comparison src/cs/layer1/cfile/l1_ctl.c @ 0:b6a5e36de839

src/cs: initial import from Magnetite
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 15 Jul 2018 04:39:26 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:b6a5e36de839
1 /************* Revision Controle System Header *************
2 * GSM Layer 1 software
3 * L1_CTL.C
4 *
5 * Filename l1_ctl.c
6 * Copyright 2003 (C) Texas Instruments
7 *
8 ************* Revision Controle System Header *************/
9
10 #define L1_CTL_C
11
12 #include "l1_macro.h"
13 #include "l1_confg.h"
14
15 #if (CODE_VERSION == SIMULATION)
16 #include <string.h>
17 #include "l1_types.h"
18 #include "sys_types.h"
19 #include "l1_const.h"
20 #include "l1_time.h"
21 #include "l1_signa.h"
22
23 #if TESTMODE
24 #include "l1tm_defty.h"
25 #endif
26 #if (AUDIO_TASK == 1)
27 #include "l1audio_const.h"
28 #include "l1audio_cust.h"
29 #include "l1audio_signa.h"
30 #include "l1audio_defty.h"
31 #include "l1audio_msgty.h"
32 #endif
33 #if (L1_GTT == 1)
34 #include "l1gtt_const.h"
35 #include "l1gtt_defty.h"
36 #endif
37 #if (L1_MP3 == 1)
38 #include "l1mp3_defty.h"
39 #endif
40 #if (L1_MIDI == 1)
41 #include "l1midi_defty.h"
42 #endif
43 //ADDED FOR AAC
44 #if (L1_AAC == 1)
45 #include "l1aac_defty.h"
46 #endif
47 #include "l1_defty.h"
48 #include "cust_os.h"
49 #include "l1_msgty.h"
50 #include "l1_varex.h"
51 #include "l1_proto.h"
52 #include "l1_mftab.h"
53 #include "l1_tabs.h"
54 #include "l1_ver.h"
55 #if L2_L3_SIMUL
56 #include "hw_debug.h"
57 #endif
58
59 #if TESTMODE
60 #include "l1tm_msgty.h"
61 #include "l1tm_varex.h"
62 #endif
63
64 #include "l1_ctl.h"
65
66 #ifdef _INLINE
67 #define INLINE static inline // Inline functions when -v option is set
68 #else // when the compiler is ivoked.
69 #define INLINE
70 #endif
71 #else
72 #include <string.h>
73 #include "l1_types.h"
74 #include "sys_types.h"
75 #include "l1_const.h"
76 #include "l1_time.h"
77 #include "l1_signa.h"
78
79 #if (RF_FAM == 61)
80 #include "tpudrv61.h"
81 #endif
82
83 #if TESTMODE
84 #include "l1tm_defty.h"
85 #endif
86 #if (AUDIO_TASK == 1)
87 #include "l1audio_const.h"
88 #include "l1audio_cust.h"
89 #include "l1audio_defty.h"
90 #endif
91 #if (L1_GTT == 1)
92 #include "l1gtt_const.h"
93 #include "l1gtt_defty.h"
94 #endif
95 #if (L1_MP3 == 1)
96 #include "l1mp3_defty.h"
97 #endif
98 #if (L1_MIDI == 1)
99 #include "l1midi_defty.h"
100 #endif
101 //ADDED FOR AAC
102 #if (L1_AAC == 1)
103 #include "l1aac_defty.h"
104 #endif
105 #include "l1_defty.h"
106 #include "cust_os.h"
107 #include "l1_msgty.h"
108 #include "l1_varex.h"
109 #include "l1_proto.h"
110 #include "l1_tabs.h"
111 #include "l1_ctl.h"
112 #if L2_L3_SIMUL
113 #include "hw_debug.h"
114 #endif
115
116 #if TESTMODE
117 #include "l1tm_msgty.h"
118 #include "l1tm_varex.h"
119 #endif
120 #ifdef _INLINE
121 #define INLINE static inline // Inline functions when -v option is set
122 #else // when the compiler is ivoked.
123 #define INLINE
124 #endif
125 #endif
126
127 #if(RF_FAM == 61)
128 #include "l1_rf61.h"
129 #endif
130
131 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4)
132 #include "l1_trace.h"
133 #endif
134
135 extern SYS_UWORD16 Convert_l1_radio_freq(SYS_UWORD16 radio_freq);
136 #if(RF_FAM == 61)
137 extern WORD16 drp_gain_correction(UWORD16 arfcn, UWORD8 lna_off, UWORD16 agc);
138 #endif
139
140 #define LNA_OFF 1
141 #define LNA_ON 0
142
143
144
145
146 /************************************/
147 /* Automatic frequency compensation */
148 /************************************/
149
150 /*
151 * FreeCalypso TCS211 reconstruction: the following 3 functions
152 * have been added in the LoCosto version of this module.
153 * We have conditioned them out in order to match the original
154 * TCS211 object; their uses have been conditioned out as well.
155 *
156 * These functions will need to re-enabled when their uses are
157 * re-enabled.
158 */
159
160 #if 0
161
162 #define L1_WORD16_POS_MAX (32767)
163 #define L1_WORD16_NEG_MAX (-32768)
164 #define L1_WORD32_POS_MAX ((unsigned long)(1<<31)-1)
165 #define L1_WORD32_NEG_MAX (-(unsigned long)(1<<31))
166
167 INLINE WORD16 Add_Sat_sign_16b(WORD16 val1, WORD16 val2)
168 {
169 WORD32 temp;
170 WORD16 result;
171
172 temp = (WORD32)((WORD32)val1 + (WORD32)val2);
173 if(temp > L1_WORD16_POS_MAX)
174 {
175 temp = L1_WORD16_POS_MAX;
176 }
177 if(temp < L1_WORD16_NEG_MAX)
178 {
179 temp = L1_WORD16_NEG_MAX;
180 }
181 result = (WORD16)((temp)&(0x0000FFFF));
182 return(result);
183 }
184
185 INLINE WORD32 Add_Sat_sign_32b(WORD32 val1, WORD32 val2)
186 {
187 WORD32 temp_high_high;
188 UWORD32 temp_low_low;
189 UWORD16 carry;
190 WORD32 result;
191 WORD16 high_val1, high_val2;
192 UWORD16 low_val1, low_val2;
193
194 high_val1 = (WORD16)(val1>>16);
195 high_val2 = (WORD16)(val2>>16);
196 low_val1 = (UWORD16)(val1&0x0000FFFF);
197 low_val2 = (UWORD16)(val2&0x0000FFFF);
198
199 temp_high_high = (WORD32)high_val1 + (WORD32)high_val2;
200 temp_low_low = (UWORD32)low_val1 + (UWORD32)low_val2;
201 carry = (UWORD16)(temp_low_low >> 16);
202 temp_high_high = temp_high_high + (UWORD32)(carry);
203
204
205 result = val1 + val2;
206 if(temp_high_high > L1_WORD16_POS_MAX)
207 {
208 result = L1_WORD32_POS_MAX;
209 }
210 if(temp_high_high < L1_WORD16_NEG_MAX)
211 {
212 result = L1_WORD32_NEG_MAX;
213 }
214
215 return(result);
216 }
217
218 INLINE WORD32 Sat_Mult_20sign_16unsign(WORD32 val1, UWORD32 val2)
219 {
220 WORD32 result;
221
222 result = val1 * val2;
223 if(val1>0) /* val2 is > 0*/
224 {
225 if(result < 0) /* overflow */
226 {
227 result = L1_WORD32_POS_MAX;
228 }
229 }
230 if(val1<0) /* val2 is > 0*/
231 {
232 if(result > 0) /* overflow */
233 {
234 result = L1_WORD32_NEG_MAX;
235 }
236 }
237 return(result);
238 }
239 #endif
240
241 INLINE WORD32 Add_40b( WORD32 guard1guard2, WORD32 lvar1, WORD32 lvar2, WORD16 *guardout )
242 {
243 WORD32 result, temp, carry, Lvar1, Lvar2;
244 WORD16 guard1,guard2;
245
246 guard1=(WORD16) ((WORD32) guard1guard2>>16);
247 guard2=(WORD16) guard1guard2;
248
249 /* lvar1 and lvar2 are both 48 bits variables */
250 /* We 1st add the low parts of lvar1 and lvar2 and we give */
251 /* a 32 bits result and a carry if needed */
252 Lvar1 = (UWORD16)lvar1;
253 Lvar2 = (UWORD16)lvar2;
254
255 temp = Lvar1 + Lvar2;
256
257 carry = temp >> 16;
258
259 result = temp & 0x0000ffffL;
260
261 /* We now add the two high parts of var1 and var2 (scaled */
262 /* to a 16 bits format) and carry (if any) and we give a */
263 /* 48 bits results. */
264 Lvar1 = (UWORD32)lvar1 >> 16;
265 Lvar2 = (UWORD32)lvar2 >> 16;
266
267 temp = Lvar1 + Lvar2 + carry;
268
269 carry = (UWORD32)temp >> 16;
270
271 temp = (UWORD32)temp << 16;
272
273 result = result | temp;
274
275 temp = guard1 + guard2 + carry;
276
277 *guardout = (WORD16)temp;
278
279 return( result );
280 }
281
282
283 INLINE WORD32 Mult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout)
284 {
285 WORD32 mult,guard1guard2;
286 WORD32 aux1;
287 UWORD32 aux2;
288 WORD16 neg_flag=0;
289 WORD32 var1_low_nosign,var2_nosign;
290
291 if (var2<0)
292 {
293 var2=-var2;
294 neg_flag=1;
295 }
296
297 /*aux1 = AccHigh(var1)*var2 */
298 aux1 = (WORD32)(var1>>16) * (WORD32)var2;
299 /* 16 bits * 16 bits -> 32 bits result */
300
301 /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */
302 /* Performs the sign suppression of the words */
303 var1_low_nosign = (UWORD16)var1;
304 var2_nosign = (UWORD16) var2;
305
306 aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign;
307
308 /*Shift aux1=F48 of 16 bit left */
309 guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/
310 /*guard2=0x0000 */
311 aux1=aux1<<16;
312
313
314 /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */
315 /* aux1 and aux2 are both 48 bits variables */
316 /* We first add the low pats of aux1 and aux2 and we give*/
317 /* a 32 bits result and a carry if needed */
318 mult=Add_40b(guard1guard2,aux1,aux2,guardout );
319
320 if (neg_flag)
321 {
322 mult=-mult;
323 if (*guardout!=0)
324 *guardout=-(*guardout)-1;
325 else
326 *guardout=-1;
327 }
328
329 return(mult);
330 }
331
332
333 /***********************************************************************/
334 /* This function allows to multiply a WORD32 and a WORD16, both POSITIVE, */
335 /* variables. Result is WORD32. */
336 /***********************************************************************/
337 INLINE WORD32 UMult_40b(WORD32 var1, WORD16 var2, WORD16 *guardout)
338 {
339 WORD32 mult,guard1guard2;
340 UWORD32 aux1,aux2;
341 WORD32 var1_high_nosign,var1_low_nosign,var2_nosign;
342
343
344 /*aux1 = AccHigh(var1)*var2 (unsigned multiplication) */
345 /* Performs the sign suppression of the words */
346 var1_high_nosign = (UWORD32)var1>>16;
347 var2_nosign = (UWORD16) var2;
348
349 aux1 = (UWORD32)var1_high_nosign * (UWORD32)var2_nosign;
350
351 /*aux2 = AccLow(var1)*var2 (unsigned multiplication) */
352 /* Performs the sign suppression of the words */
353 var1_low_nosign = (WORD32)((UWORD16)var1);
354
355 aux2 = (UWORD32)var1_low_nosign * (UWORD32)var2_nosign;
356
357 /*Shift aux1=F48 of 16 bit left */
358 guard1guard2=aux1&0xFFFF0000L;/*guard1=(WORD16)(aux1>>16)*/
359 /*guard2=0x0000 */
360 aux1=aux1<<16;
361
362
363 /* ((var1_high*var2)<<16) +(var1_low*var2) = aux1 + aux2 */
364 mult=Add_40b(guard1guard2,aux1,aux2,guardout);
365
366 return(mult);
367 }
368
369
370 /*-------------------------------------------------------*/
371 /* l1ctl_afc() */
372 /*-------------------------------------------------------*/
373 /* Parameters : */
374 /* Return : */
375 /* Functionality : */
376 /*-------------------------------------------------------*/
377 #if (VCXO_ALGO == 0)
378 WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq)
379 #else
380 WORD16 l1ctl_afc (UWORD8 phase, UWORD32 *frame_count, WORD16 angle, WORD32 snr, UWORD16 radio_freq, UWORD32 l1_mode)
381 #endif
382 {
383 /*************************/
384 /* Variables declaration */
385 /*************************/
386 WORD16 i=0;
387 UWORD32 denom; /* F12.20 */
388 WORD32 var_32,num,Phi_32=0,var1,var2,guard1guard2;
389 static UWORD32 P=C_cov_start; /* F12.20 */
390 static WORD32 Psi=0; /* F13.19 */
391 static WORD16 Psi_quant[C_N_del+1]; /* F13.3 */
392 WORD16 var_16;
393 WORD16 Phi=0; /* F1.15 */
394 WORD16 quotient,guard1,guard2,guardout;
395 UWORD32 LGuard;
396 WORD16 denomH,denomH_3msb;
397 UWORD32 K=0; /* algo 1 */
398
399 static WORD16 old_Psi_quant[C_N_del+1];
400 static WORD32 old_Psi=0;
401
402 #if (VCXO_ALGO == 1)
403 static WORD32 psi_past[C_N_del+1]; /* F13.19 */
404 static WORD16 psi_quant; /* F13.3 */
405 static WORD16 quant_avg;
406 static UWORD32 M_Count;
407 static WORD32 psi_avg[C_PSI_AVG_SIZE_D+1]; // Data history array
408 static WORD16 B_Count; // Counter for consecutive SNR below C_thr_snr
409 #if 0 /* LoCosto added var */
410 UWORD16 L = 10433; // Gain algo2
411 #endif
412 static UWORD16 first_avg;
413 static UWORD16 good_snr;
414
415 /* to be able to keep in memory the old AFC variables in case of spurious
416 FB detection */
417 static WORD32 old_psi_past[C_N_del+1]; /* F13.19 */
418 static WORD16 old_psi_quant; /* F13.3 */
419
420 #endif
421 #if (L1_FF_MULTIBAND == 1)
422 UWORD8 physical_band_id;
423 #endif
424
425 #if 0 /* LoCosto added var init */
426 //Set AFC close loop gain for ALGO_AFC_LQG_PREDICTOR.
427 if(l1_mode==I_MODE)//MS is in Idle mode
428 L = 41732; //F0.20 L=41732/2^20 = 0.04
429 else //All other modes than Idle
430 L = 10433; //F0.20 L=10433/2^20 = 0.01
431 #endif
432
433 #if (L1_FF_MULTIBAND == 0)
434
435 if (((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US)) &&
436 #if (VCXO_ALGO == 1)
437 ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)))
438 #else
439 (phase != AFC_INIT))
440 #endif
441 {
442 if (radio_freq >= l1_config.std.first_radio_freq_band2)
443 {
444 angle = (angle + 1) >> 1;
445 }
446 }
447
448 else if (((l1_config.std.id == DCS1800) || (l1_config.std.id == PCS1900)) &&
449 #if (VCXO_ALGO == 1)
450 ((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX)))
451 #else
452 (phase != AFC_INIT))
453 #endif
454 {
455 angle = (angle + 1) >> 1;
456 }
457
458 #else // L1_FF_MULTIBAND = 1 below
459
460 #if (VCXO_ALGO == 1)
461 if((phase != AFC_INIT_CENTER) || (phase != AFC_INIT_MIN) || (phase != AFC_INIT_MAX))
462 #else
463 if(phase != AFC_INIT)
464 #endif
465 {
466 physical_band_id = l1_multiband_radio_freq_convert_into_physical_band_id(radio_freq);
467
468 if( (multiband_rf[physical_band_id].gsm_band_identifier == DCS1800) || (multiband_rf[physical_band_id].gsm_band_identifier == PCS1900))
469 {
470 angle = (angle + 1) >> 1;
471 }
472 }
473
474 #endif // #if (L1_FF_MULTIBAND == 1) else
475
476
477
478 /*********************************/
479 /* frequency offset compensation */
480 /*********************************/
481 /* Initialization */
482
483 #if (VCXO_ALGO == 1)
484 switch (l1_config.params.afc_algo)
485 {
486
487 /* algo1 only: */
488 case ALGO_AFC_KALMAN:
489 {
490 #endif
491 #if (VCXO_ALGO == 0)
492 if (phase==AFC_INIT)
493 {
494 // WARNING
495 // In this case, "angle" variable contains EEPROM_AFC initialization value
496 // directly loaded from EEPROM, and "snr" variable is not meaningful.
497 /* Static variables initialisation */
498 P=C_cov_start;
499 Psi=0;
500 if (angle>C_max_step)
501 Psi_quant[C_N_del]=C_max_step;
502 else
503 if(angle<C_min_step)
504 Psi_quant[C_N_del]=C_min_step;
505 else Psi_quant[C_N_del]=angle;
506
507 Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */
508 } /* end AFC_INIT*/
509 else
510 {
511 if (phase==AFC_OPEN_LOOP)
512 {
513 /* delay line for Psi_quant values */
514 for (i=1;i<=C_N_del;i++)
515 Psi_quant[i-1]=Psi_quant[i];
516
517 var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4;
518 /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */
519
520 #if(RF_FAM == 61)
521 /* In order to implement the NINT function for a F16.0, we check */
522 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */
523 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
524 var_16=quotient*4;
525 #else
526 /* In order to implement the NINT function for a F16.0, we check */
527 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */
528 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
529 var_16=quotient*8;
530 #endif
531 if (var_16>C_max_step)
532 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step);
533 else
534 if(var_16<C_min_step)
535 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step);
536 else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */
537
538 Psi=l1_config.params.psi_st*Psi_quant[C_N_del]; /* F0.16 * F13.3 = F13.19 */
539 }/*end if AFC_OPEN_LOOP*/
540
541 else
542 {
543 /* delay line for Psi_quant values */
544 for (i=1;i<=C_N_del;i++)
545 Psi_quant[i-1]=Psi_quant[i];
546
547 /********************/
548 /* Filter algorithm */
549 /********************/
550
551 /* Covariance error is increased of C_Q */
552 P=P+(*frame_count)*C_Q;
553
554 /* Clipping of P */
555 if (P>C_thr_P) P=C_thr_P;
556
557 if (snr>=C_thr_snr)
558 {
559 /* Clipping of error angle */
560 if (angle>C_thr_phi)
561 angle=C_thr_phi;
562 if (angle<-C_thr_phi)
563 angle=-C_thr_phi;
564
565 /* Kalman gain */
566 /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */
567 /*C_a0_kalman=0.01 */
568 /*C_g_kalman =0.05 */
569 num=(C_g_kalman/snr)+P+C_a0_kalman;
570 /* (F2.30 / F6.10) = F 12.20 */
571
572 /* denom = P << 19 = F 1.39 */
573 /* extension of denom=P to a 40 bits variable */
574 /* denom (F12.20) << 16 = F 4.36 */
575 guard1=(WORD16)((WORD32)P>>16);
576 /* denom = P<<16 = (F4.36) << 3 = F 1.39 */
577 denomH=(UWORD16)P;
578 /* Low part of denom is equal to 0, because P has been 16 */
579 /* bits left shifted previously. */
580 denomH_3msb=(denomH>>13)&0x0007;
581 guard1=(guard1<<3)|denomH_3msb;
582 denomH<<=3;
583 denom=(UWORD32)denomH<<16;
584 /* num + guard1 are a 40 bits representation of P */
585 /* In order to compute P(F1.39)/num, we sample P in guard1 */
586 /* (scaled to a 32 bits number) and num (32 bits number) */
587 /* K = ((guard1<<24)/num)<<8 + (denom/num) */
588 var1=(WORD32)guard1<<24;
589 var1=var1/num;
590 var1=(WORD32)var1<<8;
591 /* var2 is an unsigned variable, var1 contains signed guard*/
592 /* bits. */
593 var2=denom/num;
594 K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */
595 /* F13.19 << 1 = F12.20 */
596
597 /* Clipping of the Kalman gain */
598 if (K>=C_thr_K)
599 K=C_thr_K;
600
601 /*******************************************************/
602 /* P=(1-K)*P = 0.8 * 0.5 at maximum */
603 /*******************************************************/
604 /* Perform a positive variable F12.20 multiplication by*/
605 /* positive variable F12.20 */
606 var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */
607 guard1=0; /* positive variable */
608 var1=UMult_40b(P,var_16,&guard1);
609 var_16=(WORD16)((1048576L-K)>>16);
610 /* acchigh(1-K) = F12.20 */
611 var2=P*var_16; /* var2 = 0x80000 * 0xc */
612 /* at maximum, so result */
613 /* is 32 bits WORD32 and */
614 /* equal 0x600000 */
615 /* extension of var2 to a 40 bits variable : var2<<16 */
616 guard2=(WORD16)((WORD32)var2>>16);
617 guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL);
618 var2=var2<<16;
619 var_32=Add_40b(guard1guard2,var1,var2,&guardout);
620 /* var_32 (F8.40) >> 16 = F8.24 */
621 LGuard=(WORD32)guardout<<16;
622 var1=(UWORD32)var_32>>16;
623 /* var_32 >> 4 = F12.20 */
624 P=(var1+LGuard)>>4;
625
626 Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout);
627 /* F0.32 * F13.3 = F5.35 */
628 LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */
629 /* F13.19 */
630 var1=(UWORD32)Phi_32>>16;
631 Phi_32=Psi-(LGuard+var1); /* F13.19 */
632
633 /*Phi=angle-Phi_32*/
634 Phi_32=((WORD32)angle<<4)-Phi_32;
635 /* F1.15 * 4 = F13.19 */
636 Phi=(WORD16)(Phi_32>>4); /* F17.15 */
637 /*var1=K*Phi F12.20 * F1.15 = 13.35 */
638 guard1=0;
639 var1=Mult_40b(K,Phi,&guard1);
640 /* var1 (F13.35) >> 16 */
641 /* F13.19 */
642 LGuard=(WORD32)guard1<<16;
643 var1=(UWORD32)var1>>16;
644 Psi+=var1+LGuard;
645 }/*if snr */
646
647 var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout);
648 /* F13.19 * C = F13.19 */
649
650 #if(RF_FAM == 61)
651 /* In order to implement the NINT function for a F13.3, we check */
652 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */
653 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
654 var_16=quotient*4;
655 #else
656 /* In order to implement the NINT function for a F13.3, we check */
657 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */
658 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
659 var_16=quotient*8;
660 #endif
661 if (var_16>C_max_step)
662 Psi_quant[C_N_del]=C_max_step;
663 else
664 if(var_16<C_min_step)
665 Psi_quant[C_N_del]=C_min_step;
666 else Psi_quant[C_N_del]=var_16; /* F13.3 */
667
668 }/*end AFC_CLOSE_LOOP*/
669 } /* end else AFC_INIT*/
670
671 *frame_count=0;
672 return(Psi_quant[C_N_del]>>3); /* F16.0 */
673
674 #else
675
676 } /* end case algo 1 */
677
678
679 /* algo2 + init + estimator/predictor */
680 case ALGO_AFC_LQG_PREDICTOR:
681 {
682 /******************************************************************/
683 /* (New) VCXO Algorithm */
684 /******************************************************************/
685
686 switch (phase) {
687 case AFC_INIT_CENTER :
688 case AFC_INIT_MAX :
689 case AFC_INIT_MIN :
690 quant_avg = 0;
691 M_Count = 0;
692 #if 0 /* present in LoCosto but not in TCS211 */
693 for (i = 0; i <= C_PSI_AVG_SIZE_D ; i++) //omaps00090550
694 psi_avg[i] = 0;
695 #endif
696 first_avg = 1;
697 good_snr = 0;
698
699 // DAC search algorithm is as follows - up to 12 attempts are made
700 // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min ->
701 // The first four attempts are made on DAC_center
702 // The next four attempts are made on DAC_max
703 // The last four attempts are made on DAC_min
704 // There are statistical reasons for trying four times
705
706 switch (phase)
707 {
708 case AFC_INIT_CENTER:
709 psi_quant = l1_config.params.afc_dac_center;
710 break;
711 case AFC_INIT_MAX:
712 psi_quant = l1_config.params.afc_dac_max;
713 break;
714 case AFC_INIT_MIN:
715 psi_quant = l1_config.params.afc_dac_min;
716 break;
717 default :
718 break;
719 }
720
721 /* F0.32 * F13.3 = F5.35 */
722 psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout);
723 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */
724 psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16);
725
726 break;
727
728 case AFC_OPEN_LOOP :
729 {
730 /* VCXO changes for spurious FB detection */
731 if (l1s.spurious_fb_detected == TRUE)
732 {
733 psi_quant = old_psi_quant;
734
735 for(i=0;i<C_N_del+1;i++)
736 psi_past[i] = old_psi_past[i];
737
738 /* reset the spurious_fb_detected_flag */
739 l1s.spurious_fb_detected = FALSE;
740 } /* end of spuriousFB detected */
741
742 /* save in memory the old AFC related values */
743 old_psi_quant = psi_quant;
744
745 for(i=0;i<C_N_del+1;i++)
746 old_psi_past[i] = psi_past[i];
747
748 /* delay line for psi_quant values */
749 for (i = 1; i <= C_N_del; i++)
750 psi_past[i-1] = psi_past[i];
751
752 /* (F16.0 * F1.15 = F17.15) << 4 = F13.19 */
753 var_32 = (WORD32) ((WORD32)angle * l1_config.params.psi_sta_inv) << 4;
754
755 #if(RF_FAM == 61)
756 /* In order to implement the NINT function for a F16.0,*/
757 /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */
758 var_16 = (WORD16)
759 ((WORD32) (((WORD32)(var_32 + (1<<17))) / (1<<18)));
760 var_16 = var_16 * 4;
761 #else
762 /* In order to implement the NINT function for a F16.0,*/
763 /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */
764 var_16 = (WORD16)
765 ((WORD32) (((WORD32)(var_32 + (1<<18))) / (1<<19)));
766 var_16 = var_16 * 8;
767 #endif
768
769 #if 0 /* LoCosto code with saturation */
770 if (var_16 > C_max_step)
771 psi_quant = Add_Sat_sign_16b(psi_quant,C_max_step);
772 else if (var_16 < C_min_step)
773 psi_quant = Add_Sat_sign_16b(psi_quant,C_min_step);
774 else psi_quant = Add_Sat_sign_16b(psi_quant,var_16); /* F13.3 */
775 #else /* matching TCS211 */
776 if (var_16 > C_max_step)
777 psi_quant += C_max_step;
778 else if (var_16 < C_min_step)
779 psi_quant += C_min_step;
780 else psi_quant += var_16; /* F13.3 */
781 #endif
782
783 /* F0.32 * F13.3 = F5.35 */
784 psi_past[C_N_del]=Mult_40b(l1_config.params.psi_st_32,psi_quant, &guardout);
785 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */
786 psi_past[C_N_del]=((WORD32)guardout<<16)+((UWORD32)psi_past[C_N_del]>>16);
787
788 }
789 break;
790
791 case AFC_CLOSED_LOOP :
792
793 /* delay line for psi_quant values */
794 for (i = 1; i <= C_N_del; i++)
795 psi_past[i-1] = psi_past[i];
796
797 /************************************/
798 /* Estimation */
799 /************************************/
800 if ( (l1_config.params.rgap_algo != 0) &&
801 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
802 #if L1_GPRS
803 || l1_mode==PACKET_TRANSFER_MODE
804 #endif
805 ))
806 {
807
808 M_Count += *frame_count;
809 if (snr >= l1_config.params.afc_snr_thr) {
810 // Accumulate average over N TDMA frames
811 psi_avg[0] += psi_past[C_N_del];
812 // Count number of good snr's within window_avg_size chunks
813 good_snr++;
814 }
815 // M_Count >= M ?
816 if (M_Count >= l1_config.params.afc_win_avg_size_M) {
817 // M_Count counts how far we have reached in the window_avg_size blocks
818
819 // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements
820 if (good_snr > 0)
821 psi_avg[0] /= good_snr;
822
823 // We now have an estimation over window_avg_size TDMA frames in psi_avg[0]
824 if (first_avg == 1) {
825 first_avg = 0;
826 // Use first estimation as best guess for the other avg values
827 // This is used both at initialisation and when returning from reception gap
828 for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++)
829 psi_avg[i] = psi_avg[0];
830 }
831
832 // Estimation 1st order
833 // Use biggest window to reduce noise effects signal in psi values
834 // NOTE: Due to performance issues division by MSIZE is in predictor
835 if (l1_config.params.rgap_algo >= 1) {
836 quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]);
837 }
838
839 for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--)
840 psi_avg[i+1] = psi_avg[i];
841 psi_avg[0] = 0;
842 M_Count = 0;
843 good_snr = 0;
844 }
845
846 } else {
847 // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset!
848 first_avg = 1;
849 M_Count = 0;
850 good_snr = 0;
851 psi_avg[0] = 0;
852 }
853
854 if (snr >= l1_config.params.afc_snr_thr) {
855 /********************/
856 /* Filter algorithm */
857 /********************/
858
859 /* No prediction during normal operation */
860 B_Count= 0;
861
862 /* Clip error angle */
863 if (angle > C_thr_phi)
864 angle = C_thr_phi;
865 if (angle < -C_thr_phi)
866 angle = -C_thr_phi;
867
868 Phi_32 = psi_past[C_N_del] - psi_past[0]; /* F13.19 */
869 /* Phi = angle - Phi_32*/
870 Phi_32 = ((WORD32) angle << 4) - Phi_32;
871 /* F1.15 * 4 = F13.19 */
872 #if 0 /* LoCosto code */
873 Phi = (WORD16)((WORD32)((WORD32)(Phi_32 + (1<<3)))/ (1<<4)); /* F17.15 */
874 #else /* TCS211 reconstruction */
875 Phi = Phi_32 >> 4;
876 #endif
877 /* (F0.20 * F1.15) >> 16 = F13.19 */
878 #if 0 /* LoCosto code with saturation and L */
879 var_32 = (L * Phi + (1<<15)) >> 16;
880 psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],var_32);
881 #else /* matching TCS211 */
882 psi_past[C_N_del] += (10433 * Phi) >> 16;
883 #endif
884
885 }
886 else
887 {
888 /************************************/
889 /* Prediction */
890 /************************************/
891
892 // Only predict in dedicated mode
893 // NO prediction in idle mode
894 // l1a_l1s_com.dedic_set.SignalCode = NULL
895 if ( (l1_config.params.rgap_algo != 0) &&
896 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
897 #if L1_GPRS
898 || l1_mode==PACKET_TRANSFER_MODE
899 #endif
900 ))
901 {
902 /* Prediction of psi during reception gaps */
903 B_Count
904 += *frame_count;
905
906 /* Predict psi ONLY when we have sufficient measurements available */
907 /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/
908
909 // Was the consecutive bad SNRs threshold value exceeded?
910 if (B_Count>= l1_config.params.rgap_bad_snr_count_B) {
911
912 // Predict with 0th order estimation is the default
913
914 // Predict with 1st order estimation
915 if (l1_config.params.rgap_algo >= 1)
916 {
917 #if 0 /* LoCosto code with saturation */
918 psi_past[C_N_del] = Add_Sat_sign_32b(psi_past[C_N_del],
919 ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE))
920 );
921 #else /* matching TCS211 */
922 psi_past[C_N_del] +=
923 ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE));
924 #endif
925 }
926
927 B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B;
928
929 // Indicate by raising first_avg flag that a reception gap has occurred
930 // I.e. the psi_avg table must be reinitialised after leaving reception gap
931 first_avg = 1;
932
933 // Counters in estimation part must also be reset
934 M_Count = 0;
935 good_snr = 0;
936 psi_avg[0] = 0;
937 }
938 }
939 }
940
941 /* Quantize psi value */
942
943 /* F0.19 * 16.0 = F16.19 */
944 #if 0 /* LoCosto code */
945 var_32 = Sat_Mult_20sign_16unsign(psi_past[C_N_del],l1_config.params.psi_st_inv);
946 #else /* TCS211 reconstruction */
947 var_32 = psi_past[C_N_del] * l1_config.params.psi_st_inv;
948 #endif
949
950 #if(RF_FAM == 61)
951 /* In order to implement the NINT function for a F13.3,*/
952 /*we check if var_32 + 0.5*2**18 is a multiple of 2**18 */
953 var_16 = (WORD16)
954 ((WORD32)((WORD32)(var_32 + (1<<17))) / (1<<18));
955 var_16 = var_16 * 4;
956 #else
957 /* In order to implement the NINT function for a F13.3,*/
958 /*we check if var_32 + 0.5*2**19 is a multiple of 2**19 */
959 var_16 = (WORD16)
960 ((WORD32)((WORD32)(var_32 + (1<<18))) / (1<<19));
961 var_16 = var_16 * 8;
962 #endif
963 if (var_16 > C_max_step)
964 psi_quant = C_max_step;
965 else if (var_16 < C_min_step)
966 psi_quant = C_min_step;
967 else
968 psi_quant = var_16; /* F13.3 */
969 break;
970 } // switch phase
971
972 *frame_count = 0;
973
974 return (psi_quant >> 3); /* F16.0 */
975 } /* end case algo 2 */
976
977 /* algo1 + init + estimator/predictor */
978 case ALGO_AFC_KALMAN_PREDICTOR:
979 {
980 if ((phase==AFC_INIT_CENTER) || (phase==AFC_INIT_MAX) || (phase==AFC_INIT_MIN))
981 {
982 // WARNING
983 // In this case, "angle" variable contains EEPROM_AFC initialization value
984 // directly loaded from EEPROM, and "snr" variable is not meaningful.
985 /* Static variables initialisation */
986
987 quant_avg = 0;
988 M_Count = 0;
989 #if 0 /* present in LoCosto but not in TCS211 */
990 for (i = 0; i <=C_PSI_AVG_SIZE_D ; i++) //omaps00090550
991 psi_avg[i] = 0;
992 #endif
993 first_avg = 1;
994 good_snr = 0;
995
996 // DAC search algorithm is as follows - up to 12 attempts are made
997 // DAC search algorithm uses three values : DAC_center -> DAC_max -> DAC_min ->
998 // The first four attempts are made on DAC_center
999 // The next four attempts are made on DAC_max
1000 // The last four attempts are made on DAC_min
1001 // There are statistical reasons for trying four times
1002
1003 switch (phase) {
1004 case AFC_INIT_CENTER:
1005 Psi_quant[C_N_del] = l1_config.params.afc_dac_center;
1006 break;
1007 case AFC_INIT_MAX:
1008 Psi_quant[C_N_del] = l1_config.params.afc_dac_max;
1009 break;
1010 case AFC_INIT_MIN:
1011 Psi_quant[C_N_del] = l1_config.params.afc_dac_min;
1012 break;
1013 default :
1014 break;
1015 }
1016
1017 P=C_cov_start;
1018 Psi=0;
1019 if (angle>C_max_step)
1020 Psi_quant[C_N_del]=C_max_step;
1021 else
1022 if(angle<C_min_step)
1023 Psi_quant[C_N_del]=C_min_step;
1024 else Psi_quant[C_N_del]=angle;
1025
1026 /* F0.32 * F13.3 = F5.35 */
1027 Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout);
1028 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */
1029 Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16);
1030
1031 } /* end AFC_INIT*/
1032 else
1033 {
1034 if (phase==AFC_OPEN_LOOP)
1035 {
1036 /* relaod last good values in the ALGO */
1037 if (l1s.spurious_fb_detected == TRUE)
1038 {
1039 for(i=0;i<C_N_del+1;i++)
1040 Psi_quant[i] = old_Psi_quant[i];
1041
1042 Psi = old_Psi;
1043 l1s.spurious_fb_detected = FALSE;
1044 }
1045
1046 /* Save the old values in memory */
1047 for(i=0;i<C_N_del+1;i++)
1048 old_Psi_quant[i] = Psi_quant[i];
1049 old_Psi = Psi;
1050
1051 /* delay line for Psi_quant values */
1052 for (i=1;i<=C_N_del;i++)
1053 Psi_quant[i-1]=Psi_quant[i];
1054
1055 var_32=(WORD32)((WORD32)angle*l1_config.params.psi_sta_inv)<<4;
1056 /*(F16.0 * F1.15 = F17.15) << 4 = F13.19 */
1057
1058 #if(RF_FAM == 61)
1059 /* In order to implement the NINT function for a F16.0, we check */
1060 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */
1061 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
1062 var_16=quotient*4;
1063 #else
1064 /* In order to implement the NINT function for a F16.0, we check */
1065 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */
1066 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
1067 var_16=quotient*8;
1068 #endif
1069
1070 #if 0 /* LoCosto code with saturation */
1071 if (var_16>C_max_step)
1072 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_max_step);
1073 else if (var_16<C_min_step)
1074 Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],C_min_step);
1075 else Psi_quant[C_N_del]=Add_Sat_sign_16b(Psi_quant[C_N_del],var_16); /* F13.3 */
1076 #else /* matching TCS211 */
1077 if (var_16>C_max_step)
1078 Psi_quant[C_N_del] += C_max_step;
1079 else if (var_16<C_min_step)
1080 Psi_quant[C_N_del] += C_min_step;
1081 else Psi_quant[C_N_del] += var_16; /* F13.3 */
1082 #endif
1083
1084 /* F0.32 * F13.3 = F5.35 */
1085 Psi=Mult_40b(l1_config.params.psi_st_32,Psi_quant[C_N_del], &guardout);
1086 /* (F13.3<<16 )+(F5.35>>16) = F13.19 */
1087 Psi=((WORD32)guardout<<16)+((UWORD32)Psi>>16);
1088
1089 }/*end if AFC_OPEN_LOOP*/
1090 else
1091 {
1092
1093 /* delay line for Psi_quant values */
1094 for (i=1;i<=C_N_del;i++)
1095 Psi_quant[i-1]=Psi_quant[i];
1096
1097 /************************************/
1098 /* Estimation */
1099 /************************************/
1100 if ( (l1_config.params.rgap_algo != 0) &&
1101 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
1102 #if L1_GPRS
1103 || l1_mode==PACKET_TRANSFER_MODE
1104 #endif
1105 ))
1106 {
1107
1108 M_Count += *frame_count;
1109 if (snr >= l1_config.params.afc_snr_thr) {
1110 // Accumulate average over N TDMA frames
1111 psi_avg[0] += psi_past[C_N_del];
1112 // Count number of good snr's within window_avg_size chunks
1113 good_snr++;
1114 }
1115
1116 // M_Count >= M ?
1117 if (M_Count >= l1_config.params.afc_win_avg_size_M) {
1118 // M_Count counts how far we have reached in the window_avg_size blocks
1119
1120 // Scale estimate relative to good snr - Don't divide by zero in case of bad measurements
1121 if (good_snr > 0)
1122 psi_avg[0] /= good_snr;
1123
1124 // We now have an estimation over window_avg_size TDMA frames in psi_avg[0]
1125 if (first_avg == 1) {
1126 first_avg = 0;
1127 // Use first estimation as best guess for the other avg values
1128 // This is used both at initialisation and when returning from reception gap
1129 for (i = 1; i <= C_PSI_AVG_SIZE_D ; i++)
1130 psi_avg[i] = psi_avg[0];
1131 }
1132
1133 // Estimation 1st order
1134 // Use biggest window to reduce noise effects signal in psi values
1135 // NOTE: Due to performance issues division by MSIZE is in predictor
1136 if (l1_config.params.rgap_algo >= 1) {
1137 quant_avg = (WORD16) (psi_avg[0] - psi_avg[C_PSI_AVG_SIZE_D]);
1138 }
1139
1140 for (i = C_PSI_AVG_SIZE_D - 1; i >= 0 ; i--)
1141 psi_avg[i+1] = psi_avg[i];
1142 psi_avg[0] = 0;
1143 M_Count = 0;
1144 good_snr = 0;
1145 }
1146
1147 } else {
1148 // No estmation when in Idle mode (DEEP or BIG SLEEP) => Reset!
1149 first_avg = 1;
1150 M_Count = 0;
1151 good_snr = 0;
1152 psi_avg[0] = 0;
1153 }
1154
1155 /********************/
1156 /* Filter algorithm */
1157 /********************/
1158
1159 /* Covariance error is increased of C_Q */
1160 P=P+(*frame_count)*C_Q;
1161
1162 /* Clipping of P */
1163 if (P>C_thr_P) P=C_thr_P;
1164
1165 if (snr>=C_thr_snr)
1166 {
1167 /* Clipping of error angle */
1168 if (angle>C_thr_phi)
1169 angle=C_thr_phi;
1170 if (angle<-C_thr_phi)
1171 angle=-C_thr_phi;
1172
1173 /* Kalman gain */
1174 /*K=P*(1/(P+C_a0_kalman+(C_g_kalman*RNS))) */
1175 /*C_a0_kalman=0.01 */
1176 /*C_g_kalman =0.05 */
1177 num=(C_g_kalman/snr)+P+C_a0_kalman;
1178 /* (F2.30 / F6.10) = F 12.20 */
1179
1180 /* denom = P << 19 = F 1.39 */
1181 /* extension of denom=P to a 40 bits variable */
1182 /* denom (F12.20) << 16 = F 4.36 */
1183 guard1=(WORD16)((WORD32)P>>16);
1184 /* denom = P<<16 = (F4.36) << 3 = F 1.39 */
1185 denomH=(UWORD16)P;
1186 /* Low part of denom is equal to 0, because P has been 16 */
1187 /* bits left shifted previously. */
1188 denomH_3msb=(denomH>>13)&0x0007;
1189 guard1=(guard1<<3)|denomH_3msb;
1190 denomH<<=3;
1191 denom=denomH<<16; //(UWORD32) removed typecast omaps00090550
1192 /* num + guard1 are a 40 bits representation of P */
1193 /* In order to compute P(F1.39)/num, we sample P in guard1 */
1194 /* (scaled to a 32 bits number) and num (32 bits number) */
1195 /* K = ((guard1<<24)/num)<<8 + (denom/num) */
1196 var1=(WORD32)guard1<<24;
1197 var1=var1/num;
1198 var1=(WORD32)var1<<8;
1199 /* var2 is an unsigned variable, var1 contains signed guard*/
1200 /* bits. */
1201 #if 0 /* fixed LoCosto code */
1202 var2= ((WORD32)(denom)/(num)); //omaps00090550
1203 #else /* matching TCS211 */
1204 var2= denom / num;
1205 #endif
1206 K = (var1+var2)<<1; /* F1.39 / F12.20 = F13.19 */
1207 /* F13.19 << 1 = F12.20 */
1208
1209 /* Clipping of the Kalman gain */
1210 if (K>=C_thr_K)
1211 K=C_thr_K;
1212
1213 /*******************************************************/
1214 /* P=(1-K)*P = 0.8 * 0.5 at maximum */
1215 /*******************************************************/
1216 /* Perform a positive variable F12.20 multiplication by*/
1217 /* positive variable F12.20 */
1218 var_16=(WORD16)(1048576L-K); /* acclow(1-K) = F12.20 */
1219 guard1=0; /* positive variable */
1220 var1=UMult_40b(P,var_16,&guard1);
1221 var_16=(WORD16)((1048576L-K)>>16);
1222 /* acchigh(1-K) = F12.20 */
1223 var2=P*var_16; /* var2 = 0x80000 * 0xc */
1224 /* at maximum, so result */
1225 /* is 32 bits WORD32 and */
1226 /* equal 0x600000 */
1227 /* extension of var2 to a 40 bits variable : var2<<16 */
1228 guard2=(WORD16)((WORD32)var2>>16);
1229 guard1guard2=((WORD32)guard1<<16) |((WORD32) guard2&0x0000FFFFL);
1230 var2=var2<<16;
1231 var_32=Add_40b(guard1guard2,var1,var2,&guardout);
1232 /* var_32 (F8.40) >> 16 = F8.24 */
1233 LGuard=(WORD32)guardout<<16;
1234 var1=(UWORD32)var_32>>16;
1235 /* var_32 >> 4 = F12.20 */
1236 P=(var1+LGuard)>>4;
1237
1238 Phi_32=Mult_40b(l1_config.params.psi_st_32,Psi_quant[0],&guardout);
1239 /* F0.32 * F13.3 = F5.35 */
1240 LGuard=(WORD32)guardout<<16; /* var_32 (F5.35) >> 16 */
1241 /* F13.19 */
1242 var1=(UWORD32)Phi_32>>16;
1243 Phi_32=Psi-(LGuard+var1); /* F13.19 */
1244
1245 /*Phi=angle-Phi_32*/
1246 Phi_32=((WORD32)angle<<4)-Phi_32;
1247 /* F1.15 * 4 = F13.19 */
1248 Phi=(WORD16)(Phi_32>>4); /* F17.15 */
1249 /*var1=K*Phi F12.20 * F1.15 = 13.35 */
1250 guard1=0;
1251 var1=Mult_40b(K,Phi,&guard1);
1252 /* var1 (F13.35) >> 16 */
1253 /* F13.19 */
1254 LGuard=(WORD32)guard1<<16;
1255 var1=(UWORD32)var1>>16;
1256 Psi+=var1+LGuard;
1257 } else {
1258 /************************************/
1259 /* Prediction */
1260 /************************************/
1261
1262 // Only predict in dedicated mode
1263 // NO prediction in idle mode
1264 // l1a_l1s_com.dedic_set.SignalCode = NULL
1265 if ( (l1_config.params.rgap_algo != 0) &&
1266 ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
1267 #if L1_GPRS
1268 || l1_mode==PACKET_TRANSFER_MODE
1269 #endif
1270 ))
1271 {
1272
1273 /* Prediction of psi during reception gaps */
1274 B_Count+= *frame_count;
1275
1276 /* Predict psi ONLY when we have sufficient measurements available */
1277 /* If we don't have enough measurements we don't do anything (= 0th order estimation)*/
1278
1279 // Was the consecutive bad SNRs threshold value exceeded?
1280 if (B_Count>= l1_config.params.rgap_bad_snr_count_B) {
1281
1282 // Predict with 0th order estimation is the default
1283
1284 // Predict with 1st order estimation
1285 if (l1_config.params.rgap_algo >= 1)
1286 Psi += ((quant_avg * (l1_config.params.rgap_bad_snr_count_B))/(C_MSIZE));
1287
1288 B_Count= B_Count - l1_config.params.rgap_bad_snr_count_B;
1289
1290 // Indicate by raising first_avg flag that a reception gap has occurred
1291 // I.e. the psi_avg table must be reinitialised after leaving reception gap
1292 first_avg = 1;
1293
1294 // Counters in estimation part must also be reset
1295 M_Count = 0;
1296 good_snr = 0;
1297 psi_avg[0] = 0;
1298 }
1299 }
1300 }
1301
1302 /* Quantize psi value */
1303
1304 var_32=Mult_40b(Psi,l1_config.params.psi_st_inv,&guardout);
1305 /* F13.19 * C = F13.19 */
1306
1307 #if(RF_FAM == 61)
1308 /* In order to implement the NINT function for a F13.3, we check */
1309 /* if var_32 + 0.5*2**18 is a multiple of 2**18 */
1310 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<17)))/(1<<18)));
1311 var_16=quotient*4;
1312 #else
1313 /* In order to implement the NINT function for a F13.3, we check */
1314 /* if var_32 + 0.5*2**19 is a multiple of 2**19 */
1315 quotient=(WORD16)((WORD32)(((WORD32)(var_32+(1<<18)))/(1<<19)));
1316 var_16=quotient*8;
1317 #endif
1318 if (var_16>C_max_step)
1319 Psi_quant[C_N_del]=C_max_step;
1320 else
1321 if(var_16<C_min_step)
1322 Psi_quant[C_N_del]=C_min_step;
1323 else Psi_quant[C_N_del]=var_16; /* F13.3 */
1324
1325
1326 }/*end AFC_CLOSE_LOOP*/
1327 } /* end else AFC_INIT*/
1328
1329 *frame_count = 0;
1330 return(Psi_quant[C_N_del]>>3); /* F16.0 */
1331 } /* end case algo 3 */
1332 #endif
1333
1334 #if (VCXO_ALGO == 1)
1335 default:
1336 return 0;
1337 //omaps00090550 break;
1338 } // end of Switch
1339 #endif
1340
1341 } /* end l1ctl_afc */
1342
1343
1344 /************************************/
1345 /* Automatic timing control (TOA) */
1346 /************************************/
1347
1348 #if (TOA_ALGO == 2)
1349
1350 #define TOA_DEBUG_ENABLE 0
1351
1352
1353 #if (TOA_DEBUG_ENABLE == 1)
1354
1355 #define TOA_MAKE_ZERO 0
1356
1357 #define TOA_LOG_BUFFER_LENGTH 4096
1358
1359 typedef struct
1360 {
1361 UWORD16 SNR_val;
1362 UWORD16 TOA_val;
1363 UWORD16 l1_mode;
1364 UWORD16 toa_frames_counter;
1365 UWORD16 fn_mod42432;
1366 }T_TOA_log_debug;
1367
1368
1369 T_TOA_log_debug toa_log_debug[TOA_LOG_BUFFER_LENGTH];
1370 UWORD32 toa_log_index;
1371
1372 UWORD32 toa_make_zero_f;
1373
1374 #endif
1375
1376 /*-------------------------------------------------------*/
1377 /* l1ctl_toa() */
1378 /*-------------------------------------------------------*/
1379 /* Parameters : */
1380 /* Return : */
1381 /* Functionality : */
1382 /*-------------------------------------------------------*/
1383
1384 WORD16 l1ctl_toa (UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val)
1385 {
1386 WORD16 TOA_period_len = TOA_PERIOD_LEN [l1_mode];
1387 WORD16 TOA_SHIFT=ISH_INVALID;
1388 UWORD16 cumul_abs;
1389 WORD16 cumul_sign;
1390 WORD32 prod_tmp, div_tmp,prod_sign;
1391 WORD32 toa_update_flag=0;
1392 WORD16 cumul;
1393 UWORD16 cumul_counter;
1394 #if (NEW_TOA_ALGO == 1)
1395 UWORD16 Trans_active;
1396 static WORD16 cumul_noTrans =0;
1397 static UWORD16 period_counter_noTrans =0;
1398
1399 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
1400 #if L1_GPRS
1401 || l1_mode==PACKET_TRANSFER_MODE
1402 #endif
1403 )
1404 Trans_active=TRUE;
1405 else Trans_active=FALSE;
1406 #endif
1407 if (phase==TOA_INIT)
1408 {
1409 #if (NEW_TOA_ALGO == 1)
1410 cumul_noTrans =0;
1411 period_counter_noTrans =0;
1412 #endif
1413
1414 l1s.toa_var.toa_frames_counter=0;
1415 l1s.toa_var.toa_accumul_counter=0;
1416 l1s.toa_var.toa_accumul_value=0;
1417 #if (TOA_DEBUG_ENABLE == 1)
1418 toa_log_index = 0;
1419 #if (TOA_MAKE_ZERO == 1)
1420 toa_make_zero_f = 1;
1421 #else
1422 toa_make_zero_f = 0;
1423 #endif
1424 #endif
1425
1426 return (TOA_SHIFT);
1427 }
1428
1429 cumul = l1s.toa_var.toa_accumul_value;
1430 cumul_counter = l1s.toa_var.toa_accumul_counter;
1431
1432 #if (TOA_DEBUG_ENABLE == 1)
1433 toa_log_debug[toa_log_index].SNR_val = SNR_val;
1434 toa_log_debug[toa_log_index].TOA_val = TOA_val;
1435 toa_log_debug[toa_log_index].l1_mode = l1_mode;
1436 toa_log_debug[toa_log_index].toa_frames_counter = l1s.toa_var.toa_frames_counter;
1437 toa_log_debug[toa_log_index].fn_mod42432 = l1s.actual_time.fn_mod42432;
1438
1439 toa_log_index++;
1440 if(toa_log_index == TOA_LOG_BUFFER_LENGTH)
1441 {
1442 toa_log_index = 0;
1443 }
1444 #endif /* #if (TOA_DEBUG_ENABLE == 1) */
1445
1446 #if (TRACE_TYPE == 5)
1447 trace_toa_sim_ctrl(SNR_val, TOA_val, l1_mode, l1s.toa_var.toa_frames_counter,
1448 l1s.toa_var.toa_accumul_counter, l1s.toa_var.toa_accumul_value);
1449 #endif
1450
1451 l1s.toa_var.toa_frames_counter++;
1452
1453 {
1454 /* Fix for TOA */
1455 #define DSP_CALC_NO_TABS_HO 0x3CA4
1456
1457 UWORD16 *toa_ho_fix;
1458 toa_ho_fix=(UWORD16 *)API_address_dsp2mcu(DSP_CALC_NO_TABS_HO);
1459
1460 if ((TOA_val >= 22) || (TOA_val <= 6)) {
1461 *toa_ho_fix = 1;
1462 }
1463
1464 if (*toa_ho_fix == 1) {
1465 if((TOA_val <= 18) && (TOA_val >= 10)) {
1466 *toa_ho_fix = 0;
1467 }
1468 } else {
1469 *toa_ho_fix = 0;
1470 }
1471 }
1472
1473
1474 #if (NEW_TOA_ALGO == 1)
1475 if (Trans_active)
1476 {
1477 #endif
1478 if (SNR_val>= L1_TOA_SNR_THRESHOLD)
1479 {
1480 cumul_counter++;
1481
1482 prod_tmp = L1_TOA_LAMBDA * cumul;
1483 prod_tmp = prod_tmp + ((0x00004000)); // basically for rounding
1484 div_tmp = ((prod_tmp >> 15) & (0x0000FFFF));
1485 cumul = div_tmp;
1486
1487 // implemented below is
1488 // cumul = cumul + (L1_TOA_ONE_MINUS_LAMBDA * signum(TOA_Val - L1_TOA_EXPECTED_TOA))
1489 if(TOA_val > L1_TOA_EXPECTED_TOA) {
1490 cumul = cumul + L1_TOA_ONE_MINUS_LAMBDA;
1491 }
1492 else if (TOA_val < L1_TOA_EXPECTED_TOA) {
1493 cumul = cumul - L1_TOA_ONE_MINUS_LAMBDA;
1494 }
1495 } // End if SNR_val
1496
1497 if(l1s.toa_var.toa_update_flag == TRUE)
1498 {
1499 toa_update_flag = 1;
1500 }
1501
1502 if (toa_update_flag)
1503 {
1504 cumul_sign = (cumul>0)? 1: -1;
1505 cumul_abs = cumul_sign*cumul;
1506 if(cumul_counter <= 5)
1507 {
1508 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_15)? 0: cumul_sign;
1509 }
1510 else if(cumul_counter == 6)
1511 {
1512 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_20)? 0: cumul_sign;
1513 }
1514 else if(cumul_counter == 7)
1515 {
1516 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_25)? 0: cumul_sign;
1517 }
1518 else if(cumul_counter >= 8)
1519 {
1520 TOA_SHIFT = (cumul_abs<=L1_TOA_THRESHOLD_30)? 0: cumul_sign;
1521 }
1522 #if (TRACE_TYPE==1) || (TRACE_TYPE==4)
1523 trace_info.toa_trace_var.toa_accumul_value = cumul;
1524 trace_info.toa_trace_var.toa_accumul_counter = cumul_counter;
1525 trace_info.toa_trace_var.toa_frames_counter = l1s.toa_var.toa_frames_counter;
1526 #endif
1527
1528 cumul = 0;
1529 cumul_counter = 0;
1530 l1s.toa_var.toa_frames_counter = 0;
1531 l1s.toa_var.toa_update_flag = FALSE;
1532
1533 #if (TOA_DEBUG_ENABLE == 1)
1534 #if (TOA_MAKE_ZERO == 1)
1535 if (toa_make_zero_f == 1)
1536 {
1537 TOA_SHIFT=0;
1538 }
1539 #endif /*#if (TOA_DEBUG_ENABLE == 1)*/
1540 #endif /*#if (TOA_MAKE_ZERO == 1)*/
1541
1542 } // end of if toa_update_flag
1543 #if (NEW_TOA_ALGO == 1)
1544
1545 }
1546
1547 else
1548 {
1549 period_counter_noTrans++;
1550
1551 if (SNR_val>= L1_TOA_SNR_THRESHOLD)
1552 {
1553 cumul_noTrans = cumul_noTrans + TOA_val - L1_TOA_EXPECTED_TOA;
1554
1555 } // End if SNR_val
1556
1557 if (l1s.toa_var.toa_update_flag == TRUE)
1558 {
1559 switch (period_counter_noTrans)
1560 {
1561 case 2:
1562 if (cumul_noTrans>=0)
1563 TOA_SHIFT = (cumul_noTrans+1) >>1 ;
1564 else
1565 TOA_SHIFT = (cumul_noTrans) >>1 ;
1566 break;
1567 case 3: /* Not fully accurate rounding*/
1568 if (cumul_noTrans>=0)
1569 TOA_SHIFT = (cumul_noTrans+2)/3 ;
1570 else
1571 TOA_SHIFT = (cumul_noTrans-2)/3 ;
1572 break;
1573 case 4:
1574 if (cumul_noTrans>=0)
1575 TOA_SHIFT = (cumul_noTrans+2) >>2 ;
1576 else
1577 TOA_SHIFT = (cumul_noTrans+1) >>2 ;
1578 break;
1579 default:
1580 TOA_SHIFT = cumul_noTrans;
1581 break;
1582 } /* end switch*/
1583
1584 if (TOA_SHIFT>8)
1585 TOA_SHIFT =8;
1586 if (TOA_SHIFT<-8)
1587 TOA_SHIFT =-8;
1588
1589 #if (TRACE_TYPE==1) || (TRACE_TYPE==4)
1590 trace_info.toa_trace_var.toa_accumul_value = cumul_noTrans;
1591 trace_info.toa_trace_var.toa_accumul_counter = period_counter_noTrans;
1592 trace_info.toa_trace_var.toa_frames_counter = period_counter_noTrans;
1593 #endif
1594
1595 cumul_noTrans = 0;
1596 period_counter_noTrans = 0;
1597 l1s.toa_var.toa_update_flag = FALSE;
1598 #if (TOA_DEBUG_ENABLE == 1)
1599 #if (TOA_MAKE_ZERO == 1)
1600 if (toa_make_zero_f == 1)
1601 {
1602 TOA_SHIFT=0;
1603 }
1604 #endif /*#if (TOA_DEBUG_ENABLE == 1)*/
1605 #endif /*#if (TOA_MAKE_ZERO == 1)*/
1606
1607 } // end if update_flag
1608 }
1609 #endif
1610 // error a TOA is waiting to be updated in the TPU and will be erased
1611 #if (TRACE_TYPE==1) || (TRACE_TYPE==4)
1612 if (l1s.toa_var.toa_shift != ISH_INVALID)
1613 {
1614 l1_trace_toa_not_updated (); // should not occur!!
1615 }
1616 #endif
1617
1618 if (TOA_SHIFT != ISH_INVALID) // new TOA => set the mask frames
1619 {
1620 // Set mask counter to 2 (2 frames masked).
1621 l1s.toa_var.toa_snr_mask = 2;
1622 }
1623
1624 l1s.toa_var.toa_accumul_value = cumul;
1625 l1s.toa_var.toa_accumul_counter = cumul_counter;
1626
1627 return(TOA_SHIFT);
1628
1629 } // l1ctl_toa
1630
1631
1632 #else
1633 /*-------------------------------------------------------*/
1634 /* l1ctl_toa_update() */
1635 /*-------------------------------------------------------*/
1636 /* Parameters : */
1637 /* Return : */
1638 /* Functionality : */
1639 /*-------------------------------------------------------*/
1640 WORD16 l1ctl_toa_update(UWORD32 *TOASP, UWORD32 l1_mode)
1641 {
1642 static UWORD16 Old_TOA_estimated=12; //unit is Qbit
1643 UWORD32 TOAMAX;
1644 WORD16 IZW,ISH,i;
1645 UWORD32 TOA_estimated=0; //unit is Qbit
1646 UWORD16 Trans_active;
1647
1648 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE)
1649 #if L1_GPRS
1650 || l1_mode==PACKET_TRANSFER_MODE
1651 #endif
1652 )
1653 Trans_active=TRUE;
1654 else Trans_active=FALSE;
1655
1656 /* TOA offset computation and clock adjustement */
1657 TOAMAX=0;
1658 for (i=1;i<TOA_HISTO_LEN;i++)
1659 {
1660 if (TOASP[i]>TOAMAX)
1661 TOAMAX=TOASP[i];
1662 }
1663 TOAMAX >>= C_RED;
1664 i=1;IZW=0;
1665 while (i<TOA_HISTO_LEN && IZW==0)
1666 {
1667 if (TOASP[i]>=TOAMAX)
1668 IZW=i;
1669 i++;
1670 }
1671
1672 /* Estimated TOA calculation */
1673 if (TOASP[IZW-1]<(2*TOAMAX/3))
1674 {
1675 TOA_estimated=IZW;
1676 TOA_estimated *= 4; // unit in QBit
1677 }
1678 else
1679 {
1680 #if 0 /* fix added in LoCosto, not present in TCS211 */
1681 UWORD32 TOA_divisor;
1682 #endif
1683 TOA_estimated=(TOASP[IZW]*IZW)+(TOASP[IZW-1]*(IZW-1)>>C_GEW);
1684 TOA_estimated *= 8; //F13.3 in order to have qBit precision
1685 #if 0
1686 TOA_divisor = TOASP[IZW]+(TOASP[IZW-1] >> C_GEW);
1687 if (TOA_divisor!=0)
1688 #endif
1689 {
1690 TOA_estimated /= TOASP[IZW]+(TOASP[IZW-1] >> C_GEW);
1691 TOA_estimated /= 2; // unit in QBit ("/8" then "*4" = "/2")
1692 }
1693 #if 0
1694 else
1695 {
1696 TOA_estimated = 0;
1697 }
1698 #endif
1699 }
1700
1701 if (Trans_active)
1702 TOA_estimated=(TOA_estimated+(Old_TOA_estimated+4)) / 2;
1703
1704 /* Offset calculation*/
1705 if (TOA_estimated>=17 || TOA_estimated<=15)
1706 ISH=TOA_estimated - 16;
1707 else
1708 ISH=0;
1709
1710 if (Trans_active)
1711 {
1712 if (ISH>1) ISH=1;
1713 if (ISH<-1) ISH=-1;
1714 }
1715 else
1716 {
1717 if (ISH>8) ISH=8;
1718 if (ISH<-8) ISH=-8;
1719 }
1720
1721 Old_TOA_estimated = TOA_estimated - ISH - 4;
1722
1723
1724 return (ISH);
1725 }
1726
1727 /*-------------------------------------------------------*/
1728 /* l1ctl_toa() */
1729 /*-------------------------------------------------------*/
1730 /* Parameters : */
1731 /* Return : */
1732 /* Functionality : generate an histogram of TOA weighted */
1733 /* with SNR */
1734 /*-------------------------------------------------------*/
1735 WORD16 l1ctl_toa(UWORD8 phase, UWORD32 l1_mode, UWORD16 SNR_val, UWORD16 TOA_val, BOOL *toa_update, UWORD16 *toa_period_count
1736 #if (FF_L1_FAST_DECODING == 1)
1737 , UWORD8 skipped_values
1738 #endif
1739 )
1740 {
1741 // xSignalHeaderRec *msg;
1742 UWORD16 i;
1743 WORD16 TOA_period_len = TOA_PERIOD_LEN[l1_mode];
1744 static UWORD32 histo[TOA_HISTO_LEN];
1745 static WORD16 period_counter=0;
1746 UWORD32 SNR_ZW;
1747 WORD16 ISH=ISH_INVALID;
1748
1749 UWORD8 histo_center;
1750
1751 #if 0
1752 if ((l1_mode==CON_EST_MODE2)||(l1_mode==DEDIC_MODE))
1753 histo_center=4;
1754 else
1755 histo_center=5;
1756 #else
1757 histo_center=4;
1758 #endif
1759
1760
1761 if (phase==TOA_INIT)
1762 {
1763 period_counter=0;
1764
1765 for (i=0;i<TOA_HISTO_LEN;i++)
1766 histo[i]=0;
1767 histo[histo_center]=128; //F6.10
1768
1769 return(ISH);
1770 }
1771 #if (FF_L1_FAST_DECODING == 1)
1772 /* Manage any missing bursts due to fast decoding */
1773 period_counter += skipped_values;
1774 #endif
1775
1776 period_counter++;
1777 /* Filter update */
1778 if (SNR_val>=C_SNRGR)
1779 {
1780 if (SNR_val>C_SNR_THR)
1781 SNR_ZW=C_SNR_THR;
1782 else
1783 SNR_ZW=SNR_val;
1784 histo[TOA_val+1]+=SNR_ZW; /* if TOA=0 histo[1]++ */
1785 /* if TOA=1 histo[2]++ */
1786 /* ... */
1787 /* if TOA=9 histo[10]++ */
1788 /* histo[0] is reserved for computation */
1789 }
1790
1791 #if L1_GPRS
1792 if (l1_mode==PACKET_TRANSFER_MODE)
1793 {
1794 if (*toa_update)
1795 {
1796 // Get ISH.
1797 ISH = l1ctl_toa_update(histo, l1_mode);
1798
1799 //reset TOA period length counter
1800 period_counter=0;
1801
1802 //reset histogram
1803 for (i=0;i<TOA_HISTO_LEN;i++)
1804 histo[i]=0;
1805 histo[histo_center]=128; //F6.10
1806
1807 *toa_update = FALSE; // reset TOA update flag
1808 *toa_period_count = 0; // reset TOA period counter
1809 }
1810 }
1811 else
1812 #endif
1813 if (period_counter>=TOA_period_len)
1814 // It is time to compute a new ISH and to reset the histogram.
1815 // Rem: ">=" is very important since a "l1 mode" change can give
1816 // a "TOA_period_len" smaller than the previous one an
1817 // therefore a "period_counter" may be already higher than
1818 // the new "TOA_period_len".
1819 {
1820 // Get ISH.
1821 ISH = l1ctl_toa_update(histo, l1_mode);
1822
1823 //reset TOA period length counter
1824 period_counter=0;
1825
1826 //reset histogram
1827 for (i=0;i<TOA_HISTO_LEN;i++)
1828 histo[i]=0;
1829 histo[histo_center]=128; //F6.10
1830 }
1831
1832 // error a TOA is waiting to be updated in the TPU and will be erased
1833 #if (TRACE_TYPE==1) || (TRACE_TYPE==4)
1834 if (l1s.toa_shift != ISH_INVALID)
1835 {
1836 l1_trace_toa_not_updated(); // should not occur !!
1837 }
1838 #endif
1839
1840 if (ISH != ISH_INVALID) // new TOA => set the mask frames
1841 {
1842 // Set mask counter to 2 (2 frames masked).
1843 l1s.toa_snr_mask = 2;
1844 }
1845
1846 return(ISH);
1847 }
1848 #endif
1849
1850 /*-------------------------------------------------------*/
1851 /* l1ctl_txpwr() */
1852 /*-------------------------------------------------------*/
1853 /* Parameters : */
1854 /* Return : */
1855 /* Functionality : */
1856 /*-------------------------------------------------------*/
1857 UWORD8 l1ctl_txpwr(UWORD8 target_txpwr, UWORD8 current_txpwr)
1858 {
1859 if(target_txpwr > current_txpwr)
1860 {
1861 current_txpwr ++; // Increase TX power by 2 dB.
1862 }
1863 else
1864 if(target_txpwr < current_txpwr)
1865 {
1866 current_txpwr --; // Decrease TX power by 2 dB.
1867 }
1868
1869 return(current_txpwr);
1870 }
1871
1872
1873 /************************************/
1874 /* Automatic Gain Control */
1875 /************************************/
1876 /*-------------------------------------------------------*/
1877 /* l1ctl_encode_delta1() */
1878 /*-------------------------------------------------------*/
1879 /* Parameters : */
1880 /* Return : */
1881 /* Functionality : */
1882 /*-------------------------------------------------------*/
1883 #if(L1_FF_MULTIBAND == 0)
1884 WORD8 l1ctl_encode_delta1(UWORD16 radio_freq)
1885 {
1886 WORD8 freq_band;
1887
1888 switch(l1_config.std.id)
1889 {
1890 case GSM:
1891 case GSM_E:
1892 case DCS1800:
1893 case PCS1900:
1894 case GSM850:
1895 freq_band = l1_config.std.cal_freq1_band1;
1896 break;
1897 case DUAL:
1898 case DUALEXT:
1899 case DUAL_US:
1900 if(radio_freq >= l1_config.std.first_radio_freq_band2)
1901 freq_band = l1_config.std.cal_freq1_band2;
1902 else
1903 freq_band = l1_config.std.cal_freq1_band1;
1904 break;
1905 }
1906 return(freq_band);
1907 }
1908 #endif
1909 /*-------------------------------------------------------*/
1910 /* l1ctl_encode_lna() */
1911 /*-------------------------------------------------------*/
1912 /* Parameters : */
1913 /* Return : */
1914 /* Functionality : */
1915 /*-------------------------------------------------------*/
1916 #if (L1_FF_MULTIBAND == 0)
1917 void l1ctl_encode_lna( UWORD8 input_level,
1918 UWORD8 *lna_state,
1919 UWORD16 radio_freq)
1920 {
1921
1922 /*** LNA Hysteresis is implemented as following :
1923
1924 |
1925 On|---<>----+-------+
1926 | | |
1927 LNA | | |
1928 | ^ v
1929 | | |
1930 | | |
1931 Off| +-------+----<>-----
1932 +--------------------------------
1933 50 40 30 20 input_level /-dBm
1934 THR_HIGH THR_LOW ***/
1935
1936
1937
1938
1939
1940 if(((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) ||(l1_config.std.id == DUAL_US)) &&
1941 (radio_freq >= l1_config.std.first_radio_freq_band2))
1942 {
1943 if ( input_level > l1_config.std.lna_switch_thr_high_band2 ) // < -40dBm ?
1944 {
1945 *lna_state = LNA_ON; // lna_off = FALSE
1946 }
1947 else if ( input_level < l1_config.std.lna_switch_thr_low_band2 ) // > -30dBm ?
1948 {
1949 *lna_state = LNA_OFF; // lna off = TRUE
1950 }
1951 }
1952 else
1953 {
1954 if ( input_level > l1_config.std.lna_switch_thr_high_band1 ) // < -40dBm ?
1955 {
1956 *lna_state = LNA_ON; // lna_off = FALSE
1957 }
1958 else if ( input_level < l1_config.std.lna_switch_thr_low_band1 ) // > -30dBm ?
1959 {
1960 *lna_state = LNA_OFF; // lna off = TRUE
1961 }
1962 }
1963
1964 }
1965
1966 #endif
1967
1968 /*-------------------------------------------------------*/
1969 /* l1ctl_csgc() */
1970 /*-------------------------------------------------------*/
1971 /* Description: */
1972 /* ============ */
1973 /* If we are running the first pass of a measurement */
1974 /* session, we use the HIGH_AGC default agc setting to */
1975 /* compute the input level from the measured power from */
1976 /* the DSP. If this input level is saturated we set a */
1977 /* saturation flag, otherwise we validate the measure and*/
1978 /* store, for the considered carrier, the input level. */
1979 /* When all the carriers have been scanned and some have */
1980 /* been flagged "saturated", we measure them with the */
1981 /* LOW_AGC agc setting, then store, for the considered */
1982 /* carrier, the input level. */
1983 /*-------------------------------------------------------*/
1984 UWORD8 l1ctl_csgc(UWORD8 pm, UWORD16 radio_freq)
1985 {
1986 WORD16 current_IL, current_calibrated_IL;
1987 WORD8 delta1_freq, delta2_freq;
1988 WORD16 delta_drp_gain=0;
1989 UWORD32 index;
1990 UWORD16 g_magic;
1991 #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0)
1992 UWORD16 arfcn;
1993 #endif
1994 UWORD16 dco_algo_ctl_pw_temp = 0;
1995 UWORD8 if_ctl = 0;
1996 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
1997 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
1998 #endif
1999
2000 #if (L1_FF_MULTIBAND == 0)
2001
2002 // initialize index
2003 index = radio_freq - l1_config.std.radio_freq_index_offset;
2004
2005 #else
2006
2007 index =
2008 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq);
2009
2010 #endif /*if(L1_FF_MULTIBAND == 0)*/
2011
2012 delta1_freq = l1ctl_encode_delta1(radio_freq);
2013 delta2_freq = l1ctl_encode_delta2(radio_freq);
2014
2015 g_magic = l1ctl_get_g_magic(radio_freq);
2016
2017 #if (RF_FAM == 61) && (L1_FF_MULTIBAND == 0)
2018 arfcn = Convert_l1_radio_freq(radio_freq);
2019 #endif
2020
2021 if (l1a_l1s_com.full_list.meas_1st_pass_read)
2022 {
2023 // We validate or not power measure (pm) for the considered carrier
2024 // with measurement achieved with HIGH_AGC setting. We are working
2025 // with non calibrated IL to avoid saturation
2026 #if(RF_FAM == 61)
2027 #if (CODE_VERSION != SIMULATION)
2028
2029 #if (PWMEAS_IF_MODE_FORCE == 0)
2030 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID ,
2031 0,
2032 radio_freq,if_threshold);
2033 #else
2034 if_ctl = IF_120KHZ_DSP;
2035 dco_algo_ctl_pw_temp = DCO_IF_0KHZ;
2036 #endif
2037
2038 #if (L1_FF_MULTIBAND == 0)
2039 delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format
2040 #else
2041 delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format
2042 #endif // MULTIBAND == 0 else
2043
2044 if(if_ctl == IF_100KHZ_DSP){
2045 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2046 }
2047 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2048 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2049 }
2050
2051 #endif
2052 #endif
2053 if (0==pm) // Check and filter illegal pm value by using last valid IL
2054 current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level);
2055 else
2056 {
2057 #if TESTMODE
2058 if (!l1_config.agc_enable)
2059 current_IL = (WORD16)(-(pm - ( (l1_config.tmode.rx_params.agc << 1) - delta_drp_gain ) - g_magic));
2060 else
2061 #endif
2062 current_IL = (WORD16)(-(pm - ( (l1_config.params.high_agc <<1) - delta_drp_gain) - g_magic));
2063 // for array index purpose, we work with positive IL
2064
2065 }
2066
2067 // NOTE: lna_value do not appear in this formula because lna is ALWAYS ON for
2068 // ---- this algorithm, so lna_value=lna_off*l1_config.params.lna_att_gsm=0
2069
2070 if ((current_IL<l1_config.params.high_agc_sat_thr) // Warning : we are working with positive IL
2071 // for IL_2_AGC_xx index purpose.
2072 #if TESTMODE
2073 && (l1_config.agc_enable)
2074 #endif
2075 )
2076 {
2077 // pm is saturated so measure is not valid
2078 l1a_l1s_com.full_list.nbr_sat_carrier_ctrl++;
2079 l1a_l1s_com.full_list.nbr_sat_carrier_read++;
2080 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 1;
2081 }
2082 else
2083 {
2084 current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
2085
2086 #if TESTMODE
2087 // When running with fixed AGC setting saturated carriers may occur:
2088 // protect against negative IL;
2089 if ((!l1_config.agc_enable) && (current_calibrated_IL < 0))
2090 {
2091 current_calibrated_IL=0;
2092 current_IL=0;
2093 }
2094 #endif
2095
2096 // Protect IL stores against overflow
2097 if (current_calibrated_IL>INDEX_MAX)
2098 current_calibrated_IL=INDEX_MAX;
2099 if (current_IL>INDEX_MAX)
2100 current_IL=INDEX_MAX;
2101
2102 // we validate the measure and save input_level and lna_off fields.
2103 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
2104 &(l1a_l1s_com.last_input_level[index].lna_off),
2105 radio_freq);
2106
2107 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL +
2108 l1ctl_get_lna_att(radio_freq) *
2109 l1a_l1s_com.last_input_level[index].lna_off;
2110
2111 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0;
2112 }
2113 }
2114 else // 2nd pass if any.
2115 {
2116 // we validate the measure and save input_level and lna_off(always 0)
2117 // fields.
2118 #if(RF_FAM == 61)
2119 #if (CODE_VERSION != SIMULATION)
2120 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID,
2121 0,radio_freq,if_threshold);
2122 #if (L1_FF_MULTIBAND == 0)
2123 delta_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format
2124 #else
2125 delta_drp_gain = drp_gain_correction(radio_freq, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format
2126 #endif
2127 if(if_ctl == IF_100KHZ_DSP){
2128 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2129 }
2130 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2131 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2132 }
2133 #endif
2134 #endif
2135
2136
2137 if (0==pm) // Check and filter illegal pm value by using last valid IL
2138 current_IL = (WORD16)(l1a_l1s_com.last_input_level[index].input_level);
2139 else
2140 current_IL = (WORD16)(-(pm - ( (l1_config.params.low_agc << 1) - delta_drp_gain ) - g_magic));
2141
2142 current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
2143
2144 // Protect IL stores against overflow
2145 if (current_calibrated_IL>INDEX_MAX)
2146 current_calibrated_IL=INDEX_MAX;
2147 if (current_IL>INDEX_MAX)
2148 current_IL=INDEX_MAX;
2149
2150 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
2151 &(l1a_l1s_com.last_input_level[index].lna_off),
2152 radio_freq);
2153
2154 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL +
2155 l1ctl_get_lna_att(radio_freq) *
2156 l1a_l1s_com.last_input_level[index].lna_off;
2157
2158 l1a_l1s_com.full_list.sat_flag[l1a_l1s_com.full_list.next_to_read] = 0;
2159 }
2160
2161 return((UWORD8)current_calibrated_IL);
2162 }
2163
2164 /*-------------------------------------------------------*/
2165 /* l1ctl_pgc() */
2166 /*-------------------------------------------------------*/
2167 /* Description : For a given radio_freq, last_known_agc is */
2168 /* ============ based on a prior knowledge (the last */
2169 /* stored input_level for the considered */
2170 /* carrier). From the power measurement on */
2171 /* this carrier (pm), we update the */
2172 /* input_level for this carrier, for the */
2173 /* next task to control. */
2174 /*-------------------------------------------------------*/
2175 UWORD8 l1ctl_pgc(UWORD8 pm, UWORD8 last_known_il,
2176 UWORD8 lna_off, UWORD16 radio_freq)
2177 {
2178 WORD32 last_known_agc;
2179 WORD32 current_IL, current_calibrated_IL;
2180 WORD8 delta1_freq, delta2_freq;
2181 WORD16 delta_drp_gain=0;
2182 WORD32 index, lna_value;
2183 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2184 UWORD16 arfcn;
2185 #endif
2186 UWORD16 dco_algo_ctl_pw_temp = 0;
2187 UWORD8 if_ctl = 0;
2188 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2189 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
2190 #endif
2191
2192 #if (L1_FF_MULTIBAND == 0)
2193
2194 // initialize index
2195 index = radio_freq - l1_config.std.radio_freq_index_offset;
2196
2197 #else
2198
2199 index = l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq);
2200
2201 #endif // #if (L1_FF_MULTIBAND == 0) else
2202
2203 delta1_freq = l1ctl_encode_delta1(radio_freq);
2204 delta2_freq = l1ctl_encode_delta2(radio_freq);
2205
2206 lna_value = lna_off * l1ctl_get_lna_att(radio_freq);
2207
2208 last_known_agc = (Cust_get_agc_from_IL(radio_freq, last_known_il >> 1, PWR_ID)) << 1;
2209 // F7.1 in order to be compatible with
2210 // pm and IL formats [-20,+140 in F7.1]
2211 // contain the input_level value we use
2212 // in the associated CTL task to build
2213 // the agc used in this CTL.
2214
2215 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2216 #if (L1_FF_MULTIBAND == 0)
2217 arfcn = Convert_l1_radio_freq(radio_freq);
2218 #else
2219 arfcn = radio_freq;
2220 #endif
2221 #endif
2222
2223 #if(RF_FAM == 61)
2224 #if (CODE_VERSION != SIMULATION)
2225
2226 #if (PWMEAS_IF_MODE_FORCE == 0)
2227 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
2228 last_known_il,
2229 radio_freq,if_threshold);
2230 #else
2231 if_ctl = IF_120KHZ_DSP;
2232 dco_algo_ctl_pw_temp = DCO_IF_0KHZ;
2233 #endif
2234
2235 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
2236 if(if_ctl == IF_100KHZ_DSP){
2237 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2238 }
2239 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2240 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2241 }
2242
2243 #endif
2244 #endif
2245
2246 if (0==pm) // Check and filter illegal pm value by using last valid IL
2247 current_IL = l1a_l1s_com.last_input_level[index].input_level - lna_value;
2248 else
2249 current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
2250
2251 current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
2252
2253 // Protect IL stores against overflow
2254 if (current_calibrated_IL>INDEX_MAX)
2255 current_calibrated_IL=INDEX_MAX;
2256 if (current_IL>INDEX_MAX)
2257 current_IL=INDEX_MAX;
2258
2259 // we validate the measure and save input_level and lna_off fields
2260 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
2261 &(l1a_l1s_com.last_input_level[index].lna_off),
2262 radio_freq);
2263
2264 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)current_IL +
2265 l1ctl_get_lna_att(radio_freq) *
2266 l1a_l1s_com.last_input_level[index].lna_off;
2267
2268 return((UWORD8)current_calibrated_IL);
2269 }
2270
2271
2272 /*-------------------------------------------------------*/
2273 /* l1ctl_pgc2() */
2274 /*-------------------------------------------------------*/
2275 /* Description : */
2276 /* ============= */
2277 /* from power measurement pm_high_agc, */
2278 /* achieve with an HIGH_AGC setting, and pm_low_agc */
2279 /* achieve with a LOW_AGC seeting, we deduce the new */
2280 /* AGC to apply in the next CTL task. */
2281 /*-------------------------------------------------------*/
2282 void l1ctl_pgc2(UWORD8 pm_high_agc, UWORD8 pm_low_agc, UWORD16 radio_freq)
2283 {
2284 UWORD8 pm;
2285 WORD32 IL_high_agc, IL_low_agc, new_IL, current_calibrated_IL;
2286 WORD8 delta1_freq, delta2_freq;
2287 WORD16 delta_high_drp_gain=0;
2288 WORD16 delta_low_drp_gain=0;
2289 WORD32 index;
2290 UWORD16 g_magic;
2291 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2292 UWORD16 arfcn;
2293 #endif
2294 UWORD16 dco_algo_ctl_pw_temp = 0;
2295 UWORD8 if_ctl = 0;
2296 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2297 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
2298 #endif
2299
2300 #if (L1_FF_MULTIBAND == 0)
2301
2302 // initialize index
2303 index = radio_freq - l1_config.std.radio_freq_index_offset;
2304
2305 #else
2306
2307 index =
2308 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq);
2309
2310 #endif // #if (L1_FF_MULTIBAND == 0) else
2311
2312 delta1_freq = l1ctl_encode_delta1(radio_freq);
2313 delta2_freq = l1ctl_encode_delta2(radio_freq);
2314
2315 g_magic = l1ctl_get_g_magic(radio_freq);
2316
2317 // lna_off was set to 0 during CTRL, so lna_value = 0 do not appear in the following
2318 // formula.
2319
2320 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2321 #if (L1_FF_MULTIBAND == 0)
2322 arfcn = Convert_l1_radio_freq(radio_freq);
2323 #else
2324 arfcn = radio_freq;
2325 #endif
2326 #endif
2327
2328 if ((0==pm_high_agc) || (0==pm_low_agc)) // Check and filter illegal pm value(s) by using last valid IL
2329 new_IL = l1a_l1s_com.last_input_level[index].input_level;
2330 else
2331 {
2332
2333 #if(RF_FAM == 61)
2334 #if (CODE_VERSION != SIMULATION)
2335
2336 #if (PWMEAS_IF_MODE_FORCE == 0)
2337 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_INVALID ,
2338 0,
2339 radio_freq,if_threshold);
2340 #else
2341 if_ctl = IF_120KHZ_DSP;
2342 dco_algo_ctl_pw_temp = DCO_IF_0KHZ;
2343 #endif
2344
2345
2346 delta_high_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.high_agc << 1)); // F7.1 format
2347 delta_low_drp_gain = drp_gain_correction(arfcn, LNA_ON, (l1_config.params.low_agc << 1)); // F7.1 format
2348 if(if_ctl == IF_100KHZ_DSP){
2349 delta_high_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2350 delta_low_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2351 }
2352 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2353 delta_high_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2354 delta_low_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2355 }
2356 #endif
2357 #endif
2358
2359 IL_high_agc = -(pm_high_agc - ((l1_config.params.high_agc << 1) - delta_high_drp_gain) - g_magic);
2360 IL_low_agc = -(pm_low_agc - ((l1_config.params.low_agc << 1) - delta_low_drp_gain) - g_magic);
2361
2362 // HIGH_AGC and LOW_AGC are formatted to F7.1 in order to be compatible with
2363 // pm and IL formats
2364
2365 if (IL_low_agc>=l1_config.params.low_agc_noise_thr)
2366 // pm_low_agc was on the noise floor, so not valid
2367 {
2368 // whatever the value of pm_high_agc, we consider it
2369 // as the right setting
2370 new_IL = IL_high_agc;
2371 pm = pm_high_agc;
2372 }
2373 else
2374 {
2375 // pm_low_agc is valid.
2376 if (IL_high_agc<=l1_config.params.high_agc_sat_thr)
2377 {
2378 // pm_high_agc is not valid, it's saturated.
2379 new_IL = IL_low_agc;
2380 pm = pm_low_agc;
2381 }
2382 else
2383 {
2384 // both pm_low_agc and pm_high_agc are valid, so we test the one that
2385 // gives the maximum input level and consider it as the right setting.
2386 if (IL_high_agc<=IL_low_agc)
2387 {
2388 new_IL = IL_high_agc;
2389 pm = pm_high_agc;
2390 }
2391 else
2392 {
2393 new_IL = IL_low_agc;
2394 pm = pm_low_agc;
2395 }
2396 }
2397 }
2398 }
2399
2400 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4)
2401 RTTL1_FILL_MON_MEAS(pm_high_agc, IL_high_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq)
2402 RTTL1_FILL_MON_MEAS(pm_low_agc, IL_low_agc - delta1_freq - delta2_freq, MS_AGC_ID, radio_freq)
2403 #endif
2404
2405 current_calibrated_IL = new_IL - delta1_freq - delta2_freq;
2406
2407 // Protect IL stores against overflow
2408 if (current_calibrated_IL>INDEX_MAX)
2409 current_calibrated_IL=INDEX_MAX;
2410 if (new_IL>INDEX_MAX)
2411 new_IL=INDEX_MAX;
2412
2413 // Updating of input_level and lna_off fields in order to correctly
2414 // setting the AGC for the next task.
2415 l1ctl_encode_lna((UWORD8)(current_calibrated_IL>>1),
2416 &(l1a_l1s_com.last_input_level[index].lna_off),
2417 radio_freq);
2418
2419 l1a_l1s_com.last_input_level[index].input_level = (UWORD8)new_IL +
2420 l1ctl_get_lna_att(radio_freq) *
2421 l1a_l1s_com.last_input_level[index].lna_off;
2422 }
2423
2424
2425 /*-------------------------------------------------------*/
2426 /* l1ctl_find_max() */
2427 /*-------------------------------------------------------*/
2428 /* Parameters : */
2429 /* Return : */
2430 /* Functionality : */
2431 /*-------------------------------------------------------*/
2432 UWORD8 l1ctl_find_max(UWORD8 *buff, UWORD8 buffer_len)
2433 {
2434
2435 // WARNING: for array index purpose we work with POSITIVE input level
2436 // so maximum search for negative numbers is equivalent to
2437 // minimum search for positive numbers!!!!!!
2438 // (-30 > -120 but 30 < 120)
2439
2440 UWORD8 maximum = 240;
2441 UWORD8 i;
2442
2443 for (i=0; i<buffer_len; i++)
2444 {
2445 if (buff[i]<maximum)
2446 maximum=buff[i];
2447 }
2448
2449 return(maximum);
2450 }
2451
2452 /*-------------------------------------------------------*/
2453 /* l1ctl_pagc() */
2454 /*-------------------------------------------------------*/
2455 /* Description : */
2456 /* =========== */
2457 /* We deduce the last_known_agc from the last stored */
2458 /* input_level for the considered carrier. We use this */
2459 /* agc value to "build" the input level linked to the pm */
2460 /* we have just read. */
2461 /* This input level is used to feed a fifo of 4 elements */
2462 /* and then compute an input_level maximum. This value is*/
2463 /* used to update the input_level for this carrier. This */
2464 /* input_level will be used for the next task to control.*/
2465 /*-------------------------------------------------------*/
2466 UWORD8 l1ctl_pagc(UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr)
2467 {
2468 WORD8 delta1_freq, delta2_freq;
2469 WORD16 delta_drp_gain=0;
2470 WORD32 last_known_agc;
2471 UWORD8 IL_max;
2472 WORD32 current_IL, current_calibrated_IL;
2473 UWORD8 i;
2474 WORD32 lna_value;
2475 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2476 UWORD16 arfcn;
2477 #endif
2478 UWORD8 lna_off;
2479 UWORD16 dco_algo_ctl_pw_temp = 0;
2480 UWORD8 if_ctl = 0;
2481 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2482 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
2483 #endif
2484
2485 delta1_freq = l1ctl_encode_delta1(radio_freq);
2486 delta2_freq = l1ctl_encode_delta2(radio_freq);
2487
2488 // Update fifo
2489 for (i=3;i>0;i--)
2490 l1a_l1s_com.Scell_info.buff_beacon[i]=l1a_l1s_com.Scell_info.buff_beacon[i-1];
2491
2492 // from the lna state (ON/OFF) we compute the attenuation
2493 // that was applied to signal when performing the power
2494 // measure.
2495 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq);
2496
2497 // Compute applied agc for this pm
2498 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1;
2499 // F7.1 in order to be compatible
2500 // with pm and IL formats
2501 // contain the input_level value we use
2502 // in the associated CTL task to build
2503 // the agc used in this CTL.
2504
2505 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2506 #if (L1_FF_MULTIBAND == 0)
2507 arfcn = Convert_l1_radio_freq(radio_freq);
2508 #else
2509 arfcn = radio_freq;
2510 #endif
2511 #endif
2512
2513 #if(RF_FAM == 61)
2514 #if (CODE_VERSION != SIMULATION)
2515
2516 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
2517 l1a_l1s_com.Scell_used_IL_dd.input_level,
2518 radio_freq,if_threshold);
2519 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off;
2520 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
2521 if(if_ctl == IF_100KHZ_DSP){
2522 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2523 }
2524 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2525 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2526 }
2527
2528 #endif
2529 #endif
2530
2531 if (0==pm) // Check and filter illegal pm value by using last valid IL
2532 current_IL = IL_info_ptr->input_level - lna_value;
2533 else
2534 current_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
2535
2536 current_calibrated_IL = current_IL - delta1_freq - delta2_freq;
2537
2538 // Protect IL stores against overflow
2539 if (current_calibrated_IL>INDEX_MAX)
2540 current_calibrated_IL=INDEX_MAX;
2541 if (current_IL>INDEX_MAX)
2542 current_IL=INDEX_MAX;
2543
2544 l1a_l1s_com.Scell_info.buff_beacon[0] = (UWORD8)current_IL;
2545
2546 IL_max = l1ctl_find_max(&(l1a_l1s_com.Scell_info.buff_beacon[0]),4);
2547
2548 //input levels are always stored with lna_on
2549 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1),
2550 &(IL_info_ptr->lna_off),
2551 radio_freq );
2552
2553 IL_info_ptr->input_level = IL_max + l1ctl_get_lna_att(radio_freq) *
2554 IL_info_ptr->lna_off;
2555
2556 #if L2_L3_SIMUL
2557 #if (DEBUG_TRACE==BUFFER_TRACE_PAGC)
2558 buffer_trace(4,IL_info_ptr->input_level,last_known_agc,
2559 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, IL_max >> 1, MAX_ID));
2560 #endif
2561 #endif
2562
2563 return((UWORD8)current_calibrated_IL);
2564 }
2565
2566 /*-------------------------------------------------------*/
2567 /* l1ctl_dpagc() */
2568 /*-------------------------------------------------------*/
2569 /* Description : */
2570 /* =========== */
2571 /* Based on the same principle as the one used for PAGC */
2572 /* algorithm except that we feed 3 different fifo: */
2573 /* 1) one is dedicated to BCCH carrier */
2574 /* 2) another one is dedicated to all the other type of */
2575 /* bursts */
2576 /* 3) the last one is dedicated to non DTX influenced */
2577 /* bursts */
2578 /*-------------------------------------------------------*/
2579 UWORD8 l1ctl_dpagc(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr)
2580 {
2581 UWORD8 av_G_all, av_G_DTX;
2582 UWORD8 max_G_all, max_G_DTX;
2583 WORD32 last_known_agc, new_IL, current_calibrated_IL;
2584 WORD8 delta1_freq, delta2_freq;
2585 WORD16 delta_drp_gain=0;
2586 UWORD8 i;
2587 UWORD8 *tab_ptr;
2588 T_DEDIC_SET *aset;
2589 WORD32 lna_value;
2590 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2591 UWORD16 arfcn;
2592 #endif
2593 UWORD8 lna_off;
2594 UWORD16 dco_algo_ctl_pw_temp = 0;
2595 UWORD8 if_ctl = 0;
2596 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2597 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
2598 #endif
2599
2600 delta1_freq = l1ctl_encode_delta1(radio_freq);
2601 delta2_freq = l1ctl_encode_delta2(radio_freq);
2602
2603 aset = l1a_l1s_com.dedic_set.aset;
2604
2605 if (beacon)
2606 tab_ptr = l1a_l1s_com.Scell_info.buff_beacon;
2607 else
2608 tab_ptr = aset->G_all;
2609
2610 // Update fifo
2611 for (i=DPAGC_FIFO_LEN-1;i>0;i--)
2612 tab_ptr[i]=tab_ptr[i-1];
2613
2614 #if TESTMODE
2615 if (!l1_config.agc_enable)
2616 {
2617 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero)
2618 // corresponds to the lna_off bit
2619 last_known_agc = (l1_config.tmode.rx_params.agc) << 1;
2620 lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq);
2621 }
2622 else
2623 #endif
2624 {
2625 #if DPAGC_MAX_FLAG
2626 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1;
2627 // F7.1 in order to be compatible with pm and IL formats
2628 #else
2629 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1;
2630 // F7.1 in order to be compatible with pm and IL formats
2631 #endif
2632 // input_level_dd : contain the input_level value we use
2633 // in the associated CTL task to build the agc used in this CTL.
2634
2635 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq);
2636 }
2637
2638 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2639 #if (L1_FF_MULTIBAND == 0)
2640 arfcn = Convert_l1_radio_freq(radio_freq);
2641 #else
2642 arfcn = radio_freq;
2643 #endif
2644 #endif
2645
2646 #if(RF_FAM == 61)
2647 #if (CODE_VERSION != SIMULATION)
2648
2649 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
2650 l1a_l1s_com.Scell_used_IL_dd.input_level,
2651 radio_freq,if_threshold);
2652 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off;
2653 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
2654 if(if_ctl == IF_100KHZ_DSP){
2655 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2656 }
2657 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2658 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2659 }
2660
2661 #endif
2662 #endif
2663
2664 if (0==pm) // Check and filter illegal pm value by using last valid IL
2665 new_IL = IL_info_ptr->input_level - lna_value;
2666 else
2667 new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
2668
2669 current_calibrated_IL = new_IL - delta1_freq - delta2_freq;
2670
2671 // Protect IL stores against overflow
2672 if (current_calibrated_IL>INDEX_MAX)
2673 current_calibrated_IL=INDEX_MAX;
2674
2675 #if TESTMODE
2676 if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1
2677 {
2678 // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0)
2679 for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--)
2680 {
2681 l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1];
2682 }
2683 l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1
2684 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1
2685 }
2686 #endif
2687
2688 if (new_IL>INDEX_MAX)
2689 new_IL=INDEX_MAX;
2690
2691 tab_ptr[0] = (UWORD8)new_IL;
2692
2693 if (dtx_on && !beacon)
2694 {
2695 // Update DTX fifo
2696 for (i=DPAGC_FIFO_LEN-1;i>0;i--)
2697 aset->G_DTX[i]=aset->G_DTX[i-1];
2698
2699 aset->G_DTX[0]=tab_ptr[0];
2700 }
2701
2702 /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */
2703 #if DPAGC_MAX_FLAG
2704 max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN);
2705
2706 if (!beacon)
2707 {
2708 max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN);
2709
2710 // WARNING: for array index purpose we work with POSITIVE input level
2711 // so maximum search for negative numbers is equivalent to
2712 // minimum search for positive numbers!!!!!!
2713 // (-30 > -120 but 30 < 120)
2714 if (max_G_all <= max_G_DTX)
2715 new_IL = max_G_all;
2716 else
2717 new_IL = max_G_DTX;
2718 }
2719 else
2720 new_IL = max_G_all;
2721 #else
2722 av_G_all=av_G_DTX=0;
2723
2724 for (i=0;i<DPAGC_FIFO_LEN;i++)
2725 av_G_all += tab_ptr[i];
2726
2727 av_G_all /= DPAGC_FIFO_LEN;
2728
2729 if (!beacon)
2730 {
2731 for (i=0;i<DPAGC_FIFO_LEN;i++)
2732 av_G_DTX += aset->G_DTX[i];
2733
2734 av_G_DTX /= DPAGC_FIFO_LEN;
2735
2736 if (av_G_all >= av_G_DTX)
2737 new_IL = av_G_all;
2738 else
2739 new_IL = av_G_DTX;
2740 }
2741 else
2742 new_IL = av_G_all;
2743 #endif
2744
2745 // Updating of input_level and lna_off fields in order to correctly
2746 // setting the AGC for the next task.
2747 // input_level is always store with lna_on
2748 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1),
2749 &(IL_info_ptr->lna_off),
2750 radio_freq );
2751
2752 IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) *
2753 IL_info_ptr->lna_off;
2754
2755 #if L2_L3_SIMUL
2756 #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC)
2757 buffer_trace(4,IL_info_ptr->input_level,last_known_agc,
2758 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID));
2759 #endif
2760 #endif
2761
2762 return((UWORD8)current_calibrated_IL);
2763 }
2764
2765 #if (AMR == 1)
2766 /*-------------------------------------------------------*/
2767 /* l1ctl_dpagc_amr() */
2768 /*-------------------------------------------------------*/
2769 /* Description : */
2770 /* =========== */
2771 /* Based on the same principle as the one used for DPAGC */
2772 /* algorithm except that the way to feed the G_dtx is */
2773 /* different */
2774 /*-------------------------------------------------------*/
2775 UWORD8 l1ctl_dpagc_amr(BOOL dtx_on, BOOL beacon, UWORD8 pm, UWORD16 radio_freq, T_INPUT_LEVEL *IL_info_ptr)
2776 {
2777 UWORD8 av_G_all, av_G_DTX;
2778 UWORD8 max_G_all, max_G_DTX, max_il;
2779 WORD32 last_known_agc, new_IL, current_calibrated_IL;
2780 WORD8 delta1_freq, delta2_freq;
2781 WORD16 delta_drp_gain=0;
2782 UWORD8 i;
2783 UWORD8 *tab_ptr, *tab_amr_ptr;
2784 T_DEDIC_SET *aset;
2785 WORD32 lna_value;
2786 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2787 UWORD16 arfcn;
2788 #endif
2789 UWORD8 lna_off;
2790 UWORD16 dco_algo_ctl_pw_temp = 0;
2791 UWORD8 if_ctl = 0;
2792 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2793 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM;
2794 #endif
2795
2796 delta1_freq = l1ctl_encode_delta1(radio_freq);
2797 delta2_freq = l1ctl_encode_delta2(radio_freq);
2798
2799 aset = l1a_l1s_com.dedic_set.aset;
2800
2801 if (beacon)
2802 tab_ptr = l1a_l1s_com.Scell_info.buff_beacon;
2803 else
2804 tab_ptr = aset->G_all;
2805
2806 // Update fifo
2807 for (i=DPAGC_FIFO_LEN-1;i>0;i--)
2808 tab_ptr[i]=tab_ptr[i-1];
2809
2810 tab_amr_ptr = aset->G_amr;
2811 for (i=DPAGC_AMR_FIFO_LEN-1;i>0;i--)
2812 tab_amr_ptr[i]=tab_amr_ptr[i-1];
2813
2814 #if TESTMODE
2815 if (!l1_config.agc_enable)
2816 {
2817 // AGC gain can only be controlled in 2dB steps as the bottom bit (bit zero)
2818 // corresponds to the lna_off bit
2819 last_known_agc = (l1_config.tmode.rx_params.agc) << 1;
2820 lna_value = (l1_config.tmode.rx_params.lna_off) * l1ctl_get_lna_att(radio_freq);
2821 }
2822 else
2823 #endif
2824 {
2825 #if DPAGC_MAX_FLAG
2826 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, MAX_ID)) << 1;
2827 // F7.1 in order to be compatible with pm and IL formats
2828 #else
2829 last_known_agc = (Cust_get_agc_from_IL(radio_freq, l1a_l1s_com.Scell_used_IL_dd.input_level >> 1, AV_ID)) << 1;
2830 // F7.1 in order to be compatible with pm and IL formats
2831 #endif
2832 // input_level_dd : contain the input_level value we use
2833 // in the associated CTL task to build the agc used in this CTL.
2834
2835 lna_value = l1a_l1s_com.Scell_used_IL_dd.lna_off * l1ctl_get_lna_att(radio_freq);
2836 }
2837
2838 #if (RF_FAM == 61) && (CODE_VERSION != SIMULATION)
2839 #if (L1_FF_MULTIBAND == 0)
2840 arfcn = Convert_l1_radio_freq(radio_freq);
2841 #else
2842 arfcn = radio_freq;
2843 #endif
2844 #endif
2845
2846 #if(RF_FAM == 61)
2847 #if (CODE_VERSION != SIMULATION)
2848 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID ,
2849 l1a_l1s_com.Scell_used_IL_dd.input_level,
2850 radio_freq,if_threshold);
2851 lna_off = l1a_l1s_com.Scell_used_IL_dd.lna_off;
2852 delta_drp_gain = drp_gain_correction(arfcn, lna_off, last_known_agc); // F7.1 format
2853 if(if_ctl == IF_100KHZ_DSP){
2854 delta_drp_gain += SCF_ATTENUATION_LIF_100KHZ;
2855 }
2856 else{ /* i.e. if_ctl = IF_120KHZ_DSP*/
2857 delta_drp_gain += SCF_ATTENUATION_LIF_120KHZ;
2858 }
2859 #endif
2860 #endif
2861
2862 if (0==pm) // Check and filter illegal pm value by using last valid IL
2863 new_IL = IL_info_ptr->input_level - lna_value;
2864 else
2865 new_IL = -(pm - (last_known_agc - delta_drp_gain) + lna_value - l1ctl_get_g_magic(radio_freq));
2866
2867 current_calibrated_IL = new_IL - delta1_freq - delta2_freq;
2868
2869 // Protect IL stores against overflow
2870 if (current_calibrated_IL>INDEX_MAX)
2871 current_calibrated_IL=INDEX_MAX;
2872
2873 #if TESTMODE
2874 if (l1tm.tmode_state.dedicated_active) // Implies l1_config.TestMode = 1
2875 {
2876 // Update l1tm.tmode_stats.rssi_fifo (delay line from index 3 to 0)
2877 for (i=(sizeof(l1tm.tmode_stats.rssi_fifo)/sizeof(l1tm.tmode_stats.rssi_fifo[0]))-1; i>0; i--)
2878 {
2879 l1tm.tmode_stats.rssi_fifo[i] = l1tm.tmode_stats.rssi_fifo[i-1];
2880 }
2881 l1tm.tmode_stats.rssi_fifo[0] = current_calibrated_IL; // rssi value is F7.1
2882 l1tm.tmode_stats.rssi_recent = current_calibrated_IL; // rssi value is F7.1
2883 }
2884 #endif
2885
2886 if (new_IL>INDEX_MAX)
2887 new_IL=INDEX_MAX;
2888
2889 tab_ptr[0] = (UWORD8)new_IL;
2890 tab_amr_ptr[0] = (UWORD8)new_IL;
2891
2892 if (dtx_on && !beacon)
2893 {
2894 // a new AMR block is received, feed the G_dtx with the max_il of the block
2895 for (i=DPAGC_FIFO_LEN-1;i>0;i--)
2896 aset->G_DTX[i]=aset->G_DTX[i-1];
2897
2898 if (l1a_l1s_com.dedic_set.aset->achan_ptr->mode == TCH_AHS_MODE)
2899 {
2900 // Keep the max_il between the last 2 bursts
2901 if (aset->G_amr[0] > aset->G_amr[1])
2902 max_il = aset->G_amr[0];
2903 else
2904 max_il = aset->G_amr[1];
2905 }
2906 else
2907 {
2908 // Keep the max_il between the last 4 bursts
2909 max_il = l1ctl_find_max(&aset->G_amr[0], DPAGC_AMR_FIFO_LEN);
2910 }
2911
2912 aset->G_DTX[0]= max_il;
2913 }
2914
2915 /* Computation of MAX{G_all[i],G_DTX[j]} i,j=0..3 */
2916 #if DPAGC_MAX_FLAG
2917 max_G_all = l1ctl_find_max(&(tab_ptr[0]),DPAGC_FIFO_LEN);
2918
2919 if (!beacon)
2920 {
2921 max_G_DTX = l1ctl_find_max(&(aset->G_DTX[0]),DPAGC_FIFO_LEN);
2922
2923 // WARNING: for array index purpose we work with POSITIVE input level
2924 // so maximum search for negative numbers is equivalent to
2925 // minimum search for positive numbers!!!!!!
2926 // (-30 > -120 but 30 < 120)
2927 if (max_G_all <= max_G_DTX)
2928 new_IL = max_G_all;
2929 else
2930 new_IL = max_G_DTX;
2931 }
2932 else
2933 new_IL = max_G_all;
2934 #else
2935 av_G_all=av_G_DTX=0;
2936
2937 for (i=0;i<DPAGC_FIFO_LEN;i++)
2938 av_G_all += tab_ptr[i];
2939
2940 av_G_all /= DPAGC_FIFO_LEN;
2941
2942 if (!beacon)
2943 {
2944 for (i=0;i<DPAGC_FIFO_LEN;i++)
2945 av_G_DTX += aset->G_DTX[i];
2946
2947 av_G_DTX /= DPAGC_FIFO_LEN;
2948
2949 if (av_G_all >= av_G_DTX)
2950 new_IL = av_G_all;
2951 else
2952 new_IL = av_G_DTX;
2953 }
2954 else
2955 new_IL = av_G_all;
2956 #endif
2957
2958 // Updating of input_level and lna_off fields in order to correctly
2959 // setting the AGC for the next task.
2960 // input_level is always store with lna_on
2961
2962 l1ctl_encode_lna( (UWORD8)(current_calibrated_IL>>1),
2963 &(IL_info_ptr->lna_off),
2964 radio_freq );
2965 IL_info_ptr->input_level = (UWORD8)new_IL + l1ctl_get_lna_att(radio_freq) *
2966 IL_info_ptr->lna_off;
2967
2968 #if L2_L3_SIMUL
2969 #if (DEBUG_TRACE==BUFFER_TRACE_DPAGC)
2970 buffer_trace(4,IL_info_ptr->input_level,last_known_agc,
2971 l1a_l1s_com.Scell_used_IL_dd.input_level,Cust_get_agc_from_IL(radio_freq, new_IL >> 1, MAX_ID));
2972 #endif
2973 #endif
2974
2975 return((UWORD8)current_calibrated_IL);
2976 }
2977 #endif // AMR == 1
2978
2979 /*-------------------------------------------------------*/
2980 /* l1ctl_get_g_magic() */
2981 /*-------------------------------------------------------*/
2982 /* Parameters : */
2983 /* Return : */
2984 /* Functionality : */
2985 /*-------------------------------------------------------*/
2986 #if (L1_FF_MULTIBAND == 0)
2987 UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq)
2988 {
2989
2990
2991 if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US))
2992 {
2993 if (radio_freq >= l1_config.std.first_radio_freq_band2)
2994 return(l1_config.std.g_magic_band2);
2995 else
2996 return(l1_config.std.g_magic_band1);
2997 }
2998 else
2999 return(l1_config.std.g_magic_band1);
3000
3001
3002 }
3003 #endif
3004
3005 /*-------------------------------------------------------*/
3006 /* l1ctl_get_lna_att() */
3007 /*-------------------------------------------------------*/
3008 /* Parameters : */
3009 /* Return : */
3010 /* Functionality : */
3011 /*-------------------------------------------------------*/
3012 #if (L1_FF_MULTIBAND == 0)
3013 UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq)
3014 {
3015
3016
3017 if ((l1_config.std.id == DUAL) || (l1_config.std.id == DUALEXT) || (l1_config.std.id == DUAL_US))
3018 {
3019 if (radio_freq >= l1_config.std.first_radio_freq_band2)
3020 return(l1_config.std.lna_att_band2);
3021 else
3022 return(l1_config.std.lna_att_band1);
3023 }
3024 else
3025 return(l1_config.std.lna_att_band1);
3026
3027
3028 }
3029 #endif
3030 /*-------------------------------------------------------*/
3031 /* l1ctl_update_TPU_with_toa() */
3032 /*-------------------------------------------------------*/
3033 /* Parameters : */
3034 /* Return : */
3035 /* Functionality : */
3036 /*-------------------------------------------------------*/
3037 void l1ctl_update_TPU_with_toa(void)
3038 {
3039 #if (TOA_ALGO != 0)
3040 WORD16 toa_shift;
3041
3042 #if (TOA_ALGO == 2)
3043 toa_shift = l1s.toa_var.toa_shift;
3044 #else
3045 toa_shift = l1s.toa_shift;
3046 #endif
3047
3048 if (toa_shift != ISH_INVALID)
3049 // New ISH (TOA shift) has been stored in "l1s.toa_shift".
3050 {
3051 // NEW !!! For EOTD measurements in IDLE mode, cut AFC updates...
3052 #if (L1_EOTD==1)
3053 #if (L1_GPRS)
3054 if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) ||
3055 (l1a_l1s_com.mode == DEDIC_MODE)||
3056 (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED))
3057 #else
3058 if ( (l1a_l1s_com.nsync.eotd_meas_session == FALSE) ||
3059 (l1a_l1s_com.mode == DEDIC_MODE))
3060 #endif
3061 {
3062 // In dedicated or transfer modes we need to track an TOA
3063 // updates to post correct th results, else E-OTD implementation
3064 // has qb errors...
3065
3066 if( (l1a_l1s_com.nsync.eotd_meas_session == TRUE)
3067 && (l1a_l1s_com.nsync.eotd_toa_phase == 1) )
3068 {
3069 l1a_l1s_com.nsync.eotd_toa_tracking += toa_shift;
3070 }
3071 #endif
3072 // Update tpu offset.
3073 l1s.tpu_offset = (l1s.tpu_offset + TPU_CLOCK_RANGE + toa_shift) % TPU_CLOCK_RANGE;
3074
3075 #if (TRACE_TYPE==1) || (TRACE_TYPE==4)
3076 #if (GSM_IDLE_RAM == 0)
3077 l1_trace_new_toa();
3078 #else
3079 l1_trace_new_toa_intram();
3080 #endif
3081 #endif
3082
3083 #if (L1_EOTD==1)
3084 }
3085 #endif
3086
3087 #if (TRACE_TYPE == 5)
3088 #if (TOA_ALGO == 2)
3089 trace_toa_sim_update (toa_shift,l1s.tpu_offset);
3090 #endif
3091 #endif
3092
3093 // Reset ISH.
3094 #if (TOA_ALGO == 2)
3095 l1s.toa_var.toa_shift = ISH_INVALID; // Reset the ISH.
3096 #else
3097 l1s.toa_shift = ISH_INVALID; // Reset the ISH.
3098 #endif
3099 }
3100 #endif
3101 }
3102
3103
3104 /*-------------------------------------------------------*/
3105 /* l1ctl_saic() */
3106 /*-------------------------------------------------------*/
3107 /* Parameters : */
3108 /* Return : */
3109 /* Functionality : */
3110 /*-------------------------------------------------------*/
3111
3112 #if (L1_SAIC != 0)
3113 #define SWH_CHANTAP_INIT 0xFFD068CE
3114 #if (NEW_SNR_THRESHOLD == 1)
3115 UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode, UWORD8 task, UWORD8 * saic_flag)
3116 #else
3117 UWORD8 l1ctl_saic (UWORD8 IL_for_rxlev, UWORD32 l1_mode)
3118 #endif /* NEW_SNR_THRESHOLD */
3119 {
3120 UWORD16 SWH_flag = 0;
3121 UWORD8 CSF_Filter_choice = L1_SAIC_HARDWARE_FILTER;
3122 #if (NEW_SNR_THRESHOLD == 0)
3123 volatile UWORD16 *ptr;
3124 UWORD8 saic_flag;
3125 #endif /* NEW_SNR_THRESHOLD */
3126 #if (NEW_SNR_THRESHOLD == 0)
3127 ptr = (volatile UWORD16 * ) (SWH_CHANTAP_INIT);
3128 *ptr = 0;
3129 saic_flag=1;
3130 #else
3131 *saic_flag=0;
3132 #endif
3133
3134 switch (l1_mode)
3135 {
3136 case DEDIC_MODE: // GSM DEDICATED MODE
3137 {
3138 #if (NEW_SNR_THRESHOLD == 1)
3139 *saic_flag=1;
3140 #endif
3141 if(IL_for_rxlev < L1_SAIC_GENIE_GSM_DEDIC_THRESHOLD)
3142 {
3143 SWH_flag=1;
3144 }
3145
3146 break;
3147 }
3148 #if L1_GPRS
3149 case PACKET_TRANSFER_MODE: // PACKET TRANSFER MODE
3150 {
3151 #if (NEW_SNR_THRESHOLD == 0)
3152 #if (L1_SAIC == 1)
3153 if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD)
3154 {
3155 *ptr = 4;
3156 }
3157 #endif /*#if (L1_SAIC == 3)*/
3158 #endif
3159
3160 #if (L1_SAIC == 3)
3161 if(IL_for_rxlev < L1_SAIC_GENIE_GPRS_PCKT_TRAN_THRESHOLD)
3162 {
3163 SWH_flag = 1;
3164 }
3165 #endif /*#if (L1_SAIC == 3)*/
3166 break;
3167 }
3168 #endif /*#if L1_GPRS*/
3169 default: /* GSM OR GPRS IDLE MODES */
3170 {
3171 #if ((L1_SAIC == 2)||(L1_SAIC == 3))
3172 if(IL_for_rxlev < L1_SAIC_GENIE_GSM_GPRS_IDLE_THRESHOLD)
3173 {
3174 SWH_flag=1;
3175 }
3176 #endif
3177 break;
3178 }
3179 }
3180
3181 l1ddsp_load_swh_flag (SWH_flag ,
3182 #if (NEW_SNR_THRESHOLD == 0)
3183 saic_flag
3184 #else
3185 *saic_flag
3186 #endif
3187 );
3188
3189 if(SWH_flag == 1)
3190 {
3191 CSF_Filter_choice = L1_SAIC_PROGRAMMABLE_FILTER;
3192 }
3193
3194
3195 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4)
3196 l1_trace_saic(SWH_flag,
3197 #if (NEW_SNR_THRESHOLD == 0)
3198 saic_flag
3199 #else
3200 *saic_flag
3201 #endif
3202 );
3203 #endif
3204 #if (TRACE_TYPE == 5)
3205 trace_saic_sim(IL_for_rxlev, l1_mode, SWH_flag);
3206 #endif
3207
3208 return(CSF_Filter_choice);
3209 }
3210 #endif
3211
3212 #if (FF_L1_FAST_DECODING == 1)
3213 /*-----------------------------------------------------------------*/
3214 /* l1ctl_pagc_missing_bursts */
3215 /*-----------------------------------------------------------------*/
3216 /* */
3217 /* Description: */
3218 /* ------------ */
3219 /* When fast decoding is active, fewer bursts are decoded. As a */
3220 /* result, fewer gain values are available. The PAGC algo must */
3221 /* be updated with the missed values. */
3222 /* */
3223 /* Input parameters: */
3224 /* ----------------- */
3225 /* UWORD8 skipped_values: the number of skipped bursts due to fast */
3226 /* decoding. */
3227 /* */
3228 /* Input parameters from globals: */
3229 /* ------------------------------ */
3230 /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */
3231 /* l1_config.params.il_min: minimum level */
3232 /* */
3233 /* Output parameters: */
3234 /* ------------------ */
3235 /* none */
3236 /* */
3237 /* Modified parameters from globals: */
3238 /* --------------------------------- */
3239 /* l1a_l1s_com.Scell_info.buff_beacon: Input Level (IL) FIFO */
3240 /* */
3241 /*-----------------------------------------------------------------*/
3242
3243 void l1ctl_pagc_missing_bursts (UWORD8 skipped_values)
3244 {
3245 UWORD8 i = 0;
3246
3247 /* skipped_values cannot be greater than 3, otherwise this is an error
3248 * and the PAGC algorithm mustn't be updated. */
3249 if (skipped_values > 3)
3250 {
3251 return;
3252 }
3253
3254 /* Update fifo by removing skipped_values of samples */
3255 for (i = 3; i > (skipped_values - 1); i--)
3256 {
3257 l1a_l1s_com.Scell_info.buff_beacon[i] = l1a_l1s_com.Scell_info.buff_beacon[i-skipped_values];
3258 }
3259
3260 /* Insert minimum IL level as many times a burst has been skipped */
3261 for (i = 0; i < skipped_values; i++)
3262 {
3263 l1a_l1s_com.Scell_info.buff_beacon[i] = l1_config.params.il_min;
3264 }
3265 }
3266 #endif /* #if (FF_L1_FAST_DECODING == 1) */