input 4 | |
33 * 5 GND 5 GND | |
34 * 6 NC 6 | |
35 * 7 RTS CTS input 7 RTS CTS2 input | |
36 * 8 CTS RTS output 8 CTS RTS2 output | |
37 * 9 NC 9 NC | |
38 * | |
39 */ | |
40 | |
41 /* | |
42 * C & D-Sample | |
43 * | |
44 * UART Modem UART Irda | |
45 * | |
46 * DB9 Calypso DB9 Calypso | |
47 * | |
48 * 1 DCD I/O 2 output 1 1, 6 and 4 are connected together on DB9 | |
49 * 2 RX TX output 2 RX TX2 output | |
50 * 3 TX RX input 3 TX RX2 input | |
51 * 4 DTR I/O 3 input 4 | |
52 * 5 GND 5 GND | |
53 * 6 NC 6 | |
54 * 7 RTS CTS input 7 RTS CTS2 input | |
55 * 8 CTS RTS output 8 CTS RTS2 output | |
56 * 9 NC 9 NC | |
57 * | |
58 */ | |
59 | |
60 /* | |
61 * B-Sample | |
62 * | |
63 * UART Modem UART Irda | |
64 * | |
65 * DB9 Ulysse DB9 Ulysse | |
66 * | |
67 * 1 1, 6 and 4 are connected together on DB9 (Modem and Irda) | |
68 * 2 RX TX 2 RX TX | |
69 * 3 TX RX 3 TX RX | |
70 * 4 4 | |
71 * 5 GND 5 GND | |
72 * 6 6 | |
73 * 7 RTS CTS 7 7 and 8 are connected together on DB9 | |
74 * 8 CTS RTS 8 | |
75 * 9 NC 9 NC | |
76 * | |
77 */ | |
78 | |
79 #include "swconfig.cfg" | |
80 | |
81 #include "l1sw.cfg" | |
82 | |
83 #if (OP_L1_STANDALONE == 0) | |
84 #include "rv.cfg" | |
85 #endif | |
86 #include "board.cfg" | |
87 #include "chipset.cfg" | |
88 #ifdef BLUETOOTH_INCLUDED | |
89 #include "btemobile.cfg" | |
90 #endif | |
91 | |
92 #include "fc-target.cfg" | |
93 | |
94 | |
95 #include <string.h> | |
96 #include "nucleus.h" | |
97 | |
98 #include "main/sys_types.h" | |
99 #include "faxdata.h" | |
100 #include "uartfax.h" | |
101 | |
102 /* | |
103 * Needed to reset and restart the sleep timer in case of incoming characters. | |
104 */ | |
105 | |
106 #include "serialswitch.h" | |
107 extern SYS_BOOL uart_sleep_timer_enabled; | |
108 | |
109 /* | |
110 * rv_general.h is needed for macros Min & Min3. | |
111 */ | |
112 | |
113 #include "rv/rv_general.h" | |
114 | |
115 #include "memif/mem.h" | |
116 | |
117 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
118 #include "armio/armio.h" | |
119 #endif | |
120 | |
121 /* | |
122 * Maximal value for an unsigned 32 bits. | |
123 */ | |
124 | |
125 #define MAX_UNSIGNED_32 (4294967295) | |
126 | |
127 #define FIFO_SIZE (64) /* In bytes. */ | |
128 | |
129 | |
130 /* | |
131 * TLR is used to program the RX FIFO trigger levels. FCR[7:4] are not used. | |
132 * No trigger level used for TX FIFO. THR_IT generated on TX FIFO empty. | |
133 */ | |
134 | |
135 #define RX_FIFO_TRIGGER_LEVEL (12 << 4) | |
136 | |
137 | |
138 /* | |
139 * 16750 addresses. Registers accessed when LCR[7] = 0. | |
140 */ | |
141 | |
142 #define RHR (0x00) /* Rx buffer register - Read access */ | |
143 #define THR (0x00) /* Tx holding register - Write access */ | |
144 #define IER (0x01) /* Interrupt enable register */ | |
145 | |
146 /* | |
147 * 16750 addresses. Registers accessed when LCR[7] = 1. | |
148 */ | |
149 | |
150 #define DLL (0x00) /* Divisor latch (LSB) */ | |
151 #define DLM (0x01) /* Divisor latch (MSB) */ | |
152 | |
153 | |
154 /* | |
155 * EFR is accessed when LCR[7:0] = 0xBF. | |
156 */ | |
157 | |
158 #define EFR (0x02) /* Enhanced feature register */ | |
159 | |
160 | |
161 /* | |
162 * 16750 addresses. Bit 5 of the FCR register is accessed when LCR[7] = 1. | |
163 */ | |
164 | |
165 #define IIR (0x02) /* Interrupt ident. register - Read only */ | |
166 #define FCR (0x02) /* FIFO control register - Write only */ | |
167 #define LCR (0x03) /* Line control register */ | |
168 #define MCR (0x04) /* Modem control register */ | |
169 #define LSR (0x05) /* Line status register */ | |
170 #define MSR (0x06) /* Modem status register */ | |
171 #define TCR (0x06) /* Transmission control register */ | |
172 #define TLR (0x07) /* Trigger level register */ | |
173 #define MDR1 (0x08) /* Mode definition register 1 */ | |
174 #define SCR (0x10) /* Supplementary Control register */ | |
175 #define SSR (0x11) /* Supplementary Status register */ | |
176 #define UASR (0x0E) /* Autobauding Status register */ | |
177 | |
178 /* | |
179 * Supplementary control register. | |
180 */ | |
181 | |
182 #define TX_EMPTY_CTL_IT (0x08) | |
183 #define RX_CTS_WAKE_UP_ENABLE_BIT (4) /* Use RESET_BIT and SET_BIT macros. */ | |
184 #define DSR_IT_BIT (5) /* Use RESET_BIT and SET_BIT macros. */ | |
185 | |
186 /* | |
187 * Enhanced feature register. | |
188 */ | |
189 | |
190 #define ENHANCED_FEATURE_BIT (4) /* Use RESET_BIT and SET_BIT macros. */ | |
191 #define AUTO_CTS_BIT (7) /* Transmission is halted when the CTS pin is high (inactive). */ | |
192 | |
193 /* | |
194 * Mode definition register 1. | |
195 */ | |
196 | |
197 #define UART_MODE (0x00) | |
198 #define SIR_MODE (0x01) | |
199 #define UART_MODE_AUTOBAUDING (0x02) /* Reserved in UART/IrDA. */ | |
200 #define RESET_DEFAULT_STATE (0x07) | |
201 #define IR_SLEEP_DISABLED (0x00) | |
202 #define IR_SLEEP_ENABLED (0x08) | |
203 #define SIR_TX_WITHOUT_ACREG2 (0x00) /* Reserved in UART/modem. */ | |
204 #define SIR_TX_WITH_ACREG2 (0x20) /* Reserved in UART/modem. */ | |
205 #define FRAME_LENGTH_METHOD (0x00) /* Reserved in UART/modem. */ | |
206 #define EOT_BIT_METHOD (0x80) /* Reserved in UART/modem. */ | |
207 | |
208 /* | |
209 * Supplementary Status Register | |
210 */ | |
211 | |
212 #define TX_FIFO_FULL (0x01) | |
213 | |
214 | |
215 /* | |
216 * Interrupt enable register. | |
217 */ | |
218 | |
219 #define ERBI (0x01) /* Enable received data available interrupt */ | |
220 #define ETBEI (0x02) /* Enable transmitter holding register empty interrupt */ | |
221 #define ELSI (0x04) /* Enable receiver line status interrupt */ | |
222 #define EDSSI (0x08) /* Enable modem status interrupt */ | |
223 #define IER_SLEEP (0x10) /* Enable sleep mode */ | |
224 | |
225 /* | |
226 * Modem control register. | |
227 */ | |
228 | |
229 #define MDCD (0x01) /* Data Carrier Detect. */ | |
230 #define MRTS (0x02) /* Request To Send. */ | |
231 #define TCR_TLR_BIT (6) | |
232 | |
233 /* | |
234 * Line status register. | |
235 */ | |
236 | |
237 #define DR (0x01) /* Data ready */ | |
238 #define OE (0x02) /* Overrun error */ | |
239 #define PE (0x04) /* Parity error */ | |
240 #define FE (0x08) /* Framing error */ | |
241 #define BI (0x10) /* Break interrupt */ | |
242 #define THRE (0x20) /* Transmitter holding register (FIFO empty) */ | |
243 #define TEMT (0x40) /* Transmitter empty (FIFO and TSR both empty) */ | |
244 | |
245 #define BYTE_ERROR (OE | PE | FE | BI) | |
246 | |
247 /* | |
248 * Interrupt identification register. | |
249 * Bit 0 is set to 0 if an IT is pending. | |
250 * Bits 1 and 2 are used to identify the IT. | |
251 */ | |
252 | |
253 #define IIR_BITS_USED (0x07) | |
254 #define IT_PENDING (0x01) | |
255 #define RX_DATA (0x04) | |
256 #define TX_EMPTY (0x02) | |
257 #define MODEM_STATUS (0x00) | |
258 | |
259 /* | |
260 * Modem status register. | |
261 */ | |
262 | |
263 #define DELTA_CTS (0x01) | |
264 #define DELTA_DSR (0x02) | |
265 #define MCTS (0x10) /* Clear to send */ | |
266 #define MDSR (0x20) /* Data set ready */ | |
267 | |
268 /* | |
269 * Line control register. | |
270 */ | |
271 | |
272 #define WLS_5 (0x00) /* Word length: 5 bits */ | |
273 #define WLS_6 (0x01) /* Word length: 6 bits */ | |
274 #define WLS_7 (0x02) /* Word length: 7 bits */ | |
275 #define WLS_8 (0x03) /* Word length: 8 bits */ | |
276 #define STB (0x04) /* Number of stop bits: 0: 1, 1: 1,5 or 2 */ | |
277 #define PEN (0x08) /* Parity enable */ | |
278 #define EPS (0x10) /* Even parity select */ | |
279 #define BREAK_CONTROL (0x40) /* Enable a break condition */ | |
280 #define DLAB (0x80) /* Divisor latch access bit */ | |
281 | |
282 /* | |
283 * FIFO control register. | |
284 */ | |
285 | |
286 #define FIFO_ENABLE (0x01) | |
287 #define RX_FIFO_RESET (0x02) | |
288 #define TX_FIFO_RESET (0x04) | |
289 | |
290 /* | |
291 * These constants define the states of the escape sequence detection. | |
292 */ | |
293 | |
294 #define INITIALIZATION (0) | |
295 #define NO_ESCAPE_SEQUENCE (1) | |
296 #define ONE_CHAR_DETECTED (2) | |
297 #define TWO_CHARS_DETECTED (3) | |
298 #define THREE_CHARS_DETECTED (4) | |
299 | |
300 #define CHARACTERS_IN_ESC_SEQ (3) | |
301 #define DEFAULT_ESC_SEQ_CHARACTER '+' | |
302 #define DEFAULT_GUARD_PERIOD (1000) /* 1 second. */ | |
303 | |
304 /* | |
305 * 3 HISR are used to avoid to execute operations from the LISR. | |
306 */ | |
307 | |
308 #define RX_HISR_PRIORITY (2) | |
309 | |
310 | |
311 | |
312 | |
313 // NGENGE increase hisr stack otherwise overflows with multiple callbacks | |
314 //#define RX_HISR_STACK_SIZE (512) /* Bytes. */ | |
315 #define RX_HISR_STACK_SIZE (768) /* Bytes. */ | |
316 | |
317 | |
318 | |
319 | |
320 #define TX_HISR_PRIORITY (2) | |
321 | |
322 | |
323 | |
324 // NGENGE increase hisr stack otherwise overflows with multiple callbacks | |
325 //#define TX_HISR_STACK_SIZE (512) /* Bytes. */ | |
326 #define TX_HISR_STACK_SIZE (768) /* Bytes. */ | |
327 | |
328 | |
329 | |
330 | |
331 #define V24_HISR_PRIORITY (2) | |
332 #define V24_HISR_STACK_SIZE (512) /* Bytes. */ | |
333 | |
334 /* | |
335 * When the break interrupt indicator (BI) is set in the line status register | |
336 * (LSR), it indicates that the received data input was held in the low state | |
337 * for longer than a full-word transmission time. In the FIFO mode, when a break | |
338 * occurs, only one 0 character is loaded into the FIFO. The next character | |
339 * transfer is enabled after SIN goes to the marking state for at least two RCLK | |
340 * samples and then receives the next valid start bit. | |
341 * This constant defined a defined break length returned by the US_GetLineState | |
342 * function. | |
343 */ | |
344 | |
345 #define MINIMAL_BREAK_LENGTH (2) | |
346 | |
347 #define BREAK_HISR_PRIORITY (2) | |
348 #define BREAK_HISR_STACK_SIZE (512) /* Bytes. */ | |
349 | |
350 /* | |
351 * These macros allow to read and write a UART register. | |
352 */ | |
353 | |
354 #define READ_UART_REGISTER(UART,REG) \ | |
355 *((volatile SYS_UWORD8 *) ((UART)->base_address + (REG))) | |
356 | |
357 #define WRITE_UART_REGISTER(UART,REG,VALUE) \ | |
358 *((volatile SYS_UWORD8 *) ((UART)->base_address + (REG))) = (VALUE) | |
359 | |
360 #define RESET_BIT(UART,REG,BIT) \ | |
361 (WRITE_UART_REGISTER ( \ | |
362 UART, REG, READ_UART_REGISTER (UART, REG) & ~(1 << (BIT)))) | |
363 | |
364 #define SET_BIT(UART,REG,BIT) \ | |
365 (WRITE_UART_REGISTER ( \ | |
366 UART, REG, READ_UART_REGISTER (UART, REG) | (1 << (BIT)))) | |
367 | |
368 | |
369 /* | |
370 * These macros allow to enable or disable the wake-up interrupt. | |
371 */ | |
372 | |
373 #define ENABLE_WAKEUP_INTERRUPT(UART) \ | |
374 SET_BIT(UART, SCR, RX_CTS_WAKE_UP_ENABLE_BIT); | |
375 | |
376 #define DISABLE_WAKEUP_INTERRUPT(UART) \ | |
377 RESET_BIT(UART, SCR, RX_CTS_WAKE_UP_ENABLE_BIT); | |
378 | |
379 | |
380 /* | |
381 * These macros allow to enable or disable the DSR interrupt. | |
382 */ | |
383 | |
384 #define ENABLE_DSR_INTERRUPT(UART) \ | |
385 SET_BIT(UART, SCR, DSR_IT_BIT); | |
386 | |
387 #define DISABLE_DSR_INTERRUPT(UART) \ | |
388 RESET_BIT(UART, SCR, DSR_IT_BIT); | |
389 | |
390 | |
391 /* | |
392 * The transmitter is disabled only when the application disables the driver. | |
393 * To disable the driver, the receiver and the transmitter are disabled by the | |
394 * application. The transmitter is disabled first to test if the driver is | |
395 * disabled. | |
396 */ | |
397 | |
398 #define DRIVER_DISABLED(UART) ((UART)->tx_stopped_by_application) | |
399 | |
400 #define DISABLE_DRIVER(UART) \ | |
401 { \ | |
402 (UART)->tx_stopped_by_application = 1; \ | |
403 (UART)->rx_stopped_by_application = 1; \ | |
404 } | |
405 | |
406 #define ENABLE_DRIVER(UART) \ | |
407 { \ | |
408 (UART)->rx_stopped_by_application = 0; \ | |
409 (UART)->tx_stopped_by_application = 0; \ | |
410 } | |
411 | |
412 /* | |
413 * Low and high watermarks for the RX buffer. If it is enabled, the flow | |
414 * control is activated or deactivated according to these values. | |
415 * The high watermark value allows to copy an array filled with the RX FIFO | |
416 * into the RX buffer. | |
417 */ | |
418 | |
419 #define RX_LOW_WATERMARK(RX_BUFFER_SIZE) (FIFO_SIZE) | |
420 #define RX_HIGH_WATERMARK(RX_BUFFER_SIZE) ((RX_BUFFER_SIZE) - 2 * FIFO_SIZE) | |
421 | |
422 /* | |
423 * This macro allows to know if the RX buffer is full. It must be called only | |
424 * from the RX HISR. If it is called from the application, the rx_in and | |
425 * rx_fifo_in pointers may be updated if a RX interrupt occurs or if the | |
426 * RX HISR is activated. | |
427 */ | |
428 | |
429 #define RX_BUFFER_FULL(UART) \ | |
430 (((UART)->rx_in == (UART)->rx_out - 1) || \ | |
431 ((UART)->rx_in == (UART)->rx_out + (UART)->buffer_size)) | |
432 | |
433 /* | |
434 * This macro allows to know if the TX buffer is empty. | |
435 */ | |
436 | |
437 #define TX_BUFFER_EMPTY(UART) \ | |
438 ((UART)->tx_in == (UART)->tx_out) | |
439 | |
440 /* | |
441 * This macro is used to convert a time (unit: ms) into a number of TDMA. | |
442 * 1 TDMA = 4.6 ms (23/5). | |
443 */ | |
444 | |
445 #define CONVERT_TIME_IN_TDMA(TIME) (((TIME) * 5) / 23) | |
446 | |
447 /* | |
448 * This structure describes an UART compatible with the UART 16750 and | |
449 * contains some fields to manage this UART. | |
450 */ | |
451 | |
452 typedef struct s_uart { | |
453 | |
454 SYS_UWORD32 base_address; | |
455 | |
456 /* | |
457 * HISR executed from the RX/TX interrupt handler. | |
458 */ | |
459 | |
460 NU_HISR rx_hisr_ctrl_block; | |
461 NU_HISR tx_hisr_ctrl_block; | |
462 NU_HISR v24_hisr_ctrl_block; | |
463 | |
464 char rx_hisr_stack[RX_HISR_STACK_SIZE]; | |
465 char tx_hisr_stack[TX_HISR_STACK_SIZE]; | |
466 char v24_hisr_stack[V24_HISR_STACK_SIZE]; | |
467 | |
468 /* | |
469 * 2 arrays are used to store bytes read in RX FIFO. A UART RX interrupt | |
470 * may occur while executing RX operations in RX HISR. To avoid overwriting | |
471 * the array in which received bytes are stored, a second array is used. | |
472 */ | |
473 | |
474 SYS_UWORD8 *rx_buffer_used_by_rx_lisr; | |
475 SYS_UWORD8 *rx_buffer_used_by_rx_hisr; | |
476 SYS_UWORD8 rx_fifo_byte_1[FIFO_SIZE]; | |
477 SYS_UWORD8 rx_fifo_byte_2[FIFO_SIZE]; | |
478 SYS_UWORD16 bytes_in_rx_buffer_1; | |
479 SYS_UWORD16 bytes_in_rx_buffer_2; | |
480 | |
481 /* | |
482 * RX and TX buffers. | |
483 * One character is not used in each buffer to allow to know if the buffer | |
484 * is empty or not (See macro RX_BUFFER_FULL). If buffers are empty, | |
485 * rx_in = rx_out and tx_in = tx_out. It is impossible to use fields to | |
486 * count the number of bytes in each buffer because these fields may be | |
487 * updated from the application and from the interrupt handlers. That avoids | |
488 * to have conflicts. | |
489 */ | |
490 | |
491 SYS_UWORD16 buffer_size; | |
492 SYS_UWORD16 rx_threshold_level; | |
493 SYS_UWORD16 tx_threshold_level; | |
494 SYS_UWORD8 rx_buffer[FD_MAX_BUFFER_SIZE + 1]; | |
495 SYS_UWORD8 tx_buffer[FD_MAX_BUFFER_SIZE + 1]; | |
496 SYS_UWORD8 *rx_in; | |
497 SYS_UWORD8 *rx_out; | |
498 SYS_UWORD8 *tx_in; | |
499 SYS_UWORD8 *tx_out; | |
500 | |
501 /* | |
502 * Escape sequence. | |
503 * the field esc_seq_modified may have 2 values: | |
504 * - 0: No modification. | |
505 * - 1: Parameters are in the process of modification: The detection | |
506 * is stopped. | |
507 */ | |
508 | |
509 NU_TIMER guard_period_timer_ctrl_block; | |
510 SYS_UWORD8 esc_seq_modified; | |
511 SYS_UWORD8 esc_seq_detection_state; | |
512 SYS_UWORD8 esc_seq_character; | |
513 UNSIGNED guard_period; | |
514 UNSIGNED current_time; | |
515 UNSIGNED previous_time; | |
516 | |
517 /* | |
518 * Flow control. | |
519 */ | |
520 | |
521 T_flowCtrlMode flow_control_mode; | |
522 SYS_BOOL send_xon_xoff; | |
523 SYS_UWORD8 xon_xoff_to_send; | |
524 SYS_UWORD8 xon_character; | |
525 SYS_UWORD8 xoff_character; | |
526 SYS_BOOL rx_stopped_by_application; | |
527 SYS_BOOL rx_stopped_by_driver; | |
528 SYS_BOOL rx_stopped_by_lisr; | |
529 SYS_BOOL tx_stopped_by_application; | |
530 SYS_BOOL tx_stopped_by_driver; | |
531 /* SYS_BOOL tx_stopped_by_lisr;*/ | |
532 | |
533 /* | |
534 * Break. | |
535 */ | |
536 | |
537 SYS_BOOL break_received; | |
538 SYS_BOOL break_to_send; | |
539 SYS_BOOL break_in_progress; | |
540 NU_HISR break_hisr_ctrl_block; | |
541 char break_hisr_stack[BREAK_HISR_STACK_SIZE]; | |
542 NU_TIMER break_timer_ctrl_block; | |
543 UNSIGNED baudrate; | |
544 UNSIGNED autobauding; | |
545 UNSIGNED bits_per_char; /* Including start, stop and parity bits. */ | |
546 UNSIGNED break_length; /* In bytes. */ | |
547 UNSIGNED time_without_character; | |
548 | |
549 /* | |
550 * Callback (UAF_ReadData and UAF_WriteData). | |
551 * rd: read, wr: write. | |
552 */ | |
553 | |
554 SYS_BOOL esc_seq_received; | |
555 SYS_UWORD8 rts_level; /* RTS on RS232 side, CTS on chipset side. | |
556 1: The RS232 line is deactivated (low). */ | |
557 | |
558 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
559 SYS_UWORD8 dtr_level; /* Controlled with an I/O on C & D-Sample and | |
560 handled by Calypso+ on E-Sample. | |
561 1: The RS232 line is deactivated (low). */ | |
562 /* | |
563 * When the DTR interrupt is detected the user's Rx callback function must | |
564 * be called but if the Rx FIFO is not empty the Rx HISR must be activated | |
565 * to read the bytes received in the Rx FIFO and to put them into the Rx | |
566 * buffer before to call the user's Rx callback function. | |
567 * If the Rx HISR is activated due to a Rx interrupt the user's Rx callback | |
568 * function will be called if conditions to call it are fulfilled. If it is | |
569 * activated due to the DTR interrupt the user's Rx callback function must | |
570 * be called without any conditions. | |
571 * Because the Rx HISR may have been activated but not executed before the | |
572 * DTR interrupt we must be sure that the user's Rx callback function will | |
573 * be called for each Rx HISR activation. Call is done for Rx HISR activated | |
574 * on Rx interrupt if conditions are fulfilled. | |
575 * A circular buffer of 2 elements is used to memorize the source of | |
576 * interrupt. Before the activation of the Rx HISR, the source of interrupt | |
577 * is memorized into this array. When the code of the Rx HISR is executed | |
578 * the user's Rx callback function is called if the source of interrupt was | |
579 * the DTR interrupt regardless of the other conditions. | |
580 * The level of DTR is saved to provide the level detected on Rx interrupt | |
581 * or DTR interrupt in the 'state' parameter of the user's Rx callback | |
582 * function. | |
583 */ | |
584 | |
585 SYS_BOOL dtr_change_detected[2]; | |
586 SYS_UWORD8 dtr_level_saved[2]; | |
587 SYS_UWORD8 index_it; | |
588 SYS_UWORD8 index_hisr; | |
589 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
590 | |
591 SYS_BOOL reading_suspended; | |
592 SYS_BOOL writing_suspended; | |
593 SYS_BOOL rd_call_from_hisr_in_progress; | |
594 SYS_BOOL wr_call_from_hisr_in_progress; | |
595 T_reInstMode rd_call_setup; | |
596 T_reInstMode wr_call_setup; | |
597 SYS_UWORD8 *rd_address[2]; | |
598 SYS_UWORD8 *wr_address[2]; | |
599 SYS_UWORD16 rd_size_before_call[2]; | |
600 SYS_UWORD16 rd_size_after_call[2]; | |
601 SYS_UWORD16 wr_size_before_call[2]; | |
602 SYS_UWORD16 wr_size_after_call[2]; | |
603 | |
604 void (*readOutFunc) (SYS_BOOL cldFromIrq, | |
605 T_reInstMode *reInstall, | |
606 SYS_UWORD8 nsource, | |
607 SYS_UWORD8 *source[], | |
608 SYS_UWORD16 size[], | |
609 SYS_UWORD32 state); | |
610 | |
611 void (*writeInFunc) (SYS_BOOL cldFromIrq, | |
612 T_reInstMode *reInstall, | |
613 SYS_UWORD8 ndest, | |
614 SYS_UWORD8 *dest[], | |
615 SYS_UWORD16 size[]); | |
616 | |
617 /* | |
618 * These fields are used to store the state defined in UAF_GetLineState.The | |
619 * first field is used when UAF_GetLineState and UAF_ReadData are not called. | |
620 * When one of these functions is called the second field is used. That | |
621 * avoids to lose events when UAF_GetLineState or UAF_ReadData resets the | |
622 * first field. | |
623 */ | |
624 | |
625 SYS_UWORD32 state_1; | |
626 SYS_UWORD32 state_2; | |
627 SYS_UWORD32 *state; | |
628 | |
629 /* | |
630 * Errors counters. | |
631 */ | |
632 | |
633 SYS_UWORD32 framing_error; | |
634 SYS_UWORD32 parity_error; | |
635 SYS_UWORD32 overrun_error; | |
636 SYS_UWORD32 spurious_interrupts; | |
637 | |
638 SYS_UWORD16 max_rx_fifo_level; | |
639 | |
640 } t_uart; | |
641 | |
642 | |
643 static t_uart uart_parameters; | |
644 | |
645 | |
646 static const SYS_UWORD32 base_address[NUMBER_OF_FD_UART] = | |
647 { | |
648 MEM_UART_IRDA, | |
649 MEM_UART_MODEM | |
650 #if (CHIPSET == 12) | |
651 , MEM_UART_MODEM2 | |
652 #endif | |
653 }; | |
654 | |
655 | |
656 /* | |
657 * DLL (LSB) and DLH (MSB) registers values using the 13 MHz clock. | |
658 */ | |
659 | |
660 static const SYS_UWORD8 dll[] = | |
661 { | |
662 0, /* Auto baud: */ | |
663 81, /* 75 baud. */ | |
664 40, /* 150 baud. */ | |
665 148, /* 300 baud. */ | |
666 74, /* 600 baud. */ | |
667 165, /* 1200 baud. */ | |
668 83, /* 2400 baud. */ | |
669 169, /* 4800 baud. */ | |
670 113, /* 7200 baud. */ | |
671 84, /* 9600 baud. */ | |
672 56, /* 14400 baud. */ | |
673 42, /* 19200 baud. */ | |
674 28, /* 28800 baud. */ | |
675 24, /* 33900 baud: not supported. */ | |
676 21, /* 38400 baud. */ | |
677 14, /* 57600 baud. */ | |
678 7, /* 115200 baud. */ | |
679 0, /* 203125 baud: not supported. */ | |
680 0, /* 406250 baud: not supported. */ | |
681 0 /* 812500 baud: not supported. */ | |
682 }; | |
683 | |
684 static const SYS_UWORD8 dlh[] = | |
685 { | |
686 0, /* Auto baud: */ | |
687 42, /* 75 baud. */ | |
688 21, /* 150 baud. */ | |
689 10, /* 300 baud. */ | |
690 5, /* 600 baud. */ | |
691 2, /* 1200 baud. */ | |
692 1, /* 2400 baud. */ | |
693 0, /* 4800 baud. */ | |
694 0, /* 7200 baud. */ | |
695 0, /* 9600 baud. */ | |
696 0, /* 14400 baud. */ | |
697 0, /* 19200 baud. */ | |
698 0, /* 28800 baud. */ | |
699 0, /* 33900 baud: not supported. */ | |
700 0, /* 38400 baud. */ | |
701 0, /* 57600 baud. */ | |
702 0, /* 115200 baud. */ | |
703 0, /* 203125 baud: not supported. */ | |
704 0, /* 406250 baud: not supported. */ | |
705 0 /* 812500 baud: not supported. */ | |
706 }; | |
707 | |
708 static const UNSIGNED baudrate_value[] = | |
709 { | |
710 1, | |
711 75, | |
712 150, | |
713 300, | |
714 600, | |
715 1200, | |
716 2400, | |
717 4800, | |
718 7200, | |
719 9600, | |
720 14400, | |
721 19200, | |
722 28800, | |
723 0, /* Not supported. */ | |
724 38400, | |
725 57600, | |
726 115200, | |
727 0, /* Not supported. */ | |
728 0, /* Not supported. */ | |
729 0 /* Not supported. */ | |
730 }; | |
731 | |
732 | |
733 | |
734 | |
735 /******************************************************************************* | |
736 * | |
737 * get_bytes_in_rx_buffer | |
738 * | |
739 * Purpose : Gets the number of bytes in the RX buffer. | |
740 * | |
741 * Arguments: In : uart: Pointer on the UART structure. | |
742 * Out: none | |
743 * | |
744 * Returns : The number of bytes in the RX buffer. | |
745 * | |
746 ******************************************************************************/ | |
747 | |
748 static SYS_UWORD16 | |
749 get_bytes_in_rx_buffer (t_uart *uart) | |
750 { | |
751 SYS_UWORD16 bytes_in_rx_buffer; | |
752 volatile SYS_UWORD8 *rx_in; | |
753 | |
754 rx_in = uart->rx_in; | |
755 | |
756 if (uart->rx_out <= rx_in) | |
757 bytes_in_rx_buffer = (SYS_UWORD16) (rx_in - uart->rx_out); | |
758 else | |
759 bytes_in_rx_buffer = | |
760 (SYS_UWORD16) (rx_in - uart->rx_out + uart->buffer_size + 1); | |
761 | |
762 return (bytes_in_rx_buffer); | |
763 } | |
764 | |
765 /******************************************************************************* | |
766 * | |
767 * get_bytes_in_tx_buffer | |
768 * | |
769 * Purpose : Gets the number of bytes in the TX buffer. | |
770 * | |
771 * Arguments: In : uart: Pointer on the UART structure. | |
772 * Out: none | |
773 * | |
774 * Returns : The number of bytes in the TX buffer. | |
775 * | |
776 ******************************************************************************/ | |
777 | |
778 static SYS_UWORD16 | |
779 get_bytes_in_tx_buffer (t_uart *uart) | |
780 { | |
781 SYS_UWORD16 bytes_in_tx_buffer; | |
782 volatile SYS_UWORD8 *tx_out; | |
783 | |
784 tx_out = uart->tx_out; | |
785 | |
786 if (tx_out <= uart->tx_in) | |
787 bytes_in_tx_buffer = (SYS_UWORD16) (uart->tx_in - tx_out); | |
788 else | |
789 bytes_in_tx_buffer = | |
790 (SYS_UWORD16) (uart->tx_in - tx_out + uart->buffer_size + 1); | |
791 | |
792 return (bytes_in_tx_buffer); | |
793 } | |
794 | |
795 /******************************************************************************* | |
796 * | |
797 * compute_break_time | |
798 * | |
799 * Purpose : Computes a number of TDMA from 3 parameters: | |
800 * - baudrate, | |
801 * - bits per character including start bit, stop bits and parity, | |
802 * - number of characters. | |
803 * Due to the TDMA value (4.6 ms), a minimal value is sent: 2 TDMA. | |
804 * | |
805 * Arguments: In : baudrate | |
806 * bits_per_char | |
807 * number_of_chars | |
808 * Out: none | |
809 * | |
810 * Returns : The number of TDMA. | |
811 * | |
812 ******************************************************************************/ | |
813 | |
814 static UNSIGNED | |
815 compute_break_time (UNSIGNED baudrate, | |
816 UNSIGNED bits_per_char, | |
817 UNSIGNED number_of_chars) | |
818 { | |
819 UNSIGNED number_of_tdma; | |
820 | |
821 number_of_tdma = CONVERT_TIME_IN_TDMA ( | |
822 1000 * bits_per_char * number_of_chars / baudrate); | |
823 | |
824 if (number_of_tdma == 0) | |
825 number_of_tdma = 1; | |
826 | |
827 number_of_tdma++; | |
828 | |
829 return (number_of_tdma); | |
830 } | |
831 | |
832 /******************************************************************************* | |
833 * | |
834 * update_reading_callback | |
835 * | |
836 * Purpose : Updates the sizes array and the addresses array and get and builds | |
837 * the state parameter defined in UAF_GetLineState to call the | |
838 * readOutFunc function. | |
839 * | |
840 * Arguments: In : uart : Pointer on the UART structure. | |
841 * call_source: 0: application, 1: HISR (Rx or V24), 3: Rx HISR | |
842 * Out: none | |
843 * | |
844 * Returns : none | |
845 * | |
846 ******************************************************************************/ | |
847 | |
848 static void | |
849 update_reading_callback (t_uart *uart, | |
850 SYS_BOOL call_source) | |
851 { | |
852 SYS_UWORD32 state; | |
853 SYS_UWORD8 dtr_level; | |
854 SYS_UWORD8 fragments_number; | |
855 SYS_UWORD16 bytes_in_rx_buffer; | |
856 volatile SYS_UWORD8 *rx_in; | |
857 | |
858 /* | |
859 * Update the sizes array and the addresses array. | |
860 * A copy of rx_in is used because it may be updated by the interrupt | |
861 * handler if this function is called from the application. | |
862 */ | |
863 | |
864 rx_in = uart->rx_in; | |
865 | |
866 if (uart->rx_out < rx_in) { | |
867 | |
868 fragments_number = 1; | |
869 | |
870 uart->rd_address[0] = uart->rx_out; | |
871 uart->rd_size_before_call[0] = (SYS_UWORD16) (rx_in - uart->rx_out); | |
872 uart->rd_size_after_call[0] = uart->rd_size_before_call[0]; | |
873 | |
874 uart->rd_size_before_call[1] = 0; | |
875 uart->rd_size_after_call[1] = 0; | |
876 | |
877 bytes_in_rx_buffer = uart->rd_size_before_call[0]; | |
878 | |
879 } else if (rx_in == uart->rx_out) { /* RX buffer empty. */ | |
880 | |
881 fragments_number = 1; | |
882 | |
883 uart->rd_address[0] = uart->rx_out; | |
884 uart->rd_size_before_call[0] = 0; | |
885 uart->rd_size_after_call[0] = 0; | |
886 | |
887 uart->rd_size_before_call[1] = 0; | |
888 uart->rd_size_after_call[1] = 0; | |
889 | |
890 bytes_in_rx_buffer = 0; | |
891 | |
892 } else { | |
893 | |
894 fragments_number = 2; | |
895 | |
896 uart->rd_address[0] = uart->rx_out; | |
897 uart->rd_size_before_call[0] = | |
898 uart->buffer_size + 1 - (SYS_UWORD16) (uart->rx_out - | |
899 &(uart->rx_buffer[0])); | |
900 uart->rd_size_after_call[0] = uart->rd_size_before_call[0]; | |
901 | |
902 uart->rd_address[1] = &(uart->rx_buffer[0]); | |
903 uart->rd_size_before_call[1] = (SYS_UWORD16) (rx_in - | |
904 &(uart->rx_buffer[0])); | |
905 uart->rd_size_after_call[1] = uart->rd_size_before_call[1]; | |
906 | |
907 bytes_in_rx_buffer = | |
908 uart->rd_size_before_call[0] + uart->rd_size_before_call[1]; | |
909 | |
910 if (!uart->rd_size_before_call[1]) | |
911 fragments_number = 1; | |
912 } | |
913 | |
914 /* | |
915 * Build the state parameter defined in UAF_GetLineState. | |
916 * The field state_2 is used when state_1 is set to 0 to avoid to | |
917 * lose events detected in the RX interrupt handler. | |
918 */ | |
919 | |
920 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
921 if (call_source == 3) /* Call from Rx HISR */ | |
922 dtr_level = uart->dtr_level_saved[uart->index_hisr]; | |
923 else | |
924 dtr_level = uart->dtr_level; | |
925 #endif | |
926 | |
927 state = uart->state_2; | |
928 uart->state_2 = 0; | |
929 uart->state = &(uart->state_2); | |
930 | |
931 state |= uart->state_1; | |
932 uart->state_1 = 0; | |
933 uart->state = &(uart->state_1); | |
934 | |
935 state |= ((((SYS_UWORD32) uart->rts_level) << RTS) | | |
936 | |
937 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
938 (((SYS_UWORD32) dtr_level) << DTR) | | |
939 #endif | |
940 | |
941 (((SYS_UWORD32) (uart->tx_stopped_by_application | | |
942 uart->tx_stopped_by_driver)) << TXSTP) | | |
943 | |
944 (((SYS_UWORD32) (uart->rx_stopped_by_application | | |
945 uart->rx_stopped_by_driver)) << RXSTP) | | |
946 | |
947 (((SYS_UWORD32) (uart->buffer_size - bytes_in_rx_buffer)) << RXBLEV)); | |
948 | |
949 /* | |
950 * Fields SA, SB and X are set according to the flow control: | |
951 * | |
952 * None RTS/CTS XON/XOFF | |
953 * SA DTR DTR DTR | |
954 * SB RTS 0 RTS | |
955 * X 0 RTS XON:0 XOFF:1 (transmitter) | |
956 * | |
957 * DTR is supported on C, D & E-Sample. | |
958 */ | |
959 | |
960 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
961 state |= (((SYS_UWORD32) uart->dtr_level) << SA); | |
962 #endif | |
963 | |
964 if (uart->flow_control_mode != fc_rts) | |
965 state |= (((SYS_UWORD32) uart->rts_level) << SB); | |
966 | |
967 if (uart->flow_control_mode == fc_rts) | |
968 state |= (((SYS_UWORD32) uart->rts_level) << X); | |
969 | |
970 else if ((uart->flow_control_mode == fc_xoff) && | |
971 (uart->tx_stopped_by_application || | |
972 uart->tx_stopped_by_driver)) | |
973 state |= (1 << X); | |
974 | |
975 /* | |
976 * Call the readOutFunc function with these parameters. | |
977 */ | |
978 | |
979 uart->rd_call_setup = rm_notDefined; | |
980 | |
981 (*(uart->readOutFunc)) (call_source & 0x01, /* From HISR or application */ | |
982 &(uart->rd_call_setup), | |
983 fragments_number, | |
984 &(uart->rd_address[0]), | |
985 &(uart->rd_size_after_call[0]), | |
986 state); | |
987 } | |
988 | |
989 /******************************************************************************* | |
990 * | |
991 * update_writing_callback | |
992 * | |
993 * Purpose : Updates the sizes array and the addresses array to call the | |
994 * writeInFunc function. | |
995 * | |
996 * Arguments: In : uart : Pointer on the UART structure. | |
997 * call_source: 0: application, 1: HISR | |
998 * Out: none | |
999 * | |
1000 * Returns : none | |
1001 * | |
1002 ******************************************************************************/ | |
1003 | |
1004 static void | |
1005 update_writing_callback (t_uart *uart, | |
1006 SYS_BOOL call_source) | |
1007 { | |
1008 SYS_UWORD8 fragments_number; | |
1009 volatile SYS_UWORD8 *tx_out; | |
1010 | |
1011 /* | |
1012 * Update the array of sizes and the array of addresses. | |
1013 * A copy of tx_out is used because it may be updated by the interrupt | |
1014 * handler if this function is called from the application. | |
1015 */ | |
1016 | |
1017 tx_out = uart->tx_out; | |
1018 | |
1019 if (uart->tx_in < tx_out) { | |
1020 | |
1021 fragments_number = 1; | |
1022 | |
1023 uart->wr_address[0] = uart->tx_in; | |
1024 uart->wr_size_before_call[0] = | |
1025 (SYS_UWORD16) (tx_out - uart->tx_in - 1); | |
1026 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1027 | |
1028 uart->wr_size_before_call[1] = 0; | |
1029 uart->wr_size_after_call[1] = 0; | |
1030 | |
1031 } else if (tx_out == &(uart->tx_buffer[0])) { | |
1032 | |
1033 fragments_number = 1; | |
1034 | |
1035 uart->wr_address[0] = uart->tx_in; | |
1036 uart->wr_size_before_call[0] = | |
1037 uart->buffer_size - | |
1038 (SYS_UWORD16) (uart->tx_in - &(uart->tx_buffer[0])); | |
1039 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1040 | |
1041 uart->wr_size_before_call[1] = 0; | |
1042 uart->wr_size_after_call[1] = 0; | |
1043 | |
1044 } else { | |
1045 | |
1046 fragments_number = 2; | |
1047 | |
1048 uart->wr_address[0] = uart->tx_in; | |
1049 uart->wr_size_before_call[0] = | |
1050 uart->buffer_size + 1 - | |
1051 (SYS_UWORD16) (uart->tx_in - &(uart->tx_buffer[0])); | |
1052 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1053 | |
1054 uart->wr_address[1] = &(uart->tx_buffer[0]); | |
1055 uart->wr_size_before_call[1] = | |
1056 (SYS_UWORD16) (tx_out - &(uart->tx_buffer[0]) - 1); | |
1057 uart->wr_size_after_call[1] = uart->wr_size_before_call[1]; | |
1058 | |
1059 if (!uart->wr_size_before_call[1]) | |
1060 fragments_number = 1; | |
1061 } | |
1062 | |
1063 /* | |
1064 * Call the writeInFunc function with these parameters; | |
1065 */ | |
1066 | |
1067 uart->wr_call_setup = rm_notDefined; | |
1068 | |
1069 (*(uart->writeInFunc)) (call_source, | |
1070 &(uart->wr_call_setup), | |
1071 fragments_number, | |
1072 &(uart->wr_address[0]), | |
1073 &(uart->wr_size_after_call[0])); | |
1074 } | |
1075 | |
1076 /******************************************************************************* | |
1077 * | |
1078 * stop_break | |
1079 * | |
1080 * Purpose : The timer is activated to expire when a time corresponding to the | |
1081 * sending time of 2 characters at least has elapsed. After a break, | |
1082 * no character may be sent during this period. | |
1083 * | |
1084 * Arguments: In : id: parameter not used. | |
1085 * Out: none | |
1086 * | |
1087 * Returns : none | |
1088 * | |
1089 ******************************************************************************/ | |
1090 | |
1091 static VOID | |
1092 stop_break (UNSIGNED id) | |
1093 { | |
1094 t_uart *uart; | |
1095 | |
1096 uart = &uart_parameters; | |
1097 | |
1098 uart->break_to_send = 0; | |
1099 uart->break_in_progress = 0; | |
1100 | |
1101 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1102 /* | |
1103 * Disable sleep mode. | |
1104 */ | |
1105 | |
1106 WRITE_UART_REGISTER ( | |
1107 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1108 #endif | |
1109 | |
1110 /* | |
1111 * Unmask Tx interrupt. | |
1112 */ | |
1113 | |
1114 WRITE_UART_REGISTER ( | |
1115 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1116 } | |
1117 | |
1118 /******************************************************************************* | |
1119 * | |
1120 * hisr_start_break | |
1121 * | |
1122 * Purpose : Enables the timer used to control the time without character. | |
1123 * | |
1124 * Arguments: In : none | |
1125 * Out: none | |
1126 * | |
1127 * Returns : none | |
1128 * | |
1129 ******************************************************************************/ | |
1130 | |
1131 static VOID | |
1132 hisr_start_break (VOID) | |
1133 { | |
1134 t_uart *uart; | |
1135 | |
1136 uart = &uart_parameters; | |
1137 | |
1138 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
1139 NU_DISABLE_TIMER); | |
1140 | |
1141 (void) NU_Reset_Timer (&(uart->break_timer_ctrl_block), | |
1142 stop_break, | |
1143 uart->time_without_character, | |
1144 0, /* The timer expires once. */ | |
1145 NU_DISABLE_TIMER); | |
1146 | |
1147 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
1148 NU_ENABLE_TIMER); | |
1149 } | |
1150 | |
1151 /******************************************************************************* | |
1152 * | |
1153 * stop_receiver | |
1154 * | |
1155 * Purpose : Activates DTR or RTS or sends XOFF. | |
1156 * | |
1157 * Arguments: In : uart: Pointer on the UART structure. | |
1158 * Out: none | |
1159 * | |
1160 * Returns : none | |
1161 * | |
1162 ******************************************************************************/ | |
1163 | |
1164 static void | |
1165 stop_receiver (t_uart *uart) | |
1166 { | |
1167 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1168 /* | |
1169 * Disable sleep mode. | |
1170 */ | |
1171 | |
1172 WRITE_UART_REGISTER ( | |
1173 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1174 #endif | |
1175 | |
1176 switch (uart->flow_control_mode) { | |
1177 | |
1178 case fc_rts: | |
1179 | |
1180 /* | |
1181 * CTS (RTS on UART side) is deactivated (high). | |
1182 */ | |
1183 | |
1184 WRITE_UART_REGISTER ( | |
1185 uart, MCR, READ_UART_REGISTER (uart, MCR) & ~MRTS); | |
1186 break; | |
1187 | |
1188 case fc_xoff: | |
1189 | |
1190 uart->xon_xoff_to_send = uart->xoff_character; | |
1191 uart->send_xon_xoff = 1; | |
1192 | |
1193 /* | |
1194 * Unmask Tx interrupt. | |
1195 */ | |
1196 | |
1197 WRITE_UART_REGISTER ( | |
1198 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1199 break; | |
1200 } | |
1201 } | |
1202 | |
1203 /******************************************************************************* | |
1204 * | |
1205 * start_receiver | |
1206 * | |
1207 * Purpose : Deactivates DTR or RTS or sends XON. | |
1208 * | |
1209 * Arguments: In : uart: Pointer on the UART structure. | |
1210 * Out: none | |
1211 * | |
1212 * Returns : none | |
1213 * | |
1214 ******************************************************************************/ | |
1215 | |
1216 static void | |
1217 start_receiver (t_uart *uart) | |
1218 { | |
1219 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1220 /* | |
1221 * Disable sleep mode. | |
1222 */ | |
1223 | |
1224 WRITE_UART_REGISTER ( | |
1225 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1226 #endif | |
1227 | |
1228 switch (uart->flow_control_mode) { | |
1229 | |
1230 case fc_rts: | |
1231 | |
1232 /* | |
1233 * CTS (RTS on UART side) is activated (low). | |
1234 */ | |
1235 | |
1236 WRITE_UART_REGISTER ( | |
1237 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
1238 break; | |
1239 | |
1240 case fc_xoff: | |
1241 | |
1242 uart->xon_xoff_to_send = uart->xon_character; | |
1243 uart->send_xon_xoff = 1; | |
1244 | |
1245 /* | |
1246 * Unmask Tx interrupt. | |
1247 */ | |
1248 | |
1249 WRITE_UART_REGISTER ( | |
1250 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1251 break; | |
1252 } | |
1253 } | |
1254 | |
1255 /******************************************************************************* | |
1256 * | |
1257 * add_esc_seq_char_in_rx_buffer | |
1258 * | |
1259 * Purpose : Writes one escape sequence character in the RX buffer. | |
1260 * | |
1261 * Arguments: In : uart: Pointer on the UART structure. | |
1262 * Out: none | |
1263 * | |
1264 * Returns : none | |
1265 * | |
1266 ******************************************************************************/ | |
1267 | |
1268 static void | |
1269 add_esc_seq_char_in_rx_buffer (t_uart *uart) | |
1270 { | |
1271 /* | |
1272 * IF the RX buffer is not full, write an escape sequence character in the | |
1273 * RX buffer and check wrap-around. | |
1274 */ | |
1275 | |
1276 if (!RX_BUFFER_FULL (uart)) { | |
1277 | |
1278 *(uart->rx_in++) = uart->esc_seq_character; | |
1279 | |
1280 if (uart->rx_in == &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
1281 uart->rx_in = &(uart->rx_buffer[0]); | |
1282 } | |
1283 } | |
1284 | |
1285 /******************************************************************************* | |
1286 * | |
1287 * analyze_guard_period_timer_expiration | |
1288 * | |
1289 * Purpose : According to the state of the escape sequence detection, 1 or 2 | |
1290 * escape sequence characters may be written into the TX buffer or | |
1291 * the escape sequence is declared as detected. | |
1292 * If 1 or 2 escape sequence characters have been detected the | |
1293 * guard period must not expire. | |
1294 * If 3 characters have been detected the escape sequence must | |
1295 * expire. | |
1296 * | |
1297 * Arguments: In : id: parameter not used. | |
1298 * Out: none | |
1299 * | |
1300 * Returns : none | |
1301 * | |
1302 ******************************************************************************/ | |
1303 | |
1304 static VOID | |
1305 analyze_guard_period_timer_expiration (UNSIGNED id) | |
1306 { | |
1307 t_uart *uart; | |
1308 SYS_UWORD16 bytes_in_rx_buffer; | |
1309 | |
1310 uart = &uart_parameters; | |
1311 | |
1312 switch (uart->esc_seq_detection_state) { | |
1313 | |
1314 case ONE_CHAR_DETECTED: | |
1315 | |
1316 /* | |
1317 * 1 escape sequence character has been detected. The guard period has | |
1318 * ellapsed. This character is written into the TX buffer. | |
1319 */ | |
1320 | |
1321 add_esc_seq_char_in_rx_buffer (uart); | |
1322 break; | |
1323 | |
1324 case TWO_CHARS_DETECTED: | |
1325 | |
1326 /* | |
1327 * 2 escape sequence characters have been detected. The guard period has | |
1328 * ellapsed. These characters are written into the TX buffer. | |
1329 */ | |
1330 | |
1331 add_esc_seq_char_in_rx_buffer (uart); | |
1332 add_esc_seq_char_in_rx_buffer (uart); | |
1333 | |
1334 break; | |
1335 | |
1336 case THREE_CHARS_DETECTED: | |
1337 | |
1338 /* | |
1339 * 3 escape sequence characters have been detected and the guard period | |
1340 * has ellapsed. The escape sequence is detected. | |
1341 */ | |
1342 | |
1343 uart->esc_seq_received = 1; | |
1344 *(uart->state) |= (1 << ESC); | |
1345 | |
1346 break; | |
1347 } | |
1348 | |
1349 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1350 | |
1351 /* | |
1352 * If the high watermark is reached, RTS is activated or XOFF is sent | |
1353 * according to the flow control mode. | |
1354 */ | |
1355 | |
1356 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
1357 | |
1358 if ((uart->flow_control_mode != fc_none) && | |
1359 (bytes_in_rx_buffer >= RX_HIGH_WATERMARK (uart->buffer_size))) { | |
1360 | |
1361 /* | |
1362 * Check if receipt must be stopped. | |
1363 */ | |
1364 | |
1365 if (!uart->rx_stopped_by_driver) { | |
1366 | |
1367 uart->rx_stopped_by_driver = 1; | |
1368 if (!uart->rx_stopped_by_application) | |
1369 stop_receiver (uart); | |
1370 } | |
1371 } | |
1372 | |
1373 /* | |
1374 * If a reading was suspended or if the callback function is installed, | |
1375 * it is called if one of these conditions is fulfiled: | |
1376 * - the RX threshold level is reached, | |
1377 * - a break has been detected, | |
1378 * - an escape sequence has been detected, | |
1379 */ | |
1380 | |
1381 if ((!uart->rd_call_from_hisr_in_progress) && | |
1382 (uart->reading_suspended || | |
1383 (uart->rd_call_setup == rm_reInstall))) { | |
1384 | |
1385 if ((bytes_in_rx_buffer >= uart->rx_threshold_level) || | |
1386 uart->break_received || | |
1387 uart->esc_seq_received) { | |
1388 | |
1389 uart->rd_call_from_hisr_in_progress = 1; | |
1390 update_reading_callback (uart, 1); /* 1: call from HISR. */ | |
1391 | |
1392 uart->reading_suspended = 0; | |
1393 uart->break_received = 0; | |
1394 uart->esc_seq_received = 0; | |
1395 } | |
1396 } | |
1397 } | |
1398 | |
1399 /******************************************************************************* | |
1400 * | |
1401 * stop_guard_period_timer | |
1402 * | |
1403 * Purpose : Stops the timer used to detect the guard period expiration. | |
1404 * | |
1405 * Arguments: In : uart: Pointer on the UART structure. | |
1406 * Out: none | |
1407 * | |
1408 * Returns : none | |
1409 * | |
1410 ******************************************************************************/ | |
1411 | |
1412 static void | |
1413 stop_guard_period_timer (t_uart *uart) | |
1414 { | |
1415 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1416 NU_DISABLE_TIMER); | |
1417 } | |
1418 | |
1419 /******************************************************************************* | |
1420 * | |
1421 * start_guard_period_timer | |
1422 * | |
1423 * Purpose : Starts a timer which expires if the guard period has ellapsed. | |
1424 * | |
1425 * Arguments: In : uart: Pointer on the UART structure. | |
1426 * Out: none | |
1427 * | |
1428 * Returns : none | |
1429 * | |
1430 ******************************************************************************/ | |
1431 | |
1432 static void | |
1433 start_guard_period_timer (t_uart *uart) | |
1434 { | |
1435 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1436 NU_DISABLE_TIMER); | |
1437 | |
1438 (void) NU_Reset_Timer (&(uart->guard_period_timer_ctrl_block), | |
1439 analyze_guard_period_timer_expiration, | |
1440 uart->guard_period, | |
1441 0, /* The timer expires once. */ | |
1442 NU_DISABLE_TIMER); | |
1443 | |
1444 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1445 NU_ENABLE_TIMER); | |
1446 } | |
1447 | |
1448 /******************************************************************************* | |
1449 * | |
1450 * detect_escape_sequence | |
1451 * | |
1452 * Purpose : The state machine used to detect an escape sequence is updated | |
1453 * according to the array of bytes to analyse. If the state machine | |
1454 * goes to the initial state due to a break in the sequence | |
1455 * detection, the previous characters are put into the RX buffer. | |
1456 * | |
1457 * Arguments: In : uart: Pointer on the UART structure. | |
1458 * Out: none | |
1459 * | |
1460 * Returns : 0: Break in detection or a sequence has been detected. | |
1461 * 1: A sequence may be detected. | |
1462 * | |
1463 ******************************************************************************/ | |
1464 | |
1465 static int | |
1466 detect_escape_sequence (t_uart *uart) | |
1467 { | |
1468 int detection_result; | |
1469 SYS_UWORD8 *rx_fifo_byte; | |
1470 SYS_UWORD16 bytes_in_rx_buffer; | |
1471 UNSIGNED elapsed_time; | |
1472 | |
1473 detection_result = 0; | |
1474 | |
1475 rx_fifo_byte = uart->rx_buffer_used_by_rx_hisr; | |
1476 if (rx_fifo_byte == &(uart->rx_fifo_byte_1[0])) | |
1477 bytes_in_rx_buffer = uart->bytes_in_rx_buffer_1; | |
1478 else | |
1479 bytes_in_rx_buffer = uart->bytes_in_rx_buffer_2; | |
1480 | |
1481 if (uart->current_time > uart->previous_time) | |
1482 elapsed_time = uart->current_time - uart->previous_time; | |
1483 else | |
1484 elapsed_time = | |
1485 MAX_UNSIGNED_32 - uart->previous_time + uart->current_time; | |
1486 | |
1487 switch (uart->esc_seq_detection_state) { | |
1488 | |
1489 case INITIALIZATION: | |
1490 | |
1491 /* | |
1492 * It is the first character received. It may be the first character | |
1493 * of an escape sequence. The elapsed_time variable is set to the | |
1494 * guard period value to consider this character as the first character | |
1495 * of an escape sequence. | |
1496 */ | |
1497 | |
1498 if (!uart->esc_seq_modified) { | |
1499 | |
1500 elapsed_time = uart->guard_period; | |
1501 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1502 } | |
1503 | |
1504 /* No break! */ | |
1505 | |
1506 case NO_ESCAPE_SEQUENCE: | |
1507 | |
1508 /* | |
1509 * To go to the next state (one, two or three characters detected): | |
1510 * - a guard period must have elapsed since the last receipt, | |
1511 * - the characters must belong to the escape sequence. | |
1512 */ | |
1513 | |
1514 if ((elapsed_time >= uart->guard_period) && | |
1515 (!uart->esc_seq_modified)) { | |
1516 | |
1517 switch (bytes_in_rx_buffer) { | |
1518 | |
1519 case 1: | |
1520 | |
1521 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1522 | |
1523 uart->esc_seq_detection_state = ONE_CHAR_DETECTED; | |
1524 start_guard_period_timer (uart); | |
1525 detection_result = 1; | |
1526 } | |
1527 | |
1528 break; | |
1529 | |
1530 case 2: | |
1531 | |
1532 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1533 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1534 | |
1535 uart->esc_seq_detection_state = TWO_CHARS_DETECTED; | |
1536 start_guard_period_timer (uart); | |
1537 detection_result = 1; | |
1538 } | |
1539 | |
1540 break; | |
1541 | |
1542 case 3: | |
1543 | |
1544 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1545 (*rx_fifo_byte++ == uart->esc_seq_character) && | |
1546 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1547 | |
1548 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1549 start_guard_period_timer (uart); | |
1550 detection_result = 1; | |
1551 } | |
1552 | |
1553 break; | |
1554 | |
1555 default: | |
1556 | |
1557 /* | |
1558 * No action. | |
1559 */ | |
1560 | |
1561 break; | |
1562 } | |
1563 } | |
1564 | |
1565 uart->previous_time = uart->current_time; | |
1566 | |
1567 break; | |
1568 | |
1569 case ONE_CHAR_DETECTED: | |
1570 | |
1571 /* | |
1572 * To go to the next state (two or three characters detected): | |
1573 * - the difference between the current time and the previous time | |
1574 * must be less than the guard period, | |
1575 * - the characters must belong to the escape sequence. | |
1576 * Otherwise, an escape sequence character is written in the RX buffer. | |
1577 */ | |
1578 | |
1579 if (!uart->esc_seq_modified) { | |
1580 | |
1581 switch (bytes_in_rx_buffer) { | |
1582 | |
1583 case 1: | |
1584 | |
1585 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1586 | |
1587 uart->esc_seq_detection_state = TWO_CHARS_DETECTED; | |
1588 detection_result = 1; | |
1589 } | |
1590 | |
1591 break; | |
1592 | |
1593 case 2: | |
1594 | |
1595 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1596 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1597 | |
1598 start_guard_period_timer (uart); /* Reset the timer. */ | |
1599 | |
1600 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1601 detection_result = 1; | |
1602 } | |
1603 | |
1604 break; | |
1605 | |
1606 default: | |
1607 | |
1608 /* | |
1609 * No action. | |
1610 */ | |
1611 | |
1612 break; | |
1613 } | |
1614 } | |
1615 | |
1616 if (!detection_result) { | |
1617 | |
1618 add_esc_seq_char_in_rx_buffer (uart); | |
1619 | |
1620 uart->previous_time = uart->current_time; | |
1621 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1622 } | |
1623 | |
1624 break; | |
1625 | |
1626 case TWO_CHARS_DETECTED: | |
1627 | |
1628 /* | |
1629 * To go to the next state (three chars detected): | |
1630 * - the difference between the current time and the previous time | |
1631 * must be less than the guard period, | |
1632 * - the character must belong to the escape sequence. | |
1633 * Otherwise, 2 escape sequence characters are written in the RX buffer. | |
1634 */ | |
1635 | |
1636 if (!uart->esc_seq_modified) { | |
1637 | |
1638 switch (bytes_in_rx_buffer) { | |
1639 | |
1640 case 1: | |
1641 | |
1642 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1643 | |
1644 start_guard_period_timer (uart); /* Reset the timer. */ | |
1645 | |
1646 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1647 detection_result = 1; | |
1648 } | |
1649 | |
1650 break; | |
1651 | |
1652 default: | |
1653 | |
1654 /* | |
1655 * No action. | |
1656 */ | |
1657 | |
1658 break; | |
1659 } | |
1660 } | |
1661 | |
1662 if (!detection_result) { | |
1663 | |
1664 add_esc_seq_char_in_rx_buffer (uart); | |
1665 add_esc_seq_char_in_rx_buffer (uart); | |
1666 | |
1667 uart->previous_time = uart->current_time; | |
1668 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1669 } | |
1670 | |
1671 break; | |
1672 | |
1673 case THREE_CHARS_DETECTED: | |
1674 | |
1675 /* | |
1676 * An escape sequence is detected if a guard period has elapsed since | |
1677 * the last receipt. Otherwise, 3 escape sequence characters are | |
1678 * written in the RX buffer. | |
1679 */ | |
1680 | |
1681 stop_guard_period_timer (uart); | |
1682 | |
1683 add_esc_seq_char_in_rx_buffer (uart); | |
1684 add_esc_seq_char_in_rx_buffer (uart); | |
1685 add_esc_seq_char_in_rx_buffer (uart); | |
1686 | |
1687 uart->previous_time = uart->current_time; | |
1688 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1689 | |
1690 break; | |
1691 } | |
1692 | |
1693 return (detection_result); | |
1694 } | |
1695 | |
1696 /******************************************************************************* | |
1697 * | |
1698 * send_break | |
1699 * | |
1700 * Purpose : This function may only called if the TX FIFO is empty. | |
1701 * Null characters are written in the TX FIFO. The number of bytes to | |
1702 * write has been defined with UAF_SetLineState. Enables the break | |
1703 * condition. | |
1704 * | |
1705 * Arguments: In : uart: Pointer on the UART structure. | |
1706 * Out: none | |
1707 * | |
1708 * Returns : Number of bytes sent. | |
1709 * | |
1710 ******************************************************************************/ | |
1711 | |
1712 static SYS_UWORD16 | |
1713 send_break (t_uart *uart) | |
1714 { | |
1715 SYS_UWORD16 bytes_in_tx_fifo; | |
1716 | |
1717 bytes_in_tx_fifo = 0; | |
1718 uart->break_in_progress = 1; | |
1719 | |
1720 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1721 /* | |
1722 * Disable sleep mode. | |
1723 */ | |
1724 | |
1725 WRITE_UART_REGISTER ( | |
1726 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1727 #endif | |
1728 | |
1729 WRITE_UART_REGISTER ( | |
1730 uart, LCR, READ_UART_REGISTER (uart, LCR) | BREAK_CONTROL); | |
1731 | |
1732 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1733 /* | |
1734 * Re-enable sleep mode. | |
1735 */ | |
1736 | |
1737 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
1738 /* | |
1739 WRITE_UART_REGISTER ( | |
1740 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
1741 | |
1742 */ | |
1743 #endif | |
1744 | |
1745 while (uart->break_length) { | |
1746 | |
1747 WRITE_UART_REGISTER (uart, THR, 0x00); | |
1748 uart->break_length--; | |
1749 bytes_in_tx_fifo++; | |
1750 } | |
1751 | |
1752 return (bytes_in_tx_fifo); | |
1753 } | |
1754 | |
1755 /******************************************************************************* | |
1756 * | |
1757 * build_rx_fifo_array | |
1758 * | |
1759 * Purpose : Reads the RX FIFO to build an array with bytes read. | |
1760 * A byte is written in this array if no error is detected. | |
1761 * | |
1762 * Arguments: In : uart: Pointer on the UART structure. | |
1763 * Out: none | |
1764 * | |
1765 * Returns : The number of bytes in RX FIFO. | |
1766 * | |
1767 ******************************************************************************/ | |
1768 | |
1769 static SYS_UWORD16 | |
1770 build_rx_fifo_array (t_uart *uart) | |
1771 { | |
1772 SYS_UWORD8 status; | |
1773 SYS_UWORD8 *first_byte; | |
1774 SYS_UWORD8 *current_byte; | |
1775 SYS_UWORD16 *bytes_in_rx_buffer; | |
1776 SYS_UWORD16 bytes_received; | |
1777 SYS_UWORD8 cbyte; | |
1778 | |
1779 volatile int x; | |
1780 | |
1781 x = 1; | |
1782 | |
1783 bytes_received = 0; | |
1784 | |
1785 | |
1786 /* | |
1787 * Switch to the other buffer. | |
1788 */ | |
1789 | |
1790 first_byte = uart->rx_buffer_used_by_rx_lisr; | |
1791 if (first_byte == &(uart->rx_fifo_byte_1[0])) { | |
1792 | |
1793 first_byte = &(uart->rx_fifo_byte_2[0]); | |
1794 bytes_in_rx_buffer = &(uart->bytes_in_rx_buffer_2); | |
1795 | |
1796 } else { | |
1797 | |
1798 first_byte = &(uart->rx_fifo_byte_1[0]); | |
1799 bytes_in_rx_buffer = &(uart->bytes_in_rx_buffer_1); | |
1800 } | |
1801 | |
1802 current_byte = first_byte; | |
1803 | |
1804 if (*bytes_in_rx_buffer) { | |
1805 | |
1806 | |
1807 /* The Rx buffer is not empty and is being used by HISR ! */ | |
1808 /* Hence stop the flow control */ | |
1809 stop_receiver (uart); | |
1810 | |
1811 /* | |
1812 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
1813 */ | |
1814 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
1815 | |
1816 /* Mask The Rx and interrupt */ | |
1817 | |
1818 WRITE_UART_REGISTER ( | |
1819 uart, IER, READ_UART_REGISTER (uart, IER) & | |
1820 ~(ERBI | EDSSI)); | |
1821 | |
1822 uart->rx_stopped_by_lisr = 1; | |
1823 return (bytes_received); | |
1824 | |
1825 } | |
1826 | |
1827 uart->rx_buffer_used_by_rx_lisr = first_byte; | |
1828 | |
1829 status = READ_UART_REGISTER (uart, LSR); | |
1830 | |
1831 /* | |
1832 * Build an array with the bytes contained in the RX FIFO. | |
1833 */ | |
1834 | |
1835 while (status & DR) { /* While RX FIFO is not empty... */ | |
1836 | |
1837 *current_byte = READ_UART_REGISTER (uart, RHR); | |
1838 | |
1839 /* | |
1840 * Check if a parity error or a framing error is associated with the | |
1841 * received data. If there is an error the byte is not copied into the | |
1842 * bytes array. | |
1843 */ | |
1844 | |
1845 if (status & BYTE_ERROR) { | |
1846 | |
1847 if (status & OE) | |
1848 uart->overrun_error++; | |
1849 | |
1850 if (status & PE) | |
1851 uart->parity_error++; | |
1852 | |
1853 if (status & FE) | |
1854 uart->framing_error++; | |
1855 | |
1856 /* | |
1857 * Check break detection. | |
1858 */ | |
1859 | |
1860 if (status & BI) { | |
1861 | |
1862 uart->break_received = 1; | |
1863 *(uart->state) |= | |
1864 ((1 << BRK) | (MINIMAL_BREAK_LENGTH << BRKLEN)); | |
1865 } | |
1866 | |
1867 } else /* No error */ | |
1868 current_byte++; | |
1869 | |
1870 status = READ_UART_REGISTER (uart, LSR); | |
1871 } | |
1872 | |
1873 bytes_received = (SYS_UWORD16) (current_byte - first_byte); | |
1874 *bytes_in_rx_buffer = bytes_received; | |
1875 | |
1876 /* | |
1877 * Re-switch to the other buffer if no valid character has been received. | |
1878 */ | |
1879 | |
1880 if (!bytes_received) { | |
1881 | |
1882 if (uart->rx_buffer_used_by_rx_lisr == &(uart->rx_fifo_byte_1[0])) | |
1883 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_2[0]); | |
1884 | |
1885 else | |
1886 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_1[0]); | |
1887 } | |
1888 | |
1889 if (bytes_received > uart->max_rx_fifo_level) | |
1890 uart->max_rx_fifo_level = bytes_received; | |
1891 | |
1892 return (bytes_received); | |
1893 } | |
1894 | |
1895 /******************************************************************************* | |
1896 * | |
1897 * empty_rx_fifo | |
1898 * | |
1899 * Purpose : Read the RX FIFO. | |
1900 * | |
1901 * Arguments: In : uart: Pointer on the UART structure. | |
1902 * Out: none | |
1903 * | |
1904 * Returns : none | |
1905 * | |
1906 ******************************************************************************/ | |
1907 | |
1908 static void | |
1909 empty_rx_fifo (t_uart *uart) | |
1910 { | |
1911 SYS_UWORD16 bytes_in_rx_fifo; | |
1912 volatile SYS_UWORD8 dummy_byte; | |
1913 | |
1914 bytes_in_rx_fifo = 0; | |
1915 | |
1916 while (READ_UART_REGISTER (uart, LSR) & DR) { | |
1917 | |
1918 dummy_byte = READ_UART_REGISTER (uart, RHR); | |
1919 bytes_in_rx_fifo++; | |
1920 } | |
1921 | |
1922 if (bytes_in_rx_fifo > uart->max_rx_fifo_level) | |
1923 uart->max_rx_fifo_level = bytes_in_rx_fifo; | |
1924 } | |
1925 | |
1926 /******************************************************************************* | |
1927 * | |
1928 * hisr_execute_rx_operations | |
1929 * | |
1930 * Purpose : If an escape sequence is detected or if a break in the detection | |
1931 * has occured RX FIFO bytes are written in the RX buffer. | |
1932 * If the software flow control is used bytes are analyzed to know | |
1933 * if a XON or a XOFF character is received to stop or start the | |
1934 * transmitter. | |
1935 * If a flow control is used and if the high watermark of the RX | |
1936 * buffer is reached the receiver is stopped. | |
1937 * If the RX threshold level is reached the callback mechanism is | |
1938 * activated. | |
1939 * | |
1940 * Arguments: In : none | |
1941 * Out: none | |
1942 * | |
1943 * Returns : none | |
1944 * | |
1945 ******************************************************************************/ | |
1946 | |
1947 static VOID | |
1948 hisr_execute_rx_operations (VOID) | |
1949 { | |
1950 SYS_UWORD16 bytes_free_in_rx_buffer; | |
1951 SYS_UWORD16 wrap_around_counter; | |
1952 SYS_UWORD16 bytes_in_rx_buffer; | |
1953 SYS_UWORD16 bytes_read; | |
1954 SYS_UWORD16 bytes_to_copy; | |
1955 SYS_UWORD8 *current_byte; | |
1956 SYS_UWORD8 xon_xoff_detected; | |
1957 t_uart *uart; | |
1958 | |
1959 uart = &uart_parameters; | |
1960 | |
1961 /* | |
1962 * Since new characters have been received, the sleep timer is reset then | |
1963 * restarted preventing the system to enter deep-sleep for a new period of | |
1964 * time. | |
1965 */ | |
1966 | |
1967 SER_restart_uart_sleep_timer (); | |
1968 uart_sleep_timer_enabled = 1; | |
1969 | |
1970 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
1971 uart->index_hisr = (uart->index_hisr + 1) & 0x01; /* 0 or 1 */ | |
1972 #endif | |
1973 | |
1974 xon_xoff_detected = 0; | |
1975 | |
1976 /* | |
1977 * Switch to the other buffer. | |
1978 */ | |
1979 | |
1980 current_byte = uart->rx_buffer_used_by_rx_hisr; | |
1981 if (current_byte == &(uart->rx_fifo_byte_1[0])) { | |
1982 | |
1983 current_byte = &(uart->rx_fifo_byte_2[0]); | |
1984 bytes_read = uart->bytes_in_rx_buffer_2; | |
1985 | |
1986 } else { | |
1987 | |
1988 current_byte = &(uart->rx_fifo_byte_1[0]); | |
1989 bytes_read = uart->bytes_in_rx_buffer_1; | |
1990 } | |
1991 | |
1992 uart->rx_buffer_used_by_rx_hisr = current_byte; | |
1993 | |
1994 /* | |
1995 * All bytes are copied into the RX buffer only if an escape sequence has | |
1996 * been detected or a break in the detection has occured. | |
1997 */ | |
1998 | |
1999 if (!detect_escape_sequence (uart)) { | |
2000 | |
2001 if (uart->rx_out > uart->rx_in) | |
2002 bytes_free_in_rx_buffer = (SYS_UWORD16) (uart->rx_out - uart->rx_in - 1); | |
2003 else | |
2004 bytes_free_in_rx_buffer = | |
2005 (SYS_UWORD16) (uart->buffer_size + uart->rx_out - uart->rx_in); | |
2006 | |
2007 wrap_around_counter = uart->buffer_size + 1 - | |
2008 (SYS_UWORD16) (uart->rx_in - &(uart->rx_buffer[0])); | |
2009 | |
2010 if (uart->flow_control_mode == fc_xoff) { | |
2011 | |
2012 /* | |
2013 * For SW Flow Control, need to further investigate the processing | |
2014 * in order to improve the performance of the driver, and in order | |
2015 * to avoid managing the wrap around of the circular buffer each | |
2016 * time a character is copied. | |
2017 */ | |
2018 | |
2019 while (bytes_read && bytes_free_in_rx_buffer) { | |
2020 | |
2021 /* | |
2022 * If the data received is XON or XOFF, the transmitter is | |
2023 * enabled (XON) or disabled (XOFF). | |
2024 */ | |
2025 | |
2026 if (*current_byte == uart->xoff_character) { | |
2027 | |
2028 uart->tx_stopped_by_driver = 1; | |
2029 xon_xoff_detected = 1; | |
2030 | |
2031 } else if (*current_byte == uart->xon_character) { | |
2032 | |
2033 uart->tx_stopped_by_driver = 0; | |
2034 xon_xoff_detected = 1; | |
2035 | |
2036 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2037 /* | |
2038 * Disable sleep mode. | |
2039 */ | |
2040 | |
2041 WRITE_UART_REGISTER ( | |
2042 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2043 #endif | |
2044 | |
2045 /* | |
2046 * Unmask Tx interrupt. | |
2047 */ | |
2048 | |
2049 WRITE_UART_REGISTER ( | |
2050 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2051 | |
2052 } else { | |
2053 | |
2054 *(uart->rx_in++) = *current_byte; | |
2055 | |
2056 wrap_around_counter--; | |
2057 if (!wrap_around_counter) { | |
2058 | |
2059 uart->rx_in = &(uart->rx_buffer[0]); | |
2060 wrap_around_counter = uart->buffer_size + 1; | |
2061 } | |
2062 | |
2063 bytes_free_in_rx_buffer--; | |
2064 } | |
2065 | |
2066 current_byte++; | |
2067 bytes_read--; | |
2068 } | |
2069 } else { /* No Flow Control or HW Flow Control */ | |
2070 | |
2071 /* | |
2072 * Figure out the most restricting condition. | |
2073 */ | |
2074 | |
2075 bytes_to_copy = | |
2076 Min3 (bytes_free_in_rx_buffer, wrap_around_counter, bytes_read); | |
2077 | |
2078 /* | |
2079 * Copy characters into the circular Rx buffer. | |
2080 */ | |
2081 | |
2082 memcpy (uart->rx_in, current_byte, bytes_to_copy); | |
2083 | |
2084 /* | |
2085 * Update first the variables associated to blocking conditions: | |
2086 * if (bytes_read = 0) OR | |
2087 * (bytes_free_in_rx_buffer = 0) => No more characters to copy. | |
2088 */ | |
2089 | |
2090 bytes_free_in_rx_buffer -= bytes_to_copy; | |
2091 bytes_read -= bytes_to_copy; | |
2092 | |
2093 wrap_around_counter -= bytes_to_copy; | |
2094 if (!wrap_around_counter) | |
2095 uart->rx_in = &(uart->rx_buffer[0]); | |
2096 else | |
2097 uart->rx_in += bytes_to_copy; | |
2098 | |
2099 /* | |
2100 * Check if there are still some characters to copy. | |
2101 */ | |
2102 | |
2103 if (bytes_read && bytes_free_in_rx_buffer) { | |
2104 | |
2105 /* | |
2106 * Update the remaining variables and figure out again the | |
2107 * most restricting condition. Since (bytes_read = 0) and | |
2108 * (bytes_free_in_rx_buffer = 0) are blocking conditions, if | |
2109 * we reach that point it means that the wrap around condition | |
2110 * has just occurred and it is not needed to manage it again. | |
2111 */ | |
2112 | |
2113 current_byte += bytes_to_copy; | |
2114 bytes_to_copy = Min (bytes_read, bytes_free_in_rx_buffer); | |
2115 | |
2116 /* | |
2117 * Copy characters into the circular Rx buffer and update | |
2118 * current pointer. | |
2119 */ | |
2120 | |
2121 memcpy (uart->rx_in, current_byte, bytes_to_copy); | |
2122 | |
2123 uart->rx_in += bytes_to_copy; | |
2124 | |
2125 /* | |
2126 * bytes_free_in_rx_buffer not updated since not used anymore. | |
2127 */ | |
2128 bytes_read -= bytes_to_copy; | |
2129 | |
2130 } | |
2131 else { | |
2132 bytes_read = 0; | |
2133 } | |
2134 } /* end if (uart->flow_control_mode == fc_xoff) */ | |
2135 | |
2136 | |
2137 /* | |
2138 * If the high watermark is reached, RTS is activated or XOFF is | |
2139 * sent according to the flow control mode. | |
2140 */ | |
2141 | |
2142 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
2143 | |
2144 if ((uart->flow_control_mode != fc_none) && | |
2145 (bytes_in_rx_buffer >= RX_HIGH_WATERMARK (uart->buffer_size))) { | |
2146 | |
2147 /* | |
2148 * Check if receipt must be stopped. | |
2149 */ | |
2150 | |
2151 if (!uart->rx_stopped_by_driver) { | |
2152 | |
2153 uart->rx_stopped_by_driver = 1; | |
2154 if (!uart->rx_stopped_by_application) | |
2155 stop_receiver (uart); | |
2156 } | |
2157 } | |
2158 | |
2159 /* | |
2160 * If a reading was suspended or if the callback function is installed, | |
2161 * it is called if one of these conditions is fulfiled: | |
2162 * - the RX threshold level is reached, | |
2163 * - a break has been detected, | |
2164 */ | |
2165 | |
2166 if ((!uart->rd_call_from_hisr_in_progress) && | |
2167 (uart->reading_suspended || | |
2168 (uart->rd_call_setup == rm_reInstall))) { | |
2169 | |
2170 if ((bytes_in_rx_buffer >= uart->rx_threshold_level) || | |
2171 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
2172 uart->dtr_change_detected[uart->index_hisr] || | |
2173 #endif | |
2174 uart->break_received || | |
2175 xon_xoff_detected) { | |
2176 | |
2177 | |
2178 uart->rd_call_from_hisr_in_progress = 1; | |
2179 update_reading_callback (uart, 3); /* 3: call from Rx HISR. */ | |
2180 | |
2181 uart->reading_suspended = 0; | |
2182 uart->break_received = 0; | |
2183 uart->esc_seq_received = 0; | |
2184 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
2185 uart->dtr_change_detected[uart->index_hisr] = 0; | |
2186 #endif | |
2187 } | |
2188 } | |
2189 | |
2190 } | |
2191 | |
2192 | |
2193 | |
2194 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2195 | |
2196 /* Mask The Rx and Modem status interrupt */ | |
2197 WRITE_UART_REGISTER ( | |
2198 uart, IER, READ_UART_REGISTER (uart, IER) & | |
2199 ~(ERBI | EDSSI)); | |
2200 | |
2201 if ((uart->rx_buffer_used_by_rx_hisr) == &(uart->rx_fifo_byte_1[0])) { | |
2202 | |
2203 uart->bytes_in_rx_buffer_1 = 0; | |
2204 | |
2205 } else { | |
2206 | |
2207 uart->bytes_in_rx_buffer_2 = 0; | |
2208 } | |
2209 | |
2210 | |
2211 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2212 | |
2213 /* Unmask The Rx and Modem status interrupt*/ | |
2214 WRITE_UART_REGISTER ( | |
2215 uart, IER, READ_UART_REGISTER (uart, IER) | | |
2216 (ERBI | EDSSI)); | |
2217 | |
2218 if(uart->rx_stopped_by_lisr ) { | |
2219 if (!uart->rx_stopped_by_driver) { | |
2220 | |
2221 | |
2222 uart->rx_stopped_by_lisr = 0; | |
2223 | |
2224 /* | |
2225 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
2226 */ | |
2227 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2228 | |
2229 | |
2230 /* UnMask The Rx interrupt */ | |
2231 WRITE_UART_REGISTER ( | |
2232 uart, IER, READ_UART_REGISTER (uart, IER) | | |
2233 (ERBI | EDSSI)); | |
2234 | |
2235 start_receiver (uart); | |
2236 | |
2237 } | |
2238 } | |
2239 | |
2240 } | |
2241 | |
2242 /******************************************************************************* | |
2243 * | |
2244 * hisr_execute_v24_operations | |
2245 * | |
2246 * Purpose : The user's function is called if all conditions to call it are | |
2247 * fulfiled. | |
2248 * | |
2249 * Arguments: In : none | |
2250 * Out: none | |
2251 * | |
2252 * Returns : none | |
2253 * | |
2254 ******************************************************************************/ | |
2255 | |
2256 static VOID | |
2257 hisr_execute_v24_operations (VOID) | |
2258 { | |
2259 t_uart *uart; | |
2260 | |
2261 uart = &uart_parameters; | |
2262 | |
2263 /* | |
2264 * If a reading was suspended or if the callback function is installed, | |
2265 * it is called. | |
2266 */ | |
2267 | |
2268 if ((!DRIVER_DISABLED (uart)) && | |
2269 (!uart->rd_call_from_hisr_in_progress) && | |
2270 (uart->reading_suspended || (uart->rd_call_setup == rm_reInstall))) { | |
2271 | |
2272 uart->rd_call_from_hisr_in_progress = 1; | |
2273 update_reading_callback (uart, 1); /* 1: call from HISR. */ | |
2274 uart->reading_suspended = 0; | |
2275 uart->break_received = 0; | |
2276 uart->esc_seq_received = 0; | |
2277 } | |
2278 | |
2279 } | |
2280 | |
2281 /******************************************************************************* | |
2282 * | |
2283 * hisr_execute_tx_operations | |
2284 * | |
2285 * Purpose : Writes bytes from the TX buffer to the TX FIFO. | |
2286 * The user's function is called if all conditions to call it are | |
2287 * fulfiled. | |
2288 * | |
2289 * Arguments: In : none | |
2290 * Out: none | |
2291 * | |
2292 * Returns : none | |
2293 * | |
2294 ******************************************************************************/ | |
2295 | |
2296 static VOID | |
2297 hisr_execute_tx_operations (VOID) | |
2298 { | |
2299 SYS_UWORD16 bytes_in_tx_buffer; | |
2300 SYS_UWORD16 bytes_in_tx_fifo; | |
2301 SYS_UWORD16 wrap_around_counter; | |
2302 SYS_UWORD16 bytes_to_write; | |
2303 t_uart *uart; | |
2304 int counter; | |
2305 | |
2306 | |
2307 uart = &uart_parameters; | |
2308 | |
2309 /* | |
2310 * A TX interrupt may have occured during the previous TX HISR. This case | |
2311 * may appear when a HISR having a higher priority has been activated when | |
2312 * the TX HISR was activated. When the next TX HISR is activated, the TX | |
2313 * FIFO may not be empty. Nothing is done until a TX interrupt will occur. | |
2314 * The RX HISR will be activated again and the TX FIFO will be empty. | |
2315 */ | |
2316 | |
2317 if (READ_UART_REGISTER (uart, LSR) & THRE) { | |
2318 | |
2319 bytes_in_tx_fifo = 0; | |
2320 | |
2321 /* | |
2322 * A request to send a XON/XOFF character may have been done by the | |
2323 * RX interrupt handler. The byte can be written because we are sure | |
2324 * that the TX FIFO is not full. | |
2325 */ | |
2326 | |
2327 if (uart->send_xon_xoff) { | |
2328 | |
2329 WRITE_UART_REGISTER (uart, THR, uart->xon_xoff_to_send); | |
2330 uart->send_xon_xoff = 0; | |
2331 bytes_in_tx_fifo++; | |
2332 } | |
2333 | |
2334 if ((!uart->tx_stopped_by_application) && | |
2335 (!uart->tx_stopped_by_driver)) { | |
2336 | |
2337 bytes_in_tx_buffer = get_bytes_in_tx_buffer (uart); | |
2338 wrap_around_counter = | |
2339 uart->buffer_size + 1 - (SYS_UWORD16) (uart->tx_out - | |
2340 &(uart->tx_buffer[0])); | |
2341 | |
2342 /* | |
2343 * Figure out the most restricting condition. | |
2344 */ | |
2345 | |
2346 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2347 /* | |
2348 * Loading of only (FIFO_SIZE - 1) characters in the Tx FIFO to | |
2349 * avoid the generation of a spurious Tx FIFO almost empty | |
2350 * interrupt (Ulysse bug report #35). | |
2351 */ | |
2352 | |
2353 bytes_to_write = | |
2354 Min3 (bytes_in_tx_buffer, wrap_around_counter, | |
2355 (FIFO_SIZE - 1 - bytes_in_tx_fifo)); | |
2356 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2357 /* | |
2358 * Bug corrected on Calypso rev. A, rev. B, C035, Ulysse C035, | |
2359 * Calypso Lite & Calypso+. | |
2360 */ | |
2361 | |
2362 bytes_to_write = | |
2363 Min3 (bytes_in_tx_buffer, wrap_around_counter, | |
2364 (FIFO_SIZE - bytes_in_tx_fifo)); | |
2365 #endif | |
2366 | |
2367 /* | |
2368 * Write characters into the Tx FIFO. | |
2369 */ | |
2370 | |
2371 for (counter = 0; counter < bytes_to_write; counter++) | |
2372 WRITE_UART_REGISTER (uart, THR, *(uart->tx_out++)); | |
2373 | |
2374 /* | |
2375 * Update the variables associated to blocking conditions: | |
2376 * if (bytes_in_tx_buffer = 0) OR | |
2377 * (bytes_in_tx_fifo = FIFO_SIZE) => No more characters to copy. | |
2378 */ | |
2379 | |
2380 bytes_in_tx_buffer -= bytes_to_write; | |
2381 bytes_in_tx_fifo += bytes_to_write; | |
2382 | |
2383 wrap_around_counter -= bytes_to_write; | |
2384 if (!wrap_around_counter) | |
2385 uart->tx_out = &(uart->tx_buffer[0]); | |
2386 | |
2387 /* | |
2388 * Check if there are still some characters to write. | |
2389 */ | |
2390 | |
2391 if (bytes_in_tx_buffer && | |
2392 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2393 (bytes_in_tx_fifo < (FIFO_SIZE - 1))) { | |
2394 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2395 (bytes_in_tx_fifo < FIFO_SIZE)) { | |
2396 #endif | |
2397 | |
2398 /* | |
2399 * Figure out again the most restricting condition. Since | |
2400 * (bytes_in_tx_buffer = 0) and (bytes_in_tx_fifo = FIFO_SIZE) | |
2401 * are blocking conditions, if we reach that point it means | |
2402 * that the wrap around condition has just occurred and it is | |
2403 * not needed to manage it again. | |
2404 */ | |
2405 | |
2406 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2407 bytes_to_write = | |
2408 Min (bytes_in_tx_buffer, | |
2409 (FIFO_SIZE - 1 - bytes_in_tx_fifo)); | |
2410 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2411 bytes_to_write = | |
2412 Min (bytes_in_tx_buffer, | |
2413 (FIFO_SIZE - bytes_in_tx_fifo)); | |
2414 #endif | |
2415 | |
2416 /* | |
2417 * Write characters into the Tx FIFO and update associated | |
2418 * variables. | |
2419 */ | |
2420 | |
2421 for (counter = 0; counter < bytes_to_write; counter++) | |
2422 WRITE_UART_REGISTER (uart, THR, *(uart->tx_out++)); | |
2423 | |
2424 bytes_in_tx_buffer += bytes_to_write; | |
2425 bytes_in_tx_fifo += bytes_to_write; | |
2426 } | |
2427 | |
2428 /* | |
2429 * If a writing was suspended or if the callback function is | |
2430 * installed, it is called if the TX threshold level is reached. | |
2431 */ | |
2432 | |
2433 if ((!DRIVER_DISABLED (uart)) && | |
2434 (!uart->wr_call_from_hisr_in_progress) && | |
2435 (bytes_in_tx_buffer <= uart->tx_threshold_level) && | |
2436 ((uart->wr_call_setup == rm_reInstall) || | |
2437 uart->writing_suspended)) { | |
2438 | |
2439 uart->writing_suspended = 0; | |
2440 | |
2441 uart->wr_call_from_hisr_in_progress = 1; | |
2442 update_writing_callback (uart, 1); /* 1: call from HISR. */ | |
2443 } | |
2444 } /* end if ((!uart->tx_stopped_by_application) && */ | |
2445 /* (!uart->tx_stopped_by_driver)) */ | |
2446 | |
2447 if (bytes_in_tx_fifo) | |
2448 | |
2449 /* | |
2450 * Unmask Tx interrupt. | |
2451 */ | |
2452 | |
2453 WRITE_UART_REGISTER ( | |
2454 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2455 | |
2456 else { | |
2457 | |
2458 if ((!bytes_in_tx_fifo) && (uart->break_to_send)) | |
2459 bytes_in_tx_fifo = send_break (uart); | |
2460 } | |
2461 | |
2462 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2463 /* | |
2464 * Re-enable the sleep mode. | |
2465 */ | |
2466 | |
2467 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
2468 /* | |
2469 WRITE_UART_REGISTER ( | |
2470 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
2471 | |
2472 */ | |
2473 #endif | |
2474 } | |
2475 } | |
2476 | |
2477 /******************************************************************************* | |
2478 * | |
2479 * read_rx_fifo | |
2480 * | |
2481 * Purpose : Reads the RX FIFO. If the driver is enabled bytes are written in | |
2482 * an array to be analyzed by the RX HISR. | |
2483 * | |
2484 * Arguments: In : uart: Pointer on the UART structure. | |
2485 * Out: none | |
2486 * | |
2487 * Returns : none | |
2488 * | |
2489 ******************************************************************************/ | |
2490 | |
2491 static void | |
2492 read_rx_fifo (t_uart *uart) | |
2493 { | |
2494 | |
2495 /* | |
2496 * If the driver is disabled the RX FIFO is read to acknoledge the | |
2497 * interrupt else bytes received are written into an array which will be | |
2498 * analyzed from the RX HISR. | |
2499 */ | |
2500 | |
2501 if (DRIVER_DISABLED (uart)) | |
2502 empty_rx_fifo (uart); | |
2503 | |
2504 else if (build_rx_fifo_array (uart)){ | |
2505 (void) NU_Activate_HISR (&(uart->rx_hisr_ctrl_block)); | |
2506 | |
2507 } | |
2508 | |
2509 | |
2510 } | |
2511 | |
2512 /******************************************************************************* | |
2513 * | |
2514 * check_v24_input_lines | |
2515 * | |
2516 * Purpose : Check the V.24 input lines. According to the states of the input | |
2517 * lines and to the flow control mode selected, the transmitter is | |
2518 * enabled or disabled. The reading callback function is called if | |
2519 * it is installed and if all conditions are fulfiled. | |
2520 * | |
2521 * Arguments: In : uart: Pointer on the UART structure. | |
2522 * Out: none | |
2523 * | |
2524 * Returns : none | |
2525 * | |
2526 ******************************************************************************/ | |
2527 | |
2528 static void | |
2529 check_v24_input_lines (t_uart *uart) | |
2530 { | |
2531 SYS_BOOL v24_input_line_changed; | |
2532 volatile SYS_UWORD8 modem_status; | |
2533 | |
2534 modem_status = READ_UART_REGISTER (uart, MSR); | |
2535 v24_input_line_changed = 0; | |
2536 | |
2537 if (modem_status & DELTA_CTS) { | |
2538 | |
2539 v24_input_line_changed = 1; | |
2540 | |
2541 if (modem_status & MCTS) | |
2542 uart->rts_level = 0; | |
2543 else | |
2544 uart->rts_level = 1; | |
2545 } | |
2546 | |
2547 #if (CHIPSET == 12) | |
2548 else if (modem_status & DELTA_DSR) { | |
2549 v24_input_line_changed = 1; | |
2550 | |
2551 if (modem_status & MDSR) | |
2552 { | |
2553 uart->dtr_level = 0; | |
2554 if (uart->flow_control_mode != fc_dtr && uart->baudrate == baudrate_value[FD_BAUD_AUTO]) | |
2555 UAF_SetComPar (UAF_UART_1, FD_BAUD_AUTO, bpc_8, sb_1, pa_none); /* switch back to autobaud */ | |
2556 } | |
2557 else | |
2558 uart->dtr_level = 1; | |
2559 | |
2560 /* | |
2561 * The reading callback function has to be called. But bytes received before | |
2562 * the change of state of DTR must be copied into the RX buffer before to | |
2563 * call it. | |
2564 */ | |
2565 | |
2566 if (READ_UART_REGISTER (uart, LSR) & DR) { /* If Rx FIFO is not empty */ | |
2567 | |
2568 /* | |
2569 * The Rx FIFO will be read to fill one of the two buffers and the Rx | |
2570 * HISR will be activated. | |
2571 */ | |
2572 | |
2573 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
2574 uart->dtr_change_detected[uart->index_it] = 1; | |
2575 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
2576 read_rx_fifo (uart); | |
2577 | |
2578 } else | |
2579 v24_input_line_changed = 1; | |
2580 } | |
2581 #endif | |
2582 | |
2583 /* | |
2584 * When the hardware flow control is selected, if the RS 232 input signal is | |
2585 * deactivated (low), the transmitter is stopped. | |
2586 */ | |
2587 | |
2588 if (uart->flow_control_mode == fc_rts) { | |
2589 | |
2590 if (uart->rts_level) { | |
2591 uart->tx_stopped_by_driver = 1; | |
2592 } | |
2593 | |
2594 else { | |
2595 | |
2596 uart->tx_stopped_by_driver = 0; | |
2597 #ifdef CONFIG_TARGET_GTAMODEM | |
2598 AI_ResetBit(1); | |
2599 #endif | |
2600 | |
2601 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2602 /* | |
2603 * Disable sleep mode. | |
2604 */ | |
2605 | |
2606 WRITE_UART_REGISTER ( | |
2607 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2608 #endif | |
2609 | |
2610 /* | |
2611 * Unmask Tx interrupt. | |
2612 */ | |
2613 | |
2614 WRITE_UART_REGISTER ( | |
2615 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2616 | |
2617 } | |
2618 } | |
2619 | |
2620 if (v24_input_line_changed) | |
2621 (void) NU_Activate_HISR (&(uart->v24_hisr_ctrl_block)); | |
2622 } | |
2623 | |
2624 /******************************************************************************* | |
2625 * | |
2626 * fill_tx_fifo | |
2627 * | |
2628 * Purpose : If the TX buffer is not empty, and if there is no break in | |
2629 * progress, bytes are written into the TX FIFO until the TX FIFO is | |
2630 * full or the TX buffer is empty. Else, if there is a break to send | |
2631 * an all 0s character is written into the TX FIFO and a break is | |
2632 * declared in progress to avoid to fill the TX FIFO on the next | |
2633 * interrupt. | |
2634 * When the TX FIFO is empty and if a break is in progress, the break | |
2635 * length is programmed: all 0s characters are written into the TX | |
2636 * FIFO. The number of bytes has been defined previously with the | |
2637 * UAF_SetLineState function. The break condition is enabled. | |
2638 * When the TX FIFO and the transmitter shift register (TSR) are both | |
2639 * empty and if a break is in progress, the break condition is | |
2640 * disabled. | |
2641 * When bytes are written from the TX buffer to the TX FIFO, the | |
2642 * writing callback function is called if it is installed and if all | |
2643 * conditions are fulfiled. | |
2644 * | |
2645 * Arguments: In : uart: Pointer on the UART structure. | |
2646 * Out: none | |
2647 * | |
2648 * Returns : none | |
2649 * | |
2650 ******************************************************************************/ | |
2651 | |
2652 static void | |
2653 fill_tx_fifo (t_uart *uart) | |
2654 { | |
2655 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2656 /* | |
2657 * Disable sleep mode. | |
2658 */ | |
2659 | |
2660 WRITE_UART_REGISTER ( | |
2661 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2662 #endif | |
2663 | |
2664 /* | |
2665 * Mask Tx interrupt. | |
2666 */ | |
2667 | |
2668 WRITE_UART_REGISTER ( | |
2669 uart, IER, READ_UART_REGISTER (uart, IER) & ~ETBEI); | |
2670 | |
2671 /* | |
2672 * If a break is in progress, bytes of the TX buffer are not written into | |
2673 * the TX FIFO. | |
2674 */ | |
2675 | |
2676 if (!uart->break_in_progress) | |
2677 (void) NU_Activate_HISR (&(uart->tx_hisr_ctrl_block)); | |
2678 | |
2679 else { | |
2680 | |
2681 /* | |
2682 * The break HISR is activated and the break condition is cleared. | |
2683 */ | |
2684 | |
2685 WRITE_UART_REGISTER ( | |
2686 uart, LCR, READ_UART_REGISTER (uart, LCR) & ~BREAK_CONTROL); | |
2687 | |
2688 (void) NU_Activate_HISR (&(uart->break_hisr_ctrl_block)); | |
2689 } | |
2690 } | |
2691 | |
2692 /******************************************************************************* | |
2693 * | |
2694 * UAF_Init | |
2695 * | |
2696 * Purpose : Initializes the UART hardware and installs interrupt handlers. | |
2697 * The parameters are set to the default values: | |
2698 * - 19200 baud, | |
2699 * - 8 bits / character, | |
2700 * - no parity, | |
2701 * - 1 stop bit, | |
2702 * - no flow control. | |
2703 * All functionalities of the UART driver are disabled. | |
2704 * | |
2705 * Arguments: In : uartNo: Used UART. | |
2706 * Out: none | |
2707 * | |
2708 * Returns : FD_OK : Successful operation. | |
2709 * FD_NOT_SUPPORTED: Wrong UART number. | |
2710 * FD_INTERNAL_ERR : Internal problem. | |
2711 * | |
2712 ******************************************************************************/ | |
2713 | |
2714 T_FDRET | |
2715 UAF_Init (T_fd_UartId uartNo) | |
2716 { | |
2717 t_uart *uart; | |
2718 volatile SYS_UWORD8 status; | |
2719 | |
2720 /* | |
2721 * Check UART number. | |
2722 * A return is used to simplify the code. | |
2723 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
2724 * flow control is not supported. | |
2725 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
2726 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
2727 */ | |
2728 | |
2729 if (uartNo != UAF_UART_1) | |
2730 return (FD_NOT_SUPPORTED); | |
2731 | |
2732 uart = &uart_parameters; | |
2733 | |
2734 /* | |
2735 * Create the 3 HISR actived in the RX/TX and V24 interrupt handlers. | |
2736 * A return is used to simplify the code if an error occurs. | |
2737 * All stacks are entirely filled with the pattern 0xFE. | |
2738 */ | |
2739 | |
2740 memset (&(uart->rx_hisr_stack[0]), 0xFE, RX_HISR_STACK_SIZE); | |
2741 | |
2742 if (NU_Create_HISR (&(uart->rx_hisr_ctrl_block), | |
2743 "UAF_Rx", | |
2744 hisr_execute_rx_operations, | |
2745 RX_HISR_PRIORITY, | |
2746 &(uart->rx_hisr_stack[0]), | |
2747 RX_HISR_STACK_SIZE) != NU_SUCCESS) | |
2748 | |
2749 return (FD_INTERNAL_ERR); | |
2750 | |
2751 memset (&(uart->tx_hisr_stack[0]), 0xFE, TX_HISR_STACK_SIZE); | |
2752 | |
2753 if (NU_Create_HISR (&(uart->tx_hisr_ctrl_block), | |
2754 "UAF_Tx", | |
2755 hisr_execute_tx_operations, | |
2756 TX_HISR_PRIORITY, | |
2757 &(uart->tx_hisr_stack[0]), | |
2758 TX_HISR_STACK_SIZE) != NU_SUCCESS) | |
2759 | |
2760 return (FD_INTERNAL_ERR); | |
2761 | |
2762 memset (&(uart->v24_hisr_stack[0]), 0xFE, V24_HISR_STACK_SIZE); | |
2763 | |
2764 if (NU_Create_HISR (&(uart->v24_hisr_ctrl_block), | |
2765 "UAF_V24", | |
2766 hisr_execute_v24_operations, | |
2767 V24_HISR_PRIORITY, | |
2768 &(uart->v24_hisr_stack[0]), | |
2769 V24_HISR_STACK_SIZE) != NU_SUCCESS) | |
2770 | |
2771 return (FD_INTERNAL_ERR); | |
2772 | |
2773 /* | |
2774 * Create the HISR used to send a break. | |
2775 * A return is used to simplify the code if an error occurs. | |
2776 * The stack is entirely filled with the pattern 0xFE. | |
2777 */ | |
2778 | |
2779 memset (&(uart->break_hisr_stack[0]), 0xFE, BREAK_HISR_STACK_SIZE); | |
2780 | |
2781 if (NU_Create_HISR (&(uart->break_hisr_ctrl_block), | |
2782 "UAF_Brk", | |
2783 hisr_start_break, | |
2784 BREAK_HISR_PRIORITY, | |
2785 &(uart->break_hisr_stack[0]), | |
2786 BREAK_HISR_STACK_SIZE) != NU_SUCCESS) | |
2787 | |
2788 return (FD_INTERNAL_ERR); | |
2789 | |
2790 /* | |
2791 * Create a timer used in the break HISR. | |
2792 * A return is used to simplify the code if an error occurs. | |
2793 */ | |
2794 | |
2795 if (NU_Create_Timer (&(uart->break_timer_ctrl_block), | |
2796 "Break", | |
2797 stop_break, | |
2798 0, /* Parameter supplied to the routine: not used. */ | |
2799 0, /* This parameter is set when the timer is reset. */ | |
2800 0, /* The timer expires once. */ | |
2801 NU_DISABLE_TIMER) != NU_SUCCESS) | |
2802 | |
2803 return (FD_INTERNAL_ERR); | |
2804 | |
2805 /* | |
2806 * Create a timer used in the detection of the escape sequence. | |
2807 * A return is used to simplify the code if an error occurs. | |
2808 */ | |
2809 | |
2810 if (NU_Create_Timer (&(uart->guard_period_timer_ctrl_block), | |
2811 "Esc seq", | |
2812 analyze_guard_period_timer_expiration, | |
2813 0, /* Parameter supplied to the routine: not used. */ | |
2814 0, /* This parameter is set when the timer is reset. */ | |
2815 0, /* The timer expires once. */ | |
2816 NU_DISABLE_TIMER) != NU_SUCCESS) | |
2817 | |
2818 return (FD_INTERNAL_ERR); | |
2819 | |
2820 /* | |
2821 * These data are used to send a break. | |
2822 * A character has: 8 data bits + 1 start bit + 1 stop bit = 10 bits. | |
2823 */ | |
2824 | |
2825 uart->baudrate = baudrate_value[FD_BAUD_19200]; | |
2826 uart->autobauding = 0; | |
2827 uart->bits_per_char = 10; | |
2828 | |
2829 /* | |
2830 * UART base address. | |
2831 */ | |
2832 | |
2833 uart->base_address = base_address[uartNo]; | |
2834 | |
2835 /* | |
2836 * Select the current array used to store received bytes. | |
2837 */ | |
2838 | |
2839 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_2[0]); | |
2840 uart->rx_buffer_used_by_rx_hisr = &(uart->rx_fifo_byte_2[0]); | |
2841 | |
2842 /* | |
2843 * RX and TX buffers. | |
2844 */ | |
2845 | |
2846 uart->buffer_size = FD_MAX_BUFFER_SIZE; | |
2847 uart->rx_threshold_level = 1; | |
2848 uart->tx_threshold_level = 0; | |
2849 uart->rx_in = &(uart->rx_buffer[0]); | |
2850 uart->rx_out = &(uart->rx_buffer[0]); | |
2851 uart->tx_in = &(uart->tx_buffer[0]); | |
2852 uart->tx_out = &(uart->tx_buffer[0]); | |
2853 | |
2854 /* | |
2855 * Escape sequence. | |
2856 */ | |
2857 | |
2858 uart->esc_seq_modified = 0; | |
2859 uart->esc_seq_detection_state = INITIALIZATION; | |
2860 uart->esc_seq_character = DEFAULT_ESC_SEQ_CHARACTER; | |
2861 uart->guard_period = CONVERT_TIME_IN_TDMA ( | |
2862 DEFAULT_GUARD_PERIOD); | |
2863 | |
2864 /* | |
2865 * Flow control. | |
2866 */ | |
2867 | |
2868 uart->flow_control_mode = fc_none; | |
2869 uart->send_xon_xoff = 0; | |
2870 uart->rx_stopped_by_application = 1; | |
2871 uart->rx_stopped_by_driver = 0; | |
2872 uart->rx_stopped_by_lisr = 0; | |
2873 uart->tx_stopped_by_application = 1; | |
2874 uart->tx_stopped_by_driver = 0; | |
2875 | |
2876 /* | |
2877 * Break. | |
2878 */ | |
2879 | |
2880 uart->break_received = 0; | |
2881 uart->break_to_send = 0; | |
2882 uart->break_in_progress = 0; | |
2883 | |
2884 /* | |
2885 * Callback (UAF_ReadData and UAF_WriteData). | |
2886 */ | |
2887 | |
2888 uart->esc_seq_received = 0; | |
2889 | |
2890 uart->reading_suspended = 0; | |
2891 uart->writing_suspended = 0; | |
2892 uart->rd_call_from_hisr_in_progress = 0; | |
2893 uart->wr_call_from_hisr_in_progress = 0; | |
2894 uart->rd_call_setup = rm_noInstall; | |
2895 uart->wr_call_setup = rm_noInstall; | |
2896 | |
2897 /* | |
2898 * State defined in UAF_GetLineState. | |
2899 */ | |
2900 | |
2901 uart->state_1 = 0; | |
2902 uart->state_2 = 0; | |
2903 uart->state = &(uart->state_1); | |
2904 | |
2905 /* | |
2906 * Errors counters. | |
2907 */ | |
2908 | |
2909 uart->framing_error = 0; | |
2910 uart->parity_error = 0; | |
2911 uart->overrun_error = 0; | |
2912 uart->spurious_interrupts = 0; | |
2913 | |
2914 uart->max_rx_fifo_level = 0; | |
2915 | |
2916 /* | |
2917 * Mask all interrupts causes and disable sleep mode and low power mode. | |
2918 */ | |
2919 | |
2920 WRITE_UART_REGISTER (uart, IER, 0x00); | |
2921 | |
2922 /* | |
2923 * Reset UART mode configuration. | |
2924 */ | |
2925 | |
2926 WRITE_UART_REGISTER (uart, MDR1, RESET_DEFAULT_STATE | | |
2927 IR_SLEEP_DISABLED | | |
2928 SIR_TX_WITHOUT_ACREG2 | | |
2929 FRAME_LENGTH_METHOD); | |
2930 | |
2931 /* | |
2932 * FIFO configuration. | |
2933 * EFR[4] = 1 to allow to program FCR[5:4] and MCR[7:5]. | |
2934 */ | |
2935 | |
2936 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
2937 SET_BIT (uart, EFR, ENHANCED_FEATURE_BIT); | |
2938 | |
2939 /* | |
2940 * Select the word length, the number of stop bits , the parity and set | |
2941 * LCR[7] (DLAB) to allow to program FCR, DLL and DLM. | |
2942 */ | |
2943 | |
2944 WRITE_UART_REGISTER (uart, LCR, WLS_8 | DLAB); | |
2945 | |
2946 /* | |
2947 * Program the trigger levels. | |
2948 * MCR[6] must be set to 1. | |
2949 */ | |
2950 | |
2951 SET_BIT (uart, MCR, TCR_TLR_BIT); | |
2952 WRITE_UART_REGISTER (uart, TCR, 0x0F); | |
2953 WRITE_UART_REGISTER (uart, TLR, RX_FIFO_TRIGGER_LEVEL); | |
2954 RESET_BIT (uart, MCR, TCR_TLR_BIT); | |
2955 | |
2956 /* | |
2957 * Force the generation of THR_IT on TX FIFO empty: SCR[3] = 1. | |
2958 */ | |
2959 | |
2960 WRITE_UART_REGISTER ( | |
2961 uart, SCR, READ_UART_REGISTER (uart, SCR) | TX_EMPTY_CTL_IT); | |
2962 | |
2963 /* | |
2964 * Program the FIFO control register. Bit 0 must be set when other FCR bits | |
2965 * are written to or they are not programmed. | |
2966 * FCR is a write-only register. It will not be modified. | |
2967 */ | |
2968 | |
2969 WRITE_UART_REGISTER (uart, FCR, FIFO_ENABLE | | |
2970 RX_FIFO_RESET | /* self cleared */ | |
2971 TX_FIFO_RESET); /* self cleared */ | |
2972 | |
2973 /* | |
2974 * Program the baud generator. | |
2975 */ | |
2976 | |
2977 WRITE_UART_REGISTER (uart, DLL, dll[FD_BAUD_19200]); | |
2978 WRITE_UART_REGISTER (uart, DLM, dlh[FD_BAUD_19200]); | |
2979 | |
2980 /* | |
2981 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
2982 */ | |
2983 | |
2984 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2985 | |
2986 /* | |
2987 * Select UART mode. | |
2988 */ | |
2989 | |
2990 WRITE_UART_REGISTER (uart, MDR1, UART_MODE | | |
2991 IR_SLEEP_DISABLED | | |
2992 SIR_TX_WITHOUT_ACREG2 | | |
2993 FRAME_LENGTH_METHOD); | |
2994 | |
2995 /* | |
2996 * Read the state of RTS (RTS on RS232, CTS on chipset). | |
2997 */ | |
2998 | |
2999 status = READ_UART_REGISTER (uart, MSR); | |
3000 | |
3001 if (status & MCTS) | |
3002 uart->rts_level = 0; | |
3003 else | |
3004 uart->rts_level = 1; | |
3005 | |
3006 #if UARTFAX_CLASSIC_DTR_DCD | |
3007 /* | |
3008 * On C & D-Sample, 2 I/O are used to control DCD and DTR on UART Modem. | |
3009 * DCD: I/O 2 (output) | |
3010 * DTR: I/O 3 (input) | |
3011 */ | |
3012 | |
3013 #define EXTENDED_MCU_REG (0xFFFEF006) /* Extended MCU register */ | |
3014 #define ASIC_CONFIG_REG (0xFFFEF008) /* Asic Configuration register */ | |
3015 | |
3016 #define IO_DTR (10) /* I/O 3; bit 10 of Asic Configuration register */ | |
3017 #define IO_DCD ( 6) /* I/O 2; bit 6 of Extended MCU register */ | |
3018 | |
3019 /* | |
3020 * Select I/O for DCD and configure it as output. | |
3021 * DCD should start HIGH (not asserted). | |
3022 */ | |
3023 | |
3024 *((volatile SYS_UWORD16 *) EXTENDED_MCU_REG) &= ~(1 << IO_DCD); | |
3025 AI_ConfigBitAsOutput (ARMIO_DCD); | |
3026 AI_SetBit (ARMIO_DCD); | |
3027 | |
3028 /* | |
3029 * Select I/O for DTR and configure it as input. | |
3030 * An interrupt is used to detect a change of state of DTR. Falling edge | |
3031 * or rising edge is selected according to the state of DTR. | |
3032 */ | |
3033 | |
3034 *((volatile SYS_UWORD16 *) ASIC_CONFIG_REG) &= ~(1 << IO_DTR); | |
3035 AI_ConfigBitAsInput (ARMIO_DTR); | |
3036 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
3037 | |
3038 if (uart->dtr_level) | |
3039 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
3040 else | |
3041 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
3042 | |
3043 AI_UnmaskIT (ARMIO_MASKIT_GPIO); | |
3044 | |
3045 /* | |
3046 * Reset the 2 indexes of the circular buffer of 2 elements. | |
3047 * The circular buffer does not need to be initialized. | |
3048 */ | |
3049 | |
3050 uart->index_it = 0; | |
3051 uart->index_hisr = 0; | |
3052 #elif (CHIPSET == 12) | |
3053 /* | |
3054 * DCD and DTR are directly handled by Calypso+. | |
3055 * Force DCD pin to HIGH | |
3056 */ | |
3057 | |
3058 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
3059 | |
3060 /* | |
3061 * Read the state of DTR (DTR on RS232, DSR on chipset). | |
3062 */ | |
3063 | |
3064 status = READ_UART_REGISTER (uart, MSR); | |
3065 | |
3066 if (status & MDSR) | |
3067 uart->dtr_level = 0; | |
3068 else | |
3069 uart->dtr_level = 1; | |
3070 | |
3071 /* | |
3072 * Reset the 2 indexes of the circular buffer of 2 elements. | |
3073 * The circular buffer does not need to be initialized. | |
3074 */ | |
3075 | |
3076 uart->index_it = 0; | |
3077 uart->index_hisr = 0; | |
3078 #endif /* BOARD == 8, 9, 40 or 41, CHIPSET == 12 */ | |
3079 | |
3080 /* | |
3081 * Unmask RX interrupt and the modem status interrupt. | |
3082 */ | |
3083 | |
3084 WRITE_UART_REGISTER (uart, IER, ERBI | EDSSI); | |
3085 | |
3086 #if (CHIPSET == 12) | |
3087 /* | |
3088 * Unmask DSR interrupt in order to detect a change of state of DTR. | |
3089 */ | |
3090 | |
3091 ENABLE_DSR_INTERRUPT (uart); | |
3092 #endif | |
3093 | |
3094 return (FD_OK); | |
3095 } | |
3096 | |
3097 /******************************************************************************* | |
3098 * | |
3099 * UAF_Enable | |
3100 * | |
3101 * Purpose : The functionalities of the UART driver are disabled or enabled. | |
3102 * In the deactivated state, all information about the communication | |
3103 * parameters should be stored and recalled if the driver is again | |
3104 * enabled. When the driver is enabled the RX and TX buffers are | |
3105 * cleared. | |
3106 * | |
3107 * Arguments: In : uartNo: Used UART. | |
3108 * : enable: 1: enable the driver | |
3109 * 0: disable the driver | |
3110 * Out: none | |
3111 * | |
3112 * Returns : FD_OK : Successful operation. | |
3113 * FD_NOT_SUPPORTED: Wrong UART number. | |
3114 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3115 * | |
3116 ******************************************************************************/ | |
3117 | |
3118 T_FDRET | |
3119 UAF_Enable (T_fd_UartId uartNo, | |
3120 SYS_BOOL enable) | |
3121 { | |
3122 t_uart *uart; | |
3123 | |
3124 /* | |
3125 * Check UART number. | |
3126 * A return is used to simplify the code. | |
3127 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3128 * flow control is not supported. | |
3129 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3130 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3131 */ | |
3132 | |
3133 if (uartNo != UAF_UART_1) | |
3134 return (FD_NOT_SUPPORTED); | |
3135 | |
3136 /* | |
3137 * There is no case where FD_INTERNAL_ERR may be returned. | |
3138 */ | |
3139 | |
3140 uart = &uart_parameters; | |
3141 | |
3142 if (enable) { | |
3143 | |
3144 uart->rx_stopped_by_driver = 0; | |
3145 | |
3146 ENABLE_DRIVER (uart); | |
3147 start_receiver (uart); | |
3148 | |
3149 } else { | |
3150 | |
3151 DISABLE_DRIVER (uart); | |
3152 stop_receiver (uart); | |
3153 | |
3154 uart->tx_in = &(uart->tx_buffer[0]); | |
3155 uart->rx_in = &(uart->rx_buffer[0]); | |
3156 uart->tx_out = uart->tx_in; | |
3157 uart->rx_out = uart->rx_in; | |
3158 } | |
3159 | |
3160 return (FD_OK); | |
3161 } | |
3162 | |
3163 /******************************************************************************* | |
3164 * | |
3165 * UAF_SetComPar | |
3166 * | |
3167 * Purpose : Sets up the communication parameters: baud rate, bits per | |
3168 * character, number of stop bits, parity. | |
3169 * | |
3170 * Arguments: In : uartNo : Used UART. | |
3171 * baudrate: Used baud rate. | |
3172 * bpc : Used bits per character. | |
3173 * sb : Used stop bits. | |
3174 * parity : Used parity. | |
3175 * Out: none | |
3176 * | |
3177 * Returns : FD_OK : Successful operation. | |
3178 * FD_NOT_SUPPORTED: The specified parameters don't fit to the | |
3179 * capabilities of the UART or wrong UART number. | |
3180 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3181 * | |
3182 ******************************************************************************/ | |
3183 | |
3184 T_FDRET | |
3185 UAF_SetComPar (T_fd_UartId uartNo, | |
3186 T_baudrate baudrate, | |
3187 T_bitsPerCharacter bpc, | |
3188 T_stopBits sb, | |
3189 T_parity parity) | |
3190 { | |
3191 t_uart *uart; | |
3192 volatile SYS_UWORD8 mcr_value; | |
3193 volatile SYS_UWORD8 status; | |
3194 | |
3195 /* | |
3196 * Check UART number. | |
3197 * A return is used to simplify the code. | |
3198 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3199 * flow control is not supported. | |
3200 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3201 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3202 */ | |
3203 | |
3204 if (uartNo != UAF_UART_1) | |
3205 return (FD_NOT_SUPPORTED); | |
3206 | |
3207 /* | |
3208 * There is no case where FD_INTERNAL_ERR may be returned. | |
3209 * pa_space is not supported. Some baudrates are not supported too. | |
3210 * A return is used to simplify the code. | |
3211 */ | |
3212 | |
3213 if ((!baudrate_value[baudrate]) || | |
3214 (parity == pa_space)) | |
3215 | |
3216 return (FD_NOT_SUPPORTED); | |
3217 | |
3218 uart = &uart_parameters; | |
3219 | |
3220 /* | |
3221 * Mask all interrupts causes and disable sleep mode and low power mode. | |
3222 */ | |
3223 | |
3224 WRITE_UART_REGISTER (uart, IER, 0x00); | |
3225 | |
3226 #if UARTFAX_CLASSIC_DTR_DCD | |
3227 AI_MaskIT (ARMIO_MASKIT_GPIO); | |
3228 #elif (CHIPSET == 12) | |
3229 DISABLE_DSR_INTERRUPT (uart); | |
3230 #endif | |
3231 | |
3232 /* | |
3233 * Reset UART mode configuration. | |
3234 */ | |
3235 | |
3236 WRITE_UART_REGISTER (uart, MDR1, RESET_DEFAULT_STATE | | |
3237 IR_SLEEP_DISABLED | | |
3238 SIR_TX_WITHOUT_ACREG2 | | |
3239 FRAME_LENGTH_METHOD); | |
3240 | |
3241 /* | |
3242 * FIFO configuration. | |
3243 * EFR[4] = 1 to allow to program FCR[5:4] and MCR[7:5]. | |
3244 */ | |
3245 | |
3246 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
3247 SET_BIT (uart, EFR, ENHANCED_FEATURE_BIT); | |
3248 | |
3249 /* | |
3250 * Select the word length, the number of stop bits , the parity and set | |
3251 * LCR[7] (DLAB) to allow to program FCR, DLL and DLM. | |
3252 */ | |
3253 | |
3254 uart->baudrate = baudrate_value[baudrate]; | |
3255 uart->autobauding = (baudrate == FD_BAUD_AUTO); /* if autobauding enable trigger */ | |
3256 uart->bits_per_char = 1; /* Start bit. */ | |
3257 mcr_value = DLAB; | |
3258 | |
3259 if (bpc == bpc_7) { | |
3260 | |
3261 mcr_value |= WLS_7; | |
3262 uart->bits_per_char += 7; | |
3263 | |
3264 } else { | |
3265 | |
3266 mcr_value |= WLS_8; | |
3267 uart->bits_per_char += 8; | |
3268 } | |
3269 | |
3270 if (sb == sb_2) { | |
3271 | |
3272 mcr_value |= STB; | |
3273 uart->bits_per_char += 2; | |
3274 | |
3275 } else | |
3276 uart->bits_per_char += 1; | |
3277 | |
3278 switch (parity) { | |
3279 | |
3280 case pa_even: | |
3281 | |
3282 mcr_value |= (PEN | EPS); | |
3283 uart->bits_per_char += 1; | |
3284 | |
3285 break; | |
3286 | |
3287 case pa_odd: | |
3288 | |
3289 mcr_value |= PEN; | |
3290 uart->bits_per_char += 1; | |
3291 | |
3292 break; | |
3293 | |
3294 default: | |
3295 | |
3296 /* | |
3297 * There is nothing to do. | |
3298 */ | |
3299 | |
3300 break; | |
3301 } | |
3302 | |
3303 WRITE_UART_REGISTER (uart, LCR, mcr_value); | |
3304 | |
3305 /* | |
3306 * Program the trigger levels. | |
3307 * MCR[6] must be set to 1. | |
3308 */ | |
3309 | |
3310 SET_BIT (uart, MCR, TCR_TLR_BIT); | |
3311 WRITE_UART_REGISTER (uart, TCR, 0x0F); | |
3312 WRITE_UART_REGISTER (uart, TLR, RX_FIFO_TRIGGER_LEVEL); | |
3313 RESET_BIT (uart, MCR, TCR_TLR_BIT); | |
3314 | |
3315 /* | |
3316 * Force the generation of THR_IT on TX FIFO empty: SCR[3] = 1. | |
3317 */ | |
3318 | |
3319 WRITE_UART_REGISTER ( | |
3320 uart, SCR, READ_UART_REGISTER (uart, SCR) | TX_EMPTY_CTL_IT); | |
3321 | |
3322 /* | |
3323 * Program the FIFO control register. Bit 0 must be set when other FCR bits | |
3324 * are written to or they are not programmed. | |
3325 * FCR is a write-only register. It will not be modified. | |
3326 */ | |
3327 | |
3328 WRITE_UART_REGISTER (uart, FCR, FIFO_ENABLE | | |
3329 RX_FIFO_RESET | /* self cleared */ | |
3330 TX_FIFO_RESET); /* self cleared */ | |
3331 | |
3332 /* | |
3333 * Program the baud generator. | |
3334 */ | |
3335 | |
3336 WRITE_UART_REGISTER (uart, DLL, dll[baudrate]); | |
3337 WRITE_UART_REGISTER (uart, DLM, dlh[baudrate]); | |
3338 | |
3339 /* | |
3340 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
3341 */ | |
3342 | |
3343 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
3344 | |
3345 /* | |
3346 * Select UART mode. | |
3347 */ | |
3348 | |
3349 WRITE_UART_REGISTER (uart, MDR1, ((baudrate==FD_BAUD_AUTO)? | |
3350 UART_MODE_AUTOBAUDING: | |
3351 UART_MODE) | | |
3352 IR_SLEEP_DISABLED | | |
3353 SIR_TX_WITHOUT_ACREG2 | | |
3354 FRAME_LENGTH_METHOD); | |
3355 | |
3356 /* | |
3357 * Read the state of RTS (RTS on RS232, CTS on chipset). | |
3358 */ | |
3359 | |
3360 status = READ_UART_REGISTER (uart, MSR); | |
3361 | |
3362 if (status & MCTS) | |
3363 uart->rts_level = 0; | |
3364 else | |
3365 uart->rts_level = 1; | |
3366 | |
3367 #if UARTFAX_CLASSIC_DTR_DCD | |
3368 /* | |
3369 * Read the state of DTR and select the edge. | |
3370 */ | |
3371 | |
3372 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
3373 | |
3374 if (uart->dtr_level) | |
3375 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
3376 else | |
3377 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
3378 | |
3379 AI_UnmaskIT (ARMIO_MASKIT_GPIO); | |
3380 #elif (CHIPSET == 12) | |
3381 /* | |
3382 * Read the state of DTR - No need to reload MSR register since its value | |
3383 * is still stored in the "status" local variable. | |
3384 */ | |
3385 | |
3386 if (status & MDSR) | |
3387 uart->dtr_level = 0; | |
3388 else | |
3389 uart->dtr_level = 1; | |
3390 #endif | |
3391 | |
3392 #if ((CHIPSET == 5) || (CHIPSET == 6)) | |
3393 /* | |
3394 * Unmask RX and TX interrupts and the modem status interrupt. | |
3395 */ | |
3396 | |
3397 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3398 #elif (CHIPSET == 12) | |
3399 /* | |
3400 * Unmask RX and TX interrupts and the modem status interrupt... | |
3401 */ | |
3402 | |
3403 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3404 | |
3405 /* | |
3406 * ... Then, unmask DSR interrupt... | |
3407 */ | |
3408 | |
3409 ENABLE_DSR_INTERRUPT (uart); | |
3410 | |
3411 /* | |
3412 * ... And finally allow sleep mode. | |
3413 */ | |
3414 | |
3415 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3416 /* | |
3417 WRITE_UART_REGISTER (uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
3418 */ | |
3419 #else | |
3420 /* | |
3421 * Unmask RX and TX interrupts and the modem status interrupt | |
3422 * and allow sleep mode. | |
3423 */ | |
3424 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3425 | |
3426 /* WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI | IER_SLEEP);*/ | |
3427 | |
3428 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3429 #endif | |
3430 | |
3431 | |
3432 return (FD_OK); | |
3433 } | |
3434 | |
3435 /******************************************************************************* | |
3436 * | |
3437 * UAF_SetBuffer | |
3438 * | |
3439 * Purpose : Sets up the size of the circular buffers to be used in the UART | |
3440 * driver. This function may be called only if the UART is disabled | |
3441 * with UAF_Enable. | |
3442 * | |
3443 * Arguments: In : uartNo : Used UART. | |
3444 * bufSize : Specifies the size of the circular buffer. | |
3445 * rxThreshold: Amount of received bytes that leads to a call | |
3446 * to suspended read-out function which is passed | |
3447 * to the function UAF_ReadData. | |
3448 * txThreshold: Amount of bytes in the TX buffer to call the | |
3449 * suspended write-in function which is passed to | |
3450 * the function UAF_WriteData | |
3451 * Out: none | |
3452 * | |
3453 * Returns : FD_OK : Successful operation. | |
3454 * FD_NOT_SUPPORTED: bufSize exceeds the maximal possible | |
3455 * capabilities of the driver or the threshold | |
3456 * values don't correspond to the bufSize or | |
3457 * wrong UART number. | |
3458 * FD_INTERNAL_ERR : Internal problem with the hardware or the | |
3459 * function has been called while the UART is | |
3460 * enabled. | |
3461 * | |
3462 ******************************************************************************/ | |
3463 | |
3464 T_FDRET | |
3465 UAF_SetBuffer (T_fd_UartId uartNo, | |
3466 SYS_UWORD16 bufSize, | |
3467 SYS_UWORD16 rxThreshold, | |
3468 SYS_UWORD16 txThreshold) | |
3469 { | |
3470 T_FDRET result; | |
3471 t_uart *uart; | |
3472 | |
3473 /* | |
3474 * Check UART number. | |
3475 * A return is used to simplify the code. | |
3476 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3477 * flow control is not supported. | |
3478 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3479 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3480 */ | |
3481 | |
3482 if (uartNo != UAF_UART_1) | |
3483 return (FD_NOT_SUPPORTED); | |
3484 | |
3485 if ((bufSize > FD_MAX_BUFFER_SIZE) || | |
3486 (rxThreshold > FD_MAX_BUFFER_SIZE) || | |
3487 (txThreshold > FD_MAX_BUFFER_SIZE)) | |
3488 | |
3489 result = FD_NOT_SUPPORTED; | |
3490 | |
3491 else { | |
3492 | |
3493 uart = &uart_parameters; | |
3494 | |
3495 if (!DRIVER_DISABLED (uart)) | |
3496 result = FD_INTERNAL_ERR; | |
3497 | |
3498 else if (RX_HIGH_WATERMARK (bufSize) < RX_LOW_WATERMARK (bufSize)) | |
3499 result = FD_NOT_SUPPORTED; | |
3500 | |
3501 else { | |
3502 | |
3503 uart->buffer_size = bufSize; | |
3504 uart->rx_threshold_level = rxThreshold; | |
3505 uart->tx_threshold_level = txThreshold; | |
3506 | |
3507 result = FD_OK; | |
3508 } | |
3509 } | |
3510 | |
3511 return (result); | |
3512 } | |
3513 | |
3514 /******************************************************************************* | |
3515 * | |
3516 * UAF_SetFlowCtrl | |
3517 * | |
3518 * Purpose : Changes the flow control mode of the UART driver. | |
3519 * If a flow control is activated, DTR is activated or XOFF is sent | |
3520 * if the RX buffer is not able to store the received characters else | |
3521 * DTR is deactivated or XON is sent. | |
3522 * | |
3523 * Arguments: In : uartNo: Used UART. | |
3524 * fcMode: flow control mode (none, DTR/DSR, RTS/CTS, XON/XOFF). | |
3525 * XON : ASCII code of the XON character. | |
3526 * XOFF : ASCII code of the XOFF character. | |
3527 * Out: none | |
3528 * | |
3529 * Returns : FD_OK : Successful operation. | |
3530 * FD_NOT_SUPPORTED: The flow control mode is not supported or wrong | |
3531 * UART number. | |
3532 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3533 * | |
3534 ******************************************************************************/ | |
3535 | |
3536 T_FDRET | |
3537 UAF_SetFlowCtrl (T_fd_UartId uartNo, | |
3538 T_flowCtrlMode fcMode, | |
3539 SYS_UWORD8 XON, | |
3540 SYS_UWORD8 XOFF) | |
3541 { | |
3542 T_FDRET result; | |
3543 t_uart *uart; | |
3544 | |
3545 /* | |
3546 * Check UART number. | |
3547 * A return is used to simplify the code. | |
3548 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3549 * flow control is not supported. | |
3550 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3551 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3552 */ | |
3553 | |
3554 if (uartNo != UAF_UART_1) | |
3555 return (FD_NOT_SUPPORTED); | |
3556 | |
3557 /* | |
3558 * There is no case where FD_INTERNAL_ERR may be returned. | |
3559 * The DTR/DSR protocol is not supported. | |
3560 */ | |
3561 | |
3562 if (fcMode == fc_dtr) | |
3563 result = FD_NOT_SUPPORTED; | |
3564 | |
3565 else { | |
3566 | |
3567 uart = &uart_parameters; | |
3568 | |
3569 uart->tx_stopped_by_driver = 0; | |
3570 | |
3571 | |
3572 uart->xon_character = XON; | |
3573 uart->xoff_character = XOFF; | |
3574 uart->flow_control_mode = fcMode; | |
3575 | |
3576 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3577 /* | |
3578 * Disable sleep mode. | |
3579 */ | |
3580 | |
3581 WRITE_UART_REGISTER ( | |
3582 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3583 #endif | |
3584 | |
3585 WRITE_UART_REGISTER ( | |
3586 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
3587 | |
3588 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3589 /* | |
3590 * Re-enable sleep mode. | |
3591 */ | |
3592 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3593 /* | |
3594 WRITE_UART_REGISTER ( | |
3595 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
3596 */ | |
3597 #endif | |
3598 | |
3599 if (fcMode == fc_rts) { | |
3600 #if 1 // Dmitriy: enable hardware assisted CTS | |
3601 volatile SYS_UWORD8 oldValue; | |
3602 | |
3603 oldValue = READ_UART_REGISTER (uart, LCR); | |
3604 | |
3605 // LCR value to allow acces to EFR | |
3606 | |
3607 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
3608 | |
3609 // enable hardware assisted CTS | |
3610 | |
3611 SET_BIT (uart, EFR, AUTO_CTS_BIT); | |
3612 | |
3613 WRITE_UART_REGISTER (uart, LCR, oldValue); | |
3614 #endif | |
3615 if (uart->rts_level) | |
3616 uart->tx_stopped_by_driver = 1; | |
3617 } | |
3618 | |
3619 /* | |
3620 * If the high watermark is reached, RTS is activated or XOFF is sent | |
3621 * according to the flow control mode. Else, RTS is deactivated or XON | |
3622 * is sent. | |
3623 */ | |
3624 | |
3625 if (fcMode != fc_none) { | |
3626 | |
3627 if (get_bytes_in_rx_buffer (uart) >= RX_HIGH_WATERMARK ( | |
3628 uart->buffer_size)) { | |
3629 | |
3630 uart->rx_stopped_by_driver = 1; | |
3631 stop_receiver (uart); | |
3632 | |
3633 } else if (!DRIVER_DISABLED (uart)) { | |
3634 | |
3635 uart->rx_stopped_by_driver = 0; | |
3636 start_receiver (uart); | |
3637 } | |
3638 | |
3639 } else { | |
3640 | |
3641 uart->rx_stopped_by_driver = 0; | |
3642 uart->tx_stopped_by_driver = 0; | |
3643 } | |
3644 | |
3645 result = FD_OK; | |
3646 } | |
3647 | |
3648 return (result); | |
3649 } | |
3650 | |
3651 /******************************************************************************* | |
3652 * | |
3653 * UAF_SetEscape | |
3654 * | |
3655 * Purpose : To return to the command mode at the ACI while a data connection | |
3656 * is established, an escape sequence has to be detected. | |
3657 * To distinguish between user data and the escape sequence a | |
3658 * defined guard period is necessary before and after this sequence. | |
3659 * | |
3660 * Arguments: In: uartNo : Used UART. | |
3661 * escChar : ASCII character which could appear three times | |
3662 * as an escape sequence. | |
3663 * guardPeriod: Denotes the minimal duration of the rest before | |
3664 * the first and after the last character of the | |
3665 * escape sequence, and the maximal receiving | |
3666 * duration of the whole escape string. This value | |
3667 * is expressed in ms. | |
3668 * Out: none | |
3669 * | |
3670 * Returns : FD_OK : Successful operation. | |
3671 * FD_NOT_SUPPORTED: Wrong UART number. | |
3672 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3673 * | |
3674 ******************************************************************************/ | |
3675 | |
3676 T_FDRET | |
3677 UAF_SetEscape (T_fd_UartId uartNo, | |
3678 SYS_UWORD8 escChar, | |
3679 SYS_UWORD16 guardPeriod) | |
3680 { | |
3681 t_uart *uart; | |
3682 | |
3683 /* | |
3684 * Check UART number. | |
3685 * A return is used to simplify the code. | |
3686 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3687 * flow control is not supported. | |
3688 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3689 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3690 */ | |
3691 | |
3692 if (uartNo != UAF_UART_1) | |
3693 return (FD_NOT_SUPPORTED); | |
3694 | |
3695 /* | |
3696 * There is no case where FD_INTERNAL_ERR may be returned. | |
3697 */ | |
3698 | |
3699 uart = &uart_parameters; | |
3700 | |
3701 uart->esc_seq_modified = 1; | |
3702 uart->esc_seq_character = escChar; | |
3703 uart->guard_period = CONVERT_TIME_IN_TDMA ((UNSIGNED) guardPeriod); | |
3704 uart->esc_seq_modified = 0; /* Set to 0 by the RX interrupt handler. */ | |
3705 | |
3706 return (FD_OK); | |
3707 } | |
3708 | |
3709 /******************************************************************************* | |
3710 * | |
3711 * UAF_InpAvail | |
3712 * | |
3713 * Purpose : Returns the number of characters available in the RX buffer of the | |
3714 * driver. If the driver is disabled the function returns 0. | |
3715 * | |
3716 * Arguments: In : uartNo: Used UART. | |
3717 * Out: none | |
3718 * | |
3719 * Returns : >= 0 : The returned value is the amount of data in the | |
3720 * RX buffer. | |
3721 * FD_NOT_SUPPORTED: Wrong UART number. | |
3722 * FD_NOT_READY : The function is called while the callback of the | |
3723 * readOutFunc function is activated and still not | |
3724 * terminated. | |
3725 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3726 * | |
3727 ******************************************************************************/ | |
3728 | |
3729 T_FDRET | |
3730 UAF_InpAvail (T_fd_UartId uartNo) | |
3731 { | |
3732 T_FDRET result; | |
3733 t_uart *uart; | |
3734 SYS_UWORD16 bytes_read; | |
3735 SYS_UWORD16 bytes_in_rx_buffer; | |
3736 | |
3737 /* | |
3738 * Check UART number. | |
3739 * A return is used to simplify the code. | |
3740 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3741 * flow control is not supported. | |
3742 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3743 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3744 */ | |
3745 | |
3746 if (uartNo != UAF_UART_1) | |
3747 return (FD_NOT_SUPPORTED); | |
3748 | |
3749 /* | |
3750 * There is no case where FD_INTERNAL_ERR may be returned. | |
3751 */ | |
3752 | |
3753 uart = &uart_parameters; | |
3754 | |
3755 if (uart->rd_call_setup == rm_notDefined) | |
3756 result = FD_NOT_READY; | |
3757 | |
3758 else if (DRIVER_DISABLED (uart)) | |
3759 result = 0; | |
3760 | |
3761 else { | |
3762 | |
3763 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
3764 | |
3765 /* | |
3766 * Update reading pointer of the RX buffer if a callback from LISR | |
3767 * has been done. | |
3768 */ | |
3769 | |
3770 if (uart->rd_call_from_hisr_in_progress) { | |
3771 | |
3772 bytes_read = uart->rd_size_before_call[0] - | |
3773 uart->rd_size_after_call[0] + | |
3774 uart->rd_size_before_call[1] - | |
3775 uart->rd_size_after_call[1]; | |
3776 | |
3777 uart->rx_out += bytes_read; | |
3778 | |
3779 if (uart->rx_out >= &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
3780 uart->rx_out = uart->rx_out - uart->buffer_size - 1; | |
3781 | |
3782 /* | |
3783 * Check if the low watermark is reached to enable the receiver. | |
3784 */ | |
3785 | |
3786 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
3787 | |
3788 if ((uart->flow_control_mode != fc_none) && | |
3789 (bytes_in_rx_buffer <= RX_LOW_WATERMARK (uart->buffer_size))) { | |
3790 | |
3791 if ((!uart->rx_stopped_by_application) && | |
3792 uart->rx_stopped_by_driver) | |
3793 start_receiver (uart); | |
3794 | |
3795 uart->rx_stopped_by_driver = 0; | |
3796 } | |
3797 | |
3798 uart->rd_call_from_hisr_in_progress = 0; | |
3799 } | |
3800 | |
3801 result = (T_FDRET) bytes_in_rx_buffer; | |
3802 } | |
3803 | |
3804 return (result); | |
3805 } | |
3806 | |
3807 /******************************************************************************* | |
3808 * | |
3809 * UAF_OutpAvail | |
3810 * | |
3811 * Purpose : Returns the number of free characters in TX buffer of the driver. | |
3812 * If the driver is disabled the function returns 0. | |
3813 * | |
3814 * Arguments: In : uartNo: Used UART. | |
3815 * Out: none | |
3816 * | |
3817 * Returns : >= 0 : The returned value is the amount of data in the | |
3818 * TX buffer. | |
3819 * FD_NOT_SUPPORTED: Wrong UART number. | |
3820 * FD_NOT_READY : The function is called while the callback of the | |
3821 * writeInFunc function is activated and still not | |
3822 * terminated. | |
3823 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3824 * | |
3825 ******************************************************************************/ | |
3826 | |
3827 T_FDRET | |
3828 UAF_OutpAvail (T_fd_UartId uartNo) | |
3829 { | |
3830 T_FDRET result; | |
3831 t_uart *uart; | |
3832 SYS_UWORD16 bytes_written; | |
3833 | |
3834 /* | |
3835 * Check UART number. | |
3836 * A return is used to simplify the code. | |
3837 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3838 * flow control is not supported. | |
3839 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3840 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3841 */ | |
3842 | |
3843 if (uartNo != UAF_UART_1) | |
3844 return (FD_NOT_SUPPORTED); | |
3845 | |
3846 /* | |
3847 * There is no case where FD_INTERNAL_ERR may be returned. | |
3848 */ | |
3849 | |
3850 uart = &uart_parameters; | |
3851 | |
3852 if (uart->wr_call_setup == rm_notDefined) | |
3853 result = FD_NOT_READY; | |
3854 | |
3855 else if (DRIVER_DISABLED (uart)) | |
3856 result = 0; | |
3857 | |
3858 else { | |
3859 | |
3860 /* | |
3861 * Update reading pointer of the TX buffer if a callback from LISR | |
3862 * has been done. | |
3863 */ | |
3864 | |
3865 if (uart->wr_call_from_hisr_in_progress) { | |
3866 | |
3867 bytes_written = uart->wr_size_before_call[0] - | |
3868 uart->wr_size_after_call[0] + | |
3869 uart->wr_size_before_call[1] - | |
3870 uart->wr_size_after_call[1]; | |
3871 | |
3872 uart->tx_in += bytes_written; | |
3873 | |
3874 if (uart->tx_in >= &(uart->tx_buffer[0]) + uart->buffer_size + 1) | |
3875 uart->tx_in = uart->tx_in - uart->buffer_size - 1; | |
3876 | |
3877 uart->wr_call_from_hisr_in_progress = 0; | |
3878 | |
3879 /* | |
3880 * if the TX FIFO is empty, unmask TX empty interrupt. | |
3881 */ | |
3882 | |
3883 if (!uart->tx_stopped_by_driver && | |
3884 (READ_UART_REGISTER (uart, LSR) & THRE)) | |
3885 { | |
3886 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3887 /* | |
3888 * Disable sleep mode. | |
3889 */ | |
3890 | |
3891 WRITE_UART_REGISTER ( | |
3892 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3893 #endif | |
3894 | |
3895 /* | |
3896 * Unmask Tx interrupt. | |
3897 */ | |
3898 | |
3899 WRITE_UART_REGISTER ( | |
3900 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
3901 } | |
3902 } | |
3903 | |
3904 result = (T_FDRET) (uart->buffer_size - get_bytes_in_tx_buffer (uart)); | |
3905 } | |
3906 | |
3907 return (result); | |
3908 } | |
3909 | |
3910 /******************************************************************************* | |
3911 * | |
3912 * UAF_EnterSleep | |
3913 * | |
3914 * Purpose : Checks if UART is ready to enter Deep Sleep. If ready, enables | |
3915 * wake-up interrupt. | |
3916 * | |
3917 * Arguments: In : uartNo: Used UART. | |
3918 * Out: none | |
3919 * | |
3920 * Returns : 0 : Deep Sleep is not possible. | |
3921 * >= 1 : Deep Sleep is possible. | |
3922 * FD_NOT_SUPPORTED: Wrong UART number. | |
3923 * | |
3924 * Warning: Parameters are not verified. | |
3925 * | |
3926 ******************************************************************************/ | |
3927 | |
3928 T_FDRET | |
3929 UAF_EnterSleep (T_fd_UartId uartNo) | |
3930 { | |
3931 t_uart *uart; | |
3932 SYS_BOOL deep_sleep; | |
3933 volatile SYS_UWORD8 status; | |
3934 | |
3935 /* | |
3936 * Check UART number. | |
3937 * A return is used to simplify the code. | |
3938 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3939 * flow control is not supported. | |
3940 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3941 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3942 */ | |
3943 | |
3944 if (uartNo != UAF_UART_1) | |
3945 return (FD_NOT_SUPPORTED); | |
3946 | |
3947 uart = &uart_parameters; | |
3948 deep_sleep = 0; | |
3949 | |
3950 /* | |
3951 * Check if RX & TX FIFOs are both empty | |
3952 */ | |
3953 | |
3954 status = READ_UART_REGISTER (uart, LSR); | |
3955 | |
3956 if (!(status & DR) && | |
3957 (status & TEMT)) { | |
3958 | |
3959 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3960 /* | |
3961 * Disable sleep mode. | |
3962 */ | |
3963 | |
3964 WRITE_UART_REGISTER ( | |
3965 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3966 #endif | |
3967 | |
3968 #if (CHIPSET == 12) | |
3969 /* | |
3970 * Mask DSR interrupt. | |
3971 */ | |
3972 | |
3973 DISABLE_DSR_INTERRUPT (uart); | |
3974 #endif | |
3975 | |
3976 /* | |
3977 * Mask RX, TX and the modem status interrupts. | |
3978 */ | |
3979 | |
3980 WRITE_UART_REGISTER ( | |
3981 uart, IER, READ_UART_REGISTER (uart, IER) & | |
3982 ~(ERBI | ETBEI | EDSSI)); | |
3983 | |
3984 /* | |
3985 * Enable the wake-up interrupt. | |
3986 */ | |
3987 | |
3988 ENABLE_WAKEUP_INTERRUPT (uart); | |
3989 | |
3990 deep_sleep = 1; | |
3991 } | |
3992 | |
3993 return (deep_sleep); | |
3994 } | |
3995 | |
3996 /******************************************************************************* | |
3997 * | |
3998 * UAF_WakeUp | |
3999 * | |
4000 * Purpose : Wakes up UART after Deep Sleep. | |
4001 * | |
4002 * Arguments: In : uartNo: Used UART. | |
4003 * Out: none | |
4004 * | |
4005 * Returns : FD_OK : Successful operation. | |
4006 * FD_NOT_SUPPORTED: Wrong UART number. | |
4007 * | |
4008 * Warning: Parameters are not verified. | |
4009 * | |
4010 ******************************************************************************/ | |
4011 | |
4012 T_FDRET | |
4013 UAF_WakeUp (T_fd_UartId uartNo) | |
4014 { | |
4015 t_uart *uart; | |
4016 | |
4017 /* | |
4018 * Check UART number. | |
4019 * A return is used to simplify the code. | |
4020 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4021 * flow control is not supported. | |
4022 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4023 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4024 */ | |
4025 | |
4026 if (uartNo != UAF_UART_1) | |
4027 return (FD_NOT_SUPPORTED); | |
4028 | |
4029 uart = &uart_parameters; | |
4030 | |
4031 /* | |
4032 * Disable the wake-up interrupt. | |
4033 */ | |
4034 | |
4035 DISABLE_WAKEUP_INTERRUPT (uart); | |
4036 | |
4037 /* | |
4038 * Unmask RX and modem status interrupts. | |
4039 */ | |
4040 | |
4041 WRITE_UART_REGISTER ( | |
4042 uart, IER, READ_UART_REGISTER (uart, IER) | (ERBI | EDSSI)); | |
4043 | |
4044 #if (CHIPSET == 12) | |
4045 /* | |
4046 * Unmask DSR interrupt. | |
4047 */ | |
4048 | |
4049 ENABLE_DSR_INTERRUPT (uart); | |
4050 #endif | |
4051 | |
4052 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4053 /* | |
4054 * Allow sleep mode. | |
4055 */ | |
4056 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
4057 /* | |
4058 WRITE_UART_REGISTER ( | |
4059 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
4060 */ | |
4061 #endif | |
4062 | |
4063 return (FD_OK); | |
4064 } | |
4065 | |
4066 /******************************************************************************* | |
4067 * | |
4068 * UAF_ReadData | |
4069 * | |
4070 * Purpose : To read the received characters out of the RX buffer the address | |
4071 * of a function is passed. If characters are available, the driver | |
4072 * calls this function and pass the address and the amount of | |
4073 * readable characters. Because the RX buffer is circular, the | |
4074 * callback function may be called with more than one address of | |
4075 * buffer fragment. | |
4076 * The readOutFunc function modifies the contents of the size array | |
4077 * to return the driver the number of processed characters. Each | |
4078 * array entry is decremented by the number of bytes read in the | |
4079 * fragment. | |
4080 * If the UAF_ReadData is called while the RX buffer is empty, it | |
4081 * depends on the suspend parameter to suspend the call-back or to | |
4082 * leave without any operation. In the case of suspension, the | |
4083 * return value of UAF_ReadData is UAF_SUSPENDED. A delayed call-back | |
4084 * will be performed if: | |
4085 * - the RX buffer reachs the adjusted threshold (rxThreshold of | |
4086 * UAF_SetBuffer), | |
4087 * - the state of a V.24 input line has changed, | |
4088 * - a break is detected, | |
4089 * - an escape sequence is detected. | |
4090 * If no suspension is necessary the function returns the number of | |
4091 * processed bytes. | |
4092 * | |
4093 * Arguments: In : uartNo : Used UART. | |
4094 * suspend : mode of suspension in case of RX buffer empty. | |
4095 * readOutFunc: Callback function. | |
4096 * cldFromIrq: The driver sets this parameter to 1 | |
4097 * if the callback function is called | |
4098 * from an interrupt service routine. | |
4099 * reInstall : The call-back function sets this | |
4100 * parameter to rm_reInstall if the | |
4101 * driver must call again the callback | |
4102 * function when the RX threshold level | |
4103 * is reached. Else it will be set to | |
4104 * rm_noInstall. Before to call the | |
4105 * readOutFunc function this parameter | |
4106 * is set to rm_notDefined. | |
4107 * nsource : Informed the callback function about | |
4108 * the number of fragments which are | |
4109 * ready to copy from the circular RX | |
4110 * buffer. | |
4111 * source : Array which contains the addresses | |
4112 * of the fragments. | |
4113 * size : Array which contains the sizes of | |
4114 * each fragments. | |
4115 * state : The state parameter is the status | |
4116 * of the V.24 lines and the break / | |
4117 * escape detection. The state | |
4118 * parameter is described in the | |
4119 * specification of UAF_GetLineState. | |
4120 * Out: none | |
4121 * | |
4122 * Returns : >= 0 : Succesful operation. Amount of processed bytes. | |
4123 * FD_NOT_SUPPORTED: Wrong UART number. | |
4124 * FD_SUSPENDED : The callback is suspended until the buffer or | |
4125 * state condition changed. | |
4126 * FD_NOT_READY : The function is called while the callback is | |
4127 * activated and still not terminated. | |
4128 * FD_INTERNAL_ERR : Internal problems with the hardware. | |
4129 * | |
4130 ******************************************************************************/ | |
4131 | |
4132 T_FDRET | |
4133 UAF_ReadData (T_fd_UartId uartNo, | |
4134 T_suspendMode suspend, | |
4135 void (readOutFunc (SYS_BOOL cldFromIrq, | |
4136 T_reInstMode *reInstall, | |
4137 SYS_UWORD8 nsource, | |
4138 SYS_UWORD8 *source[], | |
4139 SYS_UWORD16 size[], | |
4140 SYS_UWORD32 state))) | |
4141 { | |
4142 T_FDRET result; | |
4143 t_uart *uart; | |
4144 SYS_UWORD16 bytes_read; | |
4145 SYS_UWORD16 bytes_in_rx_buffer; | |
4146 | |
4147 /* | |
4148 * Check UART number. | |
4149 * A return is used to simplify the code. | |
4150 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4151 * flow control is not supported. | |
4152 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4153 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4154 */ | |
4155 | |
4156 if (uartNo != UAF_UART_1) | |
4157 return (FD_NOT_SUPPORTED); | |
4158 | |
4159 /* | |
4160 * There is no case where FD_INTERNAL_ERR may be returned. | |
4161 */ | |
4162 | |
4163 uart = &uart_parameters; | |
4164 | |
4165 if (uart->rd_call_setup == rm_notDefined) | |
4166 result = FD_NOT_READY; | |
4167 | |
4168 else if (get_bytes_in_rx_buffer (uart) || uart->esc_seq_received) { | |
4169 | |
4170 uart->readOutFunc = readOutFunc; | |
4171 update_reading_callback (uart, 0); /* 0: call from application. */ | |
4172 | |
4173 bytes_read = uart->rd_size_before_call[0] - | |
4174 uart->rd_size_after_call[0] + | |
4175 uart->rd_size_before_call[1] - | |
4176 uart->rd_size_after_call[1]; | |
4177 | |
4178 uart->rx_out += bytes_read; | |
4179 | |
4180 if (uart->rx_out >= &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
4181 uart->rx_out = uart->rx_out - uart->buffer_size - 1; | |
4182 | |
4183 /* | |
4184 * Check if the low watermark is reached to enable the receiver. | |
4185 */ | |
4186 | |
4187 if ((uart->flow_control_mode != fc_none) && | |
4188 (get_bytes_in_rx_buffer (uart) <= RX_LOW_WATERMARK ( | |
4189 uart->buffer_size))) { | |
4190 | |
4191 if ((!uart->rx_stopped_by_application) && | |
4192 uart->rx_stopped_by_driver && (!uart->rx_stopped_by_lisr)) | |
4193 start_receiver (uart); | |
4194 | |
4195 uart->rx_stopped_by_driver = 0; | |
4196 } | |
4197 | |
4198 uart->esc_seq_received = 0; | |
4199 result = (T_FDRET) bytes_read; | |
4200 | |
4201 } else if (suspend == sm_suspend) { | |
4202 | |
4203 uart->readOutFunc = readOutFunc; | |
4204 uart->reading_suspended = 1; | |
4205 result = FD_SUSPENDED; | |
4206 | |
4207 } else { | |
4208 | |
4209 /* | |
4210 * The previous callback function is deinstalled. | |
4211 */ | |
4212 | |
4213 uart->rd_call_setup = rm_noInstall; | |
4214 uart->reading_suspended = 0; | |
4215 result = 0; /* 0 byte read. */ | |
4216 } | |
4217 | |
4218 return (result); | |
4219 } | |
4220 | |
4221 /******************************************************************************* | |
4222 * | |
4223 * UAF_WriteData | |
4224 * | |
4225 * Purpose : To write characters into the TX buffer the address of a function | |
4226 * is passed. If free space is available in the buffer, the driver | |
4227 * calls this function and passes the destination address and the | |
4228 * amount of space. Because the TX buffer is circular, the callback | |
4229 * function may be called with more than one address of buffer | |
4230 * fragment. | |
4231 * The writeInFunc function modifies the contents of the size array | |
4232 * to return the driver the number of processed bytes. Each array | |
4233 * entry is decremented by the number of bytes written in this | |
4234 * fragment. | |
4235 * If the UAF_WriteData function is called while the TX buffer is | |
4236 * full, it depends on the suspend parameter to suspend the | |
4237 * call-back or to leave this function without any operation. In the | |
4238 * case of suspension the returned value of the UAF_WriteData is | |
4239 * UAF_SUSPENDED. A delayed call-back will be performed if the TX | |
4240 * buffer reaches the adjusted threshold (txThreshold of | |
4241 * UAF_SetBuffer). If no suspension is necessary the function returns | |
4242 * the number of processed bytes. | |
4243 * | |
4244 * Arguments: In : uartNo : Used UART. | |
4245 * suspend : mode of suspension in case of TX buffer empty. | |
4246 * writeInFunc: Callback function. | |
4247 * cldFromIrq: The driver sets this parameter to 1 | |
4248 * if the call-back function is called | |
4249 * from an interrupt service routine. | |
4250 * reInstall : The callback function sets this | |
4251 * parameter to rm_reInstall if the | |
4252 * driver must call again the callback | |
4253 * function when the TX threshold level | |
4254 * is reached. Else it will be set to | |
4255 * rm_noInstall. Before to call the | |
4256 * writeInFunc function this parameter | |
4257 * is set to rm_notDefined. | |
4258 * ndest : Informed the callback function about | |
4259 * the number of fragments which are | |
4260 * available in the TX buffer. | |
4261 * dest : Array which contains the addresses | |
4262 * of the fragments. | |
4263 * size : Array which contains the sizes of | |
4264 * each fragments. | |
4265 * Out: none | |
4266 * | |
4267 * Returns : >= 0 : Succesful operation. Amount of processed bytes. | |
4268 * FD_NOT_SUPPORTED: Wrong UART number. | |
4269 * FD_SUSPENDED : The callback is suspended until the buffer | |
4270 * condition changed. | |
4271 * FD_NOT_READY : The function is called while the callback is | |
4272 * activated and still not terminated. | |
4273 * FD_INTERNAL_ERR : Internal problems with the hardware. | |
4274 * | |
4275 ******************************************************************************/ | |
4276 | |
4277 T_FDRET | |
4278 UAF_WriteData (T_fd_UartId uartNo, | |
4279 T_suspendMode suspend, | |
4280 void (writeInFunc (SYS_BOOL cldFromIrq, | |
4281 T_reInstMode *reInstall, | |
4282 SYS_UWORD8 ndest, | |
4283 SYS_UWORD8 *dest[], | |
4284 SYS_UWORD16 size[]))) | |
4285 { | |
4286 T_FDRET result; | |
4287 t_uart *uart; | |
4288 SYS_UWORD16 bytes_written; | |
4289 | |
4290 /* | |
4291 * Check UART number. | |
4292 * A return is used to simplify the code. | |
4293 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4294 * flow control is not supported. | |
4295 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4296 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4297 */ | |
4298 | |
4299 if (uartNo != UAF_UART_1) | |
4300 return (FD_NOT_SUPPORTED); | |
4301 | |
4302 /* | |
4303 * There is no case where FD_INTERNAL_ERR may be returned. | |
4304 */ | |
4305 | |
4306 uart = &uart_parameters; | |
4307 | |
4308 if (uart->wr_call_setup == rm_notDefined) | |
4309 result = FD_NOT_READY; | |
4310 | |
4311 else if ((!DRIVER_DISABLED (uart)) && | |
4312 (get_bytes_in_tx_buffer (uart) < uart->buffer_size)) { | |
4313 | |
4314 uart->writeInFunc = writeInFunc; | |
4315 update_writing_callback (uart, 0); /* 0: call from application. */ | |
4316 | |
4317 bytes_written = uart->wr_size_before_call[0] - | |
4318 uart->wr_size_after_call[0] + | |
4319 uart->wr_size_before_call[1] - | |
4320 uart->wr_size_after_call[1]; | |
4321 | |
4322 uart->tx_in += bytes_written; | |
4323 | |
4324 if (uart->tx_in >= &(uart->tx_buffer[0]) + uart->buffer_size + 1) | |
4325 uart->tx_in = uart->tx_in - uart->buffer_size - 1; | |
4326 | |
4327 /* If we have been stopped due to high RTS, we have to | |
4328 * wake up application processor by IRQ via IO1 -HW */ | |
4329 #ifdef CONFIG_TARGET_GTAMODEM | |
4330 if (uart->tx_stopped_by_driver) | |
4331 AI_SetBit(1); | |
4332 #endif | |
4333 | |
4334 /* | |
4335 * If: | |
4336 * - there is no break to send, | |
4337 * - the flow control is not activated, | |
4338 * unmask the TX empty interrupt to be able to send characters. | |
4339 */ | |
4340 if (!uart->break_to_send && | |
4341 !uart->tx_stopped_by_driver) | |
4342 { | |
4343 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4344 /* | |
4345 * Disable sleep mode. | |
4346 */ | |
4347 | |
4348 WRITE_UART_REGISTER ( | |
4349 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
4350 #endif | |
4351 | |
4352 /* | |
4353 * Unmask Tx interrupt. | |
4354 */ | |
4355 | |
4356 WRITE_UART_REGISTER ( | |
4357 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
4358 } | |
4359 | |
4360 result = (T_FDRET) bytes_written; | |
4361 | |
4362 } else if (suspend == sm_suspend) { | |
4363 | |
4364 uart->writeInFunc = writeInFunc; | |
4365 uart->writing_suspended = 1; | |
4366 result = FD_SUSPENDED; | |
4367 | |
4368 } else { | |
4369 | |
4370 /* | |
4371 * The previous callback function is deinstalled. | |
4372 */ | |
4373 | |
4374 uart->wr_call_setup = rm_noInstall; | |
4375 uart->writing_suspended = 0; | |
4376 result = 0; | |
4377 } | |
4378 | |
4379 return (result); | |
4380 } | |
4381 | |
4382 /******************************************************************************* | |
4383 * | |
4384 * UAF_StopRec | |
4385 * | |
4386 * Purpose : If a flow control mode is set, this function tells the terminal | |
4387 * equipment that no more data can be received. | |
4388 * XON/XOFF: XOFF is sent. | |
4389 * DTR/DSR : DTR is desactivated. | |
4390 * RTS/CTS : RTS is deactivated. | |
4391 * | |
4392 * Arguments: In : uartNo: Used UART. | |
4393 * Out: none | |
4394 * | |
4395 * Returns : FD_OK : Successful operation. | |
4396 * FD_NOT_SUPPORTED: Wrong UART number. | |
4397 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4398 * | |
4399 ******************************************************************************/ | |
4400 | |
4401 T_FDRET | |
4402 UAF_StopRec (T_fd_UartId uartNo) | |
4403 { | |
4404 t_uart *uart; | |
4405 | |
4406 /* | |
4407 * Check UART number. | |
4408 * A return is used to simplify the code. | |
4409 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4410 * flow control is not supported. | |
4411 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4412 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4413 */ | |
4414 | |
4415 if (uartNo != UAF_UART_1) | |
4416 return (FD_NOT_SUPPORTED); | |
4417 | |
4418 /* | |
4419 * There is no case where FD_INTERNAL_ERR may be returned. | |
4420 */ | |
4421 | |
4422 uart = &uart_parameters; | |
4423 | |
4424 if (uart->flow_control_mode != fc_none) | |
4425 stop_receiver (uart); | |
4426 | |
4427 uart->rx_stopped_by_application = 1; | |
4428 | |
4429 return (FD_OK); | |
4430 } | |
4431 | |
4432 /******************************************************************************* | |
4433 * | |
4434 * UAF_StartRec | |
4435 * | |
4436 * Purpose : If a flow control mode is set, this function tells the terminal | |
4437 * equipment that the receiver is again able to receive more data. | |
4438 * If the buffer has already reached the high water mark the driver | |
4439 * sends the signal only if the buffer drains to a low water mark. | |
4440 * XON/XOFF: XON is sent. | |
4441 * DTR/DSR : DTR is activated. | |
4442 * RTS/CTS : RTS is activated. | |
4443 * | |
4444 * Arguments: In : uartNo: Used UART. | |
4445 * Out: none | |
4446 * | |
4447 * Returns : FD_OK : Successful operation. | |
4448 * FD_NOT_SUPPORTED: Wrong UART number. | |
4449 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4450 * | |
4451 ******************************************************************************/ | |
4452 | |
4453 T_FDRET | |
4454 UAF_StartRec (T_fd_UartId uartNo) | |
4455 { | |
4456 t_uart *uart; | |
4457 | |
4458 /* | |
4459 * Check UART number. | |
4460 * A return is used to simplify the code. | |
4461 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4462 * flow control is not supported. | |
4463 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4464 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4465 */ | |
4466 | |
4467 if (uartNo != UAF_UART_1) | |
4468 return (FD_NOT_SUPPORTED); | |
4469 | |
4470 /* | |
4471 * There is no case where FD_INTERNAL_ERR may be returned. | |
4472 */ | |
4473 | |
4474 uart = &uart_parameters; | |
4475 | |
4476 if ((uart->flow_control_mode != fc_none) && (!uart->rx_stopped_by_driver)) | |
4477 start_receiver (uart); | |
4478 | |
4479 uart->rx_stopped_by_application = 0; | |
4480 | |
4481 return (FD_OK); | |
4482 } | |
4483 | |
4484 /******************************************************************************* | |
4485 * | |
4486 * UAF_GetLineState | |
4487 * | |
4488 * Purpose : Returns the state of the V.24 lines, the flow control state and | |
4489 * the result of the break/escape detection process as a bit field. | |
4490 * | |
4491 * Arguments: In : uartNo: Used UART. | |
4492 * Out: state : State of the V.24 lines, the flow control state and | |
4493 * the result of the break/escape sequence detection | |
4494 * process as a bit field. | |
4495 * | |
4496 * Returns : FD_OK : Successful operation. | |
4497 * FD_NOT_SUPPORTED: Wrong UART number. | |
4498 * FD_NOT_READY : The function is called while the callback of | |
4499 * the readOutFunc function is activated and still | |
4500 * not terminated. | |
4501 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4502 * | |
4503 ******************************************************************************/ | |
4504 | |
4505 T_FDRET | |
4506 UAF_GetLineState (T_fd_UartId uartNo, | |
4507 SYS_UWORD32 *state) | |
4508 { | |
4509 T_FDRET result; | |
4510 t_uart *uart; | |
4511 | |
4512 /* | |
4513 * Check UART number. | |
4514 * A return is used to simplify the code. | |
4515 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4516 * flow control is not supported. | |
4517 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4518 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4519 */ | |
4520 | |
4521 if (uartNo != UAF_UART_1) | |
4522 return (FD_NOT_SUPPORTED); | |
4523 | |
4524 /* | |
4525 * There is no case where FD_INTERNAL_ERR may be returned. | |
4526 * Signals not supported are reported as 0. | |
4527 */ | |
4528 | |
4529 uart = &uart_parameters; | |
4530 | |
4531 if (uart->rd_call_setup == rm_notDefined) | |
4532 result = FD_NOT_READY; | |
4533 | |
4534 else { | |
4535 | |
4536 /* | |
4537 * The field state_2 is used when state_1 is set to 0 to avoid to | |
4538 * lose events detected in the RX interrupt handler. | |
4539 * Fields BRK and BRKLEN are set when a break is detected. | |
4540 * The field ESC is set when an escape sequence is detected. | |
4541 */ | |
4542 | |
4543 *state = uart->state_2; | |
4544 uart->state_2 = 0; | |
4545 uart->state = &(uart->state_2); | |
4546 | |
4547 *state |= uart->state_1; | |
4548 uart->state_1 = 0; | |
4549 uart->state = &(uart->state_1); | |
4550 | |
4551 *state |= ((((SYS_UWORD32) uart->rts_level) << RTS) | | |
4552 | |
4553 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
4554 (((SYS_UWORD32) uart->dtr_level) << DTR) | | |
4555 #endif | |
4556 | |
4557 (((SYS_UWORD32) (uart->tx_stopped_by_application | | |
4558 uart->tx_stopped_by_driver)) << TXSTP) | | |
4559 | |
4560 (((SYS_UWORD32) (uart->rx_stopped_by_application | | |
4561 uart->rx_stopped_by_driver)) << RXSTP) | | |
4562 | |
4563 (((SYS_UWORD32) (uart->buffer_size - | |
4564 get_bytes_in_rx_buffer (uart))) << RXBLEV)); | |
4565 | |
4566 /* | |
4567 * Fields SA, SB and X are set according to the flow control: | |
4568 * | |
4569 * None RTS/CTS XON/XOFF | |
4570 * SA DTR DTR DTR | |
4571 * SB RTS 0 RTS | |
4572 * X 0 RTS XON:0 XOFF:1 (transmitter) | |
4573 * | |
4574 * DTR is supported on C, D & E-Sample. | |
4575 */ | |
4576 | |
4577 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
4578 *state |= (((SYS_UWORD32) uart->dtr_level) << SA); | |
4579 #endif | |
4580 | |
4581 if (uart->flow_control_mode != fc_rts) | |
4582 *state |= (((SYS_UWORD32) uart->rts_level) << SB); | |
4583 | |
4584 if (uart->flow_control_mode == fc_rts) | |
4585 *state |= (((SYS_UWORD32) uart->rts_level) << X); | |
4586 | |
4587 else if ((uart->flow_control_mode == fc_xoff) && | |
4588 (uart->tx_stopped_by_application || | |
4589 uart->tx_stopped_by_driver)) | |
4590 *state |= (1 << X); | |
4591 | |
4592 result = FD_OK; | |
4593 } | |
4594 | |
4595 return (result); | |
4596 } | |
4597 | |
4598 /******************************************************************************* | |
4599 * | |
4600 * UAF_SetLineState | |
4601 * | |
4602 * Purpose : Sets the states of the V.24 status lines according to the bit | |
4603 * field of the parameter state. | |
4604 * | |
4605 * Arguments: In : uartNo: Used UART. | |
4606 * state : Bit field. Only the signals which are marked with | |
4607 * the 'set' access can be used to change the state of | |
4608 * the signal. | |
4609 * mask : Bit field with the same structure as state. Each bit | |
4610 * in state corresponds to a bit in mask. Settabled | |
4611 * bits marked by a 1 are manipulated by the driver. | |
4612 * Out: none | |
4613 * | |
4614 * Returns : FD_OK : Successful operation. | |
4615 * FD_NOT_SUPPORTED: Wrong UART number. | |
4616 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4617 * | |
4618 ******************************************************************************/ | |
4619 | |
4620 T_FDRET | |
4621 UAF_SetLineState (T_fd_UartId uartNo, | |
4622 SYS_UWORD32 state, | |
4623 SYS_UWORD32 mask) | |
4624 { | |
4625 t_uart *uart; | |
4626 UNSIGNED break_length; | |
4627 | |
4628 /* | |
4629 * Check UART number. | |
4630 * A return is used to simplify the code. | |
4631 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4632 * flow control is not supported. | |
4633 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4634 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4635 */ | |
4636 | |
4637 if (uartNo != UAF_UART_1) | |
4638 return (FD_NOT_SUPPORTED); | |
4639 | |
4640 uart = &uart_parameters; | |
4641 | |
4642 /* | |
4643 * There is no case where FD_INTERNAL_ERR may be returned. | |
4644 * DCD is supported on C, D & E-Sample. The SA field is not supported because | |
4645 * DSR is not supported on all platforms. | |
4646 */ | |
4647 | |
4648 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
4649 if (mask & (1 << SA)) | |
4650 #else | |
4651 if ((mask & (1 << SA)) || (mask & (1 << DCD))) | |
4652 #endif | |
4653 return (FD_NOT_SUPPORTED); /* Return used to simplify the code */ | |
4654 | |
4655 /* | |
4656 * Check if a break has to be sent. | |
4657 */ | |
4658 | |
4659 uart->break_length = (UNSIGNED) ((state >> BRKLEN) & 0xFF); | |
4660 | |
4661 if (state & (1 << BRK) && (mask & (1 << BRK))) { | |
4662 | |
4663 if (uart->break_length > FIFO_SIZE) | |
4664 return (FD_NOT_SUPPORTED); /* Return used to simplify the code */ | |
4665 | |
4666 else { | |
4667 | |
4668 uart->time_without_character = | |
4669 compute_break_time (uart->baudrate, uart->bits_per_char, 3); | |
4670 | |
4671 uart->break_to_send = 1; | |
4672 | |
4673 /* | |
4674 * If the TX FIFO is empty the break is send from this function | |
4675 * else the interrupt handler will send the break. | |
4676 */ | |
4677 | |
4678 if (READ_UART_REGISTER (uart, LSR) & TEMT) | |
4679 send_break(uart); | |
4680 } | |
4681 } | |
4682 | |
4683 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4684 /* | |
4685 * Disable sleep mode. | |
4686 */ | |
4687 | |
4688 WRITE_UART_REGISTER ( | |
4689 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
4690 #endif | |
4691 | |
4692 /* | |
4693 * The CTS field is ignored if the X bit in the mask is set. In this case | |
4694 * the X bit controls CTS. | |
4695 */ | |
4696 | |
4697 if (mask & (1 << CTS)) { | |
4698 | |
4699 if (uart->flow_control_mode != fc_rts) { | |
4700 | |
4701 /* | |
4702 * As the RTS/CTS flow control is not selected, the X bit does not | |
4703 * control CTS. CTS needs only to be activated or deactivated | |
4704 * according to the value of the CTS field. | |
4705 */ | |
4706 | |
4707 if (state & (1 << CTS)) | |
4708 WRITE_UART_REGISTER ( | |
4709 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
4710 | |
4711 else | |
4712 WRITE_UART_REGISTER ( | |
4713 uart, MCR, READ_UART_REGISTER (uart, MCR) & ~MRTS); | |
4714 | |
4715 } else if (!(mask & (1 << X))) { | |
4716 | |
4717 /* | |
4718 * The RTS/CTS flow control is selected but the X bit in the mask | |
4719 * is null. Then the CTS bit controls CTS and the receiver must be | |
4720 * stopped or started according to the state of the CTS bit. | |
4721 * The receiver is started only if it was not stopped by the driver | |
4722 * and if it was stopped by the application. | |
4723 */ | |
4724 | |
4725 if (state & (1 << CTS)) { | |
4726 | |
4727 if (!uart->rx_stopped_by_application) { | |
4728 | |
4729 if (!uart->rx_stopped_by_driver) | |
4730 stop_receiver (uart); | |
4731 | |
4732 uart->rx_stopped_by_application = 1; | |
4733 } | |
4734 | |
4735 } else { | |
4736 | |
4737 if ((!uart->rx_stopped_by_driver) && | |
4738 uart->rx_stopped_by_application) | |
4739 start_receiver (uart); | |
4740 | |
4741 uart->rx_stopped_by_application = 0; | |
4742 } | |
4743 } | |
4744 } | |
4745 | |
4746 /* | |
4747 * The DCD field is ignored if the SB bit of the mask is set. | |
4748 */ | |
4749 | |
4750 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
4751 | |
4752 if (!(mask & (1 << SB)) && (mask & (1 << DCD))) { | |
4753 | |
4754 if (state & (1 << DCD)) { | |
4755 /* Turn on DCD */ | |
4756 #if (CHIPSET == 12) | |
4757 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) | MDCD); | |
4758 #else | |
4759 AI_ResetBit (ARMIO_DCD); | |
4760 #endif | |
4761 } else { | |
4762 /* Turn off DCD */ | |
4763 #if (CHIPSET == 12) | |
4764 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
4765 #else | |
4766 AI_SetBit (ARMIO_DCD); | |
4767 #endif | |
4768 } | |
4769 } | |
4770 | |
4771 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
4772 | |
4773 /* | |
4774 * Signals are set according to fields SA, SB and X states and flow | |
4775 * control: | |
4776 * | |
4777 * None RTS/CTS XON/XOFF | |
4778 * SA 0 (ns) 0 (ns) 0 (ns) | |
4779 * SB DCD DCD DCD | |
4780 * X ignore CTS XON:0 XOFF:1 (receiver) | |
4781 * | |
4782 * ns: signal not supported. | |
4783 * DCD is supported on C, D & E-Sample. | |
4784 */ | |
4785 | |
4786 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
4787 | |
4788 if (mask & (1 << SB)) { | |
4789 | |
4790 if (state & (1 << SB)) { | |
4791 /* Turn on DCD */ | |
4792 #if (CHIPSET == 12) | |
4793 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) | MDCD); | |
4794 #else | |
4795 AI_ResetBit (ARMIO_DCD); | |
4796 #endif | |
4797 } else { | |
4798 /* Turn off DCD */ | |
4799 #if (CHIPSET == 12) | |
4800 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
4801 #else | |
4802 AI_SetBit (ARMIO_DCD); | |
4803 #endif | |
4804 } | |
4805 } | |
4806 | |
4807 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
4808 | |
4809 if ((mask & (1 << X)) && | |
4810 (uart->flow_control_mode != fc_none)) { | |
4811 | |
4812 if (state & (1 << X)) { | |
4813 | |
4814 if (!uart->rx_stopped_by_application) { | |
4815 | |
4816 if (!uart->rx_stopped_by_driver) | |
4817 stop_receiver (uart); | |
4818 | |
4819 uart->rx_stopped_by_application = 1; | |
4820 } | |
4821 | |
4822 } else { | |
4823 | |
4824 /* | |
4825 * The receiver is started only if it is not stopped by the driver | |
4826 * and if it is stopped by the application. | |
4827 */ | |
4828 | |
4829 if ((!uart->rx_stopped_by_driver) && | |
4830 uart->rx_stopped_by_application) | |
4831 start_receiver (uart); | |
4832 | |
4833 uart->rx_stopped_by_application = 0; | |
4834 } | |
4835 } | |
4836 | |
4837 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4838 /* | |
4839 * Re-enable sleep mode. | |
4840 */ | |
4841 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
4842 /* | |
4843 WRITE_UART_REGISTER ( | |
4844 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
4845 */ | |
4846 #endif | |
4847 | |
4848 return (FD_OK); | |
4849 } | |
4850 | |
4851 /******************************************************************************* | |
4852 * | |
4853 * UAF_InterruptHandler | |
4854 * | |
4855 * Purpose : Interrupt handler. | |
4856 * | |
4857 * Arguments: In : uart_id : origin of interrupt | |
4858 * interrupt_status: source of interrupt | |
4859 * Out: none | |
4860 * | |
4861 * Returns : none | |
4862 * | |
4863 ******************************************************************************/ | |
4864 | |
4865 void | |
4866 UAF_InterruptHandler (T_fd_UartId uart_id, | |
4867 SYS_UWORD8 interrupt_status) | |
4868 { | |
4869 | |
4870 t_uart *uart; | |
4871 | |
4872 /* | |
4873 * uart_id is not used. | |
4874 */ | |
4875 | |
4876 uart = &uart_parameters; | |
4877 | |
4878 uart->current_time = NU_Retrieve_Clock (); | |
4879 | |
4880 /* | |
4881 * Causes of interrupt: | |
4882 * - trigger level reached, | |
4883 * - character time-out indication, | |
4884 * - transmitter holding register empty, | |
4885 * - modem status. | |
4886 */ | |
4887 | |
4888 switch (interrupt_status) { | |
4889 | |
4890 case RX_DATA: | |
4891 | |
4892 #if (UARTFAX_CLASSIC_DTR_DCD || (CHIPSET == 12)) | |
4893 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
4894 uart->dtr_change_detected[uart->index_it] = 0; | |
4895 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
4896 #endif | |
4897 read_rx_fifo (uart); | |
4898 | |
4899 // Disable Autobaud and lock baudrate upon first received character | |
4900 if (uart->autobauding != 0) | |
4901 { | |
4902 /* MSMSMSMS */ | |
4903 SYS_UWORD8 uasr; | |
4904 T_baudrate baudrate; | |
4905 T_bitsPerCharacter bpc; | |
4906 T_parity parity; | |
4907 | |
4908 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) | DLAB); | |
4909 | |
4910 | |
4911 uasr = READ_UART_REGISTER (uart, UASR); | |
4912 | |
4913 switch (uasr & 0x1F) | |
4914 { | |
4915 case 0x01: baudrate = FD_BAUD_115200; break; | |
4916 case 0x02: baudrate = FD_BAUD_57600; break; | |
4917 case 0x03: baudrate = FD_BAUD_38400; break; | |
4918 case 0x04: baudrate = FD_BAUD_28800; break; | |
4919 case 0x05: baudrate = FD_BAUD_19200; break; | |
4920 case 0x06: baudrate = FD_BAUD_14400; break; | |
4921 case 0x07: baudrate = FD_BAUD_9600; break; | |
4922 case 0x08: baudrate = FD_BAUD_4800; break; | |
4923 case 0x09: baudrate = FD_BAUD_2400; break; | |
4924 case 0x0A: baudrate = FD_BAUD_1200; break; | |
4925 default: /* no baudrate detected, abort for now */ | |
4926 return; | |
4927 } | |
4928 | |
4929 switch (uasr>>5 & 0x01) | |
4930 { | |
4931 case 0x00: bpc = bpc_7; break; | |
4932 case 0x01: bpc = bpc_8; break; | |
4933 } | |
4934 | |
4935 switch (uasr>>6 & 0x03) | |
4936 { | |
4937 case 0x00: parity = pa_none; break; | |
4938 case 0x01: parity = pa_space; break; | |
4939 case 0x02: parity = pa_even; break; | |
4940 case 0x03: parity = pa_odd; break; | |
4941 } | |
4942 | |
4943 UAF_SetComPar (UAF_UART_1, | |
4944 baudrate, | |
4945 bpc, | |
4946 sb_1, | |
4947 parity); | |
4948 | |
4949 uart->baudrate = baudrate_value[FD_BAUD_AUTO]; /* remember autobauding */ | |
4950 } | |
4951 | |
4952 break; | |
4953 | |
4954 case TX_EMPTY: | |
4955 | |
4956 fill_tx_fifo (uart); | |
4957 break; | |
4958 | |
4959 case MODEM_STATUS: | |
4960 | |
4961 check_v24_input_lines (uart); | |
4962 break; | |
4963 } | |
4964 } | |
4965 | |
4966 /******************************************************************************* | |
4967 * | |
4968 * UAF_CheckXEmpty | |
4969 * | |
4970 * Purpose : Checks the empty condition of the Transmitter. | |
4971 * | |
4972 * Arguments: In : uartNo: Used UART. | |
4973 * Out: none | |
4974 * | |
4975 * Returns : FD_OK : Empty condition OK. | |
4976 * FD_NOT_SUPPORTED: Wrong UART number. | |
4977 * FD_NOT_READY : Empty condition not OK. | |
4978 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4979 * | |
4980 ******************************************************************************/ | |
4981 | |
4982 T_FDRET | |
4983 UAF_CheckXEmpty (T_fd_UartId uartNo) | |
4984 { | |
4985 T_FDRET result; | |
4986 t_uart *uart; | |
4987 SYS_UWORD8 status; | |
4988 | |
4989 /* | |
4990 * Check UART number. | |
4991 * A return is used to simplify the code. | |
4992 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4993 * flow control is not supported. | |
4994 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4995 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4996 */ | |
4997 | |
4998 if (uartNo != UAF_UART_1) | |
4999 return (FD_NOT_SUPPORTED); | |
5000 | |
5001 /* | |
5002 * There is no case where FD_INTERNAL_ERR may be returned. | |
5003 */ | |
5004 | |
5005 result = FD_OK; | |
5006 | |
5007 uart = &uart_parameters; | |
5008 status = READ_UART_REGISTER (uart, LSR); | |
5009 | |
5010 /* | |
5011 * Checks if: | |
5012 * - the TX SW Buffer is empty, | |
5013 * - the TX HW FIFO is empty (THRE), | |
5014 * - the Transmitter Shift Register is empty (TEMT). | |
5015 */ | |
5016 | |
5017 if (!(TX_BUFFER_EMPTY (uart)) || | |
5018 !(status & THRE) || | |
5019 !(status & TEMT)) | |
5020 | |
5021 result = FD_NOT_READY; | |
5022 | |
5023 return (result); | |
5024 } | |
5025 | |
5026 #if UARTFAX_CLASSIC_DTR_DCD | |
5027 /******************************************************************************* | |
5028 * | |
5029 * UAF_DTRInterruptHandler | |
5030 * | |
5031 * Purpose : This function is only used on C & D-Sample. On this platform, the | |
5032 * DTR signal is controlled with an I/O. A change of state of this | |
5033 * signal is detected with an interrupt. This function is called when | |
5034 * this interrupt occurs. | |
5035 * | |
5036 * Arguments: In : none | |
5037 * Out: none | |
5038 * | |
5039 * Returns : none | |
5040 * | |
5041 ******************************************************************************/ | |
5042 | |
5043 void | |
5044 UAF_DTRInterruptHandler (void) | |
5045 { | |
5046 t_uart *uart; | |
5047 | |
5048 uart = &uart_parameters; | |
5049 | |
5050 /* | |
5051 * Read the state of DTR and change the edge to detect the next change | |
5052 * of DTR. | |
5053 */ | |
5054 | |
5055 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
5056 | |
5057 if (uart->dtr_level) | |
5058 { | |
5059 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
5060 if (uart->flow_control_mode != fc_dtr && uart->baudrate == baudrate_value[FD_BAUD_AUTO]) | |
5061 UAF_SetComPar (UAF_UART_1, FD_BAUD_AUTO, bpc_8, sb_1, pa_none); | |
5062 } | |
5063 else | |
5064 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
5065 | |
5066 /* | |
5067 * The reading callback function has to be called. But bytes received before | |
5068 * the change of state of DTR must be copied into the RX buffer before to | |
5069 * call it. | |
5070 */ | |
5071 | |
5072 if (READ_UART_REGISTER (uart, LSR) & DR) { /* If Rx FIFO is not empty */ | |
5073 | |
5074 /* | |
5075 * The Rx FIFO will be read to fill one of the two buffers and the Rx | |
5076 * HISR will be activated. | |
5077 */ | |
5078 | |
5079 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
5080 uart->dtr_change_detected[uart->index_it] = 1; | |
5081 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
5082 read_rx_fifo (uart); | |
5083 | |
5084 } else | |
5085 (void) NU_Activate_HISR (&(uart->v24_hisr_ctrl_block)); | |
5086 | |
5087 } | |
5088 #endif /* BOARD 8 or 9 or 40 or 41 */ | |
5089 | |
5090 #ifdef SERIAL_DYNAMIC_SWITCH | |
5091 /******************************************************************************* | |
5092 * | |
5093 * UAF_Exit | |
5094 * | |
5095 * Purpose : | |
5096 * | |
5097 * Arguments: In : uartNo: Used UART. | |
5098 * Out: none | |
5099 * | |
5100 * Returns : FD_OK : Successful operation. | |
5101 * FD_NOT_SUPPORTED: Wrong UART number. | |
5102 * FD_INTERNAL_ERR : Internal problem. | |
5103 * | |
5104 ******************************************************************************/ | |
5105 | |
5106 T_FDRET | |
5107 UAF_Exit (T_fd_UartId uartNo) | |
5108 { | |
5109 t_uart *uart; | |
5110 | |
5111 /* | |
5112 * Check UART number. | |
5113 * A return is used to simplify the code. | |
5114 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
5115 * flow control is not supported. | |
5116 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
5117 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
5118 */ | |
5119 | |
5120 if (uartNo != UAF_UART_1) | |
5121 return (FD_NOT_SUPPORTED); | |
5122 | |
5123 uart = &uart_parameters; | |
5124 | |
5125 /* | |
5126 * Delete the 3 HISR actived in the RX/TX and V24 interrupt handlers. | |
5127 * A return is used to simplify the code if an error occurs. | |
5128 */ | |
5129 | |
5130 if (NU_Delete_HISR (&(uart->rx_hisr_ctrl_block)) != NU_SUCCESS) | |
5131 return (FD_INTERNAL_ERR); | |
5132 | |
5133 if (NU_Delete_HISR (&(uart->tx_hisr_ctrl_block)) != NU_SUCCESS) | |
5134 return (FD_INTERNAL_ERR); | |
5135 | |
5136 if (NU_Delete_HISR (&(uart->v24_hisr_ctrl_block)) != NU_SUCCESS) | |
5137 return (FD_INTERNAL_ERR); | |
5138 | |
5139 /* | |
5140 * Delete the HISR used to send a break. | |
5141 * A return is used to simplify the code if an error occurs. | |
5142 */ | |
5143 | |
5144 if (NU_Delete_HISR (&(uart->break_hisr_ctrl_block)) != NU_SUCCESS) | |
5145 return (FD_INTERNAL_ERR); | |
5146 | |
5147 /* | |
5148 * Disable and then delete the timer used in the break HISR | |
5149 * A return is used to simplify the code if an error occurs. | |
5150 */ | |
5151 | |
5152 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
5153 NU_DISABLE_TIMER); | |
5154 | |
5155 if (NU_Delete_Timer (&(uart->break_timer_ctrl_block)) != NU_SUCCESS) | |
5156 return (FD_INTERNAL_ERR); | |
5157 | |
5158 /* | |
5159 * Disable and then delete the timer used in the detection of the escape | |
5160 * sequence. A return is used to simplify the code if an error occurs. | |
5161 */ | |
5162 | |
5163 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
5164 NU_DISABLE_TIMER); | |
5165 | |
5166 if (NU_Delete_Timer (&(uart->guard_period_timer_ctrl_block)) != NU_SUCCESS) | |
5167 return (FD_INTERNAL_ERR); | |
5168 | |
5169 /* | |
5170 * At that point, all HISRs and Timers have been successfully deleted. | |
5171 */ | |
5172 | |
5173 return (FD_OK); | |
5174 } | |
5175 #endif /* (defined BTEMOBILE && (CHIPSET != 12)) */ | |
5176 | |
5177 |