view src/cs/drivers/drv_app/pwr/pwr_cust.c @ 163:a911ac771094

board preprocessor conditionals: prep for more FC hw in the future Please see the corresponding change in fc-magnetite for the explanation.
author Mychaela Falconia <falcon@freecalypso.org>
date Mon, 01 Apr 2019 01:20:03 +0000
parents b6a5e36de839
children
line wrap: on
line source

/*******************************************************************************
 *
 * pwr_cust.c
 *
 * Purpose: This file contains functions for battery management.
 *          These functions can be modified by the customer.
 *
 * Author   Candice Bazanegue (c-brille@ti.com)
 *
 *
 * (C) Texas Instruments 2001
 *
 ******************************************************************************/

#include "rv/rv_defined_swe.h"	   // for RVM_PWR_SWE

#ifdef RVM_PWR_SWE

#include "abb/abb.h"
#include "rvm/rvm_use_id_list.h"
#include "pwr/pwr_messages.h"
#include "rvf/rvf_api.h"
#include "pwr/pwr_cust.h"
#include "pwr/pwr_env.h"
#include "pwr/pwr_analog_dev.h"
#include "spi/spi_env.h"
#include "spi/spi_task.h"
#include "pwr/pwr_liion_cha.h"
#include "pwr/pwr_disch.h"

/* Caution: keep ascending order in the temperature arrays !!! */

const INT16 BAT_Celsius_temp_10uA[4]=
{
   -10, -5, 0, 5
};
const UINT16 BAT_MADC_temp_10uA[4]=
{
   0x13F, 0x103, 0xCB, 0x9C
};
const INT16 BAT_Celsius_temp_50uA[13]=
{
   0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
};
const UINT16 BAT_MADC_temp_50uA[13]=
{
   0x351, 0x2AD, 0x22E, 0x1C4, 0x169, 0x128, 0xF9, 0xCB, 0x96, 0x83, 0x68, 0x58, 0x4A
};


/* Correpondence between the battery voltage and the remaining capacity in the battery */
/* The voltages have to be expressed in mV units */
/* The capacities are percentages of the total capacity */
/* Caution: keep this order in the array !!!! (in voltage (or capacity) descending order) */

const T_PWR_THRESHOLDS a_pwr_thresholds[NB_THRESHOLDS]= 
{{4200,100}, {4000,75}, {3970,50}, {3950,25}, {3900,15}, {3870,10}};



/* Global variable */
extern T_SPI_GBL_INFO *SPI_GBL_INFO_PTR;



/*******************************************************************************
** Function         pwr_adc_to_mvolt
**
** Description      Converts the MADC voltage reading into voltage in mVolt
**
** Warning:         The offsets are not taken into account !!!
**
*******************************************************************************/
UINT16 pwr_adc_to_mvolt(UINT16 voltage_madc)
{
   UINT16 voltage_mvolt;

   /* Note: /1000 because MADC_VOLTAGE_STEP is expressed in uV */
   voltage_mvolt = (voltage_madc * MADC_VOLTAGE_STEP * 4) / 1000;

   /* return voltage in mVolt */
   return (voltage_mvolt);
}


/*******************************************************************************
** Function         pwr_adc_to_mA
**
** Description      Converts the MADC current reading into current in mA
**
** Warning:         The offsets are not taken into account !!!
** 
*******************************************************************************/
UINT16 pwr_adc_to_mA(UINT16 current_madc)
{
UINT16 current_mA;

   /* Note: /1000 because MADC_VOLTAGE_STEP is expressed in uA */
   current_mA = (current_madc * MADC_CURRENT_STEP) / 1000;

   /* return current in mA */
   return (current_mA);
}





/*******************************************************************************
** Function       pwr_bat_temp_within_limits
**
** Description    Check if the battery temperature is within limits
**
** Parameter      battery_temperature : battery temperature un Celsius degrees
**
*******************************************************************************/
UINT8 pwr_bat_temp_within_limits(INT16 battery_temperature)
{
   rvf_send_trace("Battery temperature (Celsius degrees) ", 38, battery_temperature, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); 
   if ((battery_temperature < BAT_TEMPERATURE_MAX) &&
      (battery_temperature > BAT_TEMPERATURE_MIN))
   {
      rvf_send_trace("Battery temperature within limits",33, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); 
      return (TRUE);
   }

   rvf_send_trace("Battery temperature outside limits",34, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_MEDIUM, PWR_USE_ID); 
   return (FALSE);
}



/*******************************************************************************
** Function         pwr_madc_to_Celius_conv
**
** Description      Find the temperature in Celsius degrees corresponding 
**                  to the value given by the MADC
**
*******************************************************************************/
UINT8 pwr_madc_to_Celsius_conv(UINT8 bias_current, UINT16 madc_temp, INT16 *celsius_temp)
{
   UINT8 last_index, i;
   const UINT16 *MADC_temp_array; 
   const INT16 *celsius_temp_array;
   UINT16 madc_diff;
   UINT16  madc_inc;
   UINT16  celsius_inc;

   /* choose the table */
   switch(bias_current)
   {
      case THEN_10uA:
         MADC_temp_array = BAT_MADC_temp_10uA;
         celsius_temp_array = BAT_Celsius_temp_10uA;
         /* get last index of the lookup table array(s) */
         last_index = sizeof(BAT_MADC_temp_10uA)/sizeof(BAT_MADC_temp_10uA[0]);
         break;

      case THEN_50uA:
         MADC_temp_array = BAT_MADC_temp_50uA;
         celsius_temp_array = BAT_Celsius_temp_50uA;
         /* get last index of the lookup table array(s) */
         last_index = sizeof(BAT_MADC_temp_50uA)/sizeof(BAT_MADC_temp_50uA[0]);
         break;

      default: return (FALSE);
   }

   /* check the limits */
   if((madc_temp > MADC_temp_array[0]) || (madc_temp < MADC_temp_array[last_index-1]))
   {
      return (FALSE);
   }


   /* find the two points between which the given point lies */
   for(i=0; i<last_index; i++)
   {
      if(madc_temp >= MADC_temp_array[i])
      {
         if(i==0)
         {
            *celsius_temp = celsius_temp_array[0];
            return (TRUE);
         }

         /* the value is between MADC_temp_array[i] and MADC_temp_array[i-1] */
         /* interpolate to get a more precise value */
 
         madc_inc = MADC_temp_array[i-1] - MADC_temp_array[i];
         celsius_inc = celsius_temp_array[1] - celsius_temp_array[0];   /* positive value */
 
         /* difference between the given point and the first madc value below this point */
         madc_diff = madc_temp - MADC_temp_array[i];
 
         *celsius_temp = celsius_temp_array[i] - (madc_diff*celsius_inc)/madc_inc;

         return (TRUE);
      }

      /* else, try a smaller value */
   }

   return (FALSE);
}



/*******************************************************************************
** Function         pwr_get_battery_temperature
**
** Description      Start MADC temperature reading
**
** Note  If the used battery does not allow to make a temperature 
**       measurement, the body of this function can be replaced 
**       by just a "return" with a temperature (in Celsius degrees) 
**       between BAT_TEMPERATURE_MIN and BAT_TEMPERATURE_MAX.
*******************************************************************************/
void pwr_get_battery_temperature(void)
{

   /* set the bias current to 50uA */
   ABB_Write_Register_on_page(PAGE0, BCICTL1, THEN_50uA);
   rvf_delay(RVF_MS_TO_TICKS(5));

   pwr_env_ctrl_blk->timer0_state = BATTERY_50UA_TEMP_TEST;

   if (SPI_GBL_INFO_PTR->is_adc_on == FALSE)
   {
      /* start ADIN2REG channel conversion by writing in the result register */
      ABB_Write_Register_on_page(PAGE0, ADIN2REG, 0x0000);
      rvf_start_timer (SPI_TIMER0,
                       RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_1),
                       FALSE);
   }
   else /* The L1 asks for ADC conversions */
   {
      /* Let time for the L1 to ask for new AD conversions */
      rvf_start_timer (SPI_TIMER0,
                       RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_2),
                       FALSE);
   }
}



/*******************************************************************************
** Function         pwr_bat_50uA_temp_test_timer_process
**
** Description      
**
** 
*******************************************************************************/
void pwr_bat_50uA_temp_test_timer_process(void)
{
   UINT16 bat_madc_temp;

   rvf_send_trace("TIMER0: Battery 50uA temp test",30, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID);

   pwr_env_ctrl_blk->bat_celsius_temp = (INT16)(0xFFFF);

   /* Read ADC result */
   bat_madc_temp = ABB_Read_Register_on_page(PAGE0, ADIN2REG);

   /* MADC value to Celsius degrees conversion */
   if (!pwr_madc_to_Celsius_conv(THEN_50uA, bat_madc_temp, &(pwr_env_ctrl_blk->bat_celsius_temp)))
   {
      /* outside the 50uA temp range */
      /* set the bias current to 10uA */

      pwr_env_ctrl_blk->timer0_state = BATTERY_10UA_TEMP_TEST;

      ABB_Write_Register_on_page(PAGE0, BCICTL1, THEN_10uA);
      rvf_delay(RVF_MS_TO_TICKS(5));

      if (SPI_GBL_INFO_PTR->is_adc_on == FALSE) 
      {
         /* start ADIN2REG channel conversion by writing in the result register */
         ABB_Write_Register_on_page(PAGE0, ADIN2REG, 0x0000);
         rvf_start_timer (SPI_TIMER0,
                          RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_1),
                          FALSE);
      }
      else /* The L1 asks for ADC conversions */
      {
         /* Let time for the L1 to ask for new AD conversions */
         rvf_start_timer (SPI_TIMER0,
                          RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_2),
                          FALSE);
      }
   }

   else
   {
      /* The battery temp is inside the 50uA temp range */
      /* Turn OFF the current source */
      ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT);

      /* Go ahead */
      if (pwr_env_ctrl_blk->charging_state == CI_CHARGE_STARTED)
      {
         /* temperature measurement during CI charge */
         pwr_CI_charge_process();
      }
      else if (pwr_env_ctrl_blk->charging_state == CV_CHARGE_STARTED)
      {
         /* temperature measurement during CV charge */
         pwr_CV_charge_process();
      }
      else if (pwr_env_ctrl_blk->charging_state == TESTING_BATTERY)
      {
         /* temperature measurement before calibration */
         pwr_calibration_process();
      }
      else
      {
         /* temperature measurement for battery information */
         pwr_get_bat_info();
      }
   }
}


/*******************************************************************************
** Function         pwr_bat_10uA_temp_test_timer_process
**
** Description      
**
** 
*******************************************************************************/
void pwr_bat_10uA_temp_test_timer_process(void)
{
   UINT16 bat_madc_temp;

   rvf_send_trace("TIMER0: Battery 10uA temp test",30, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID);

   pwr_env_ctrl_blk->bat_celsius_temp = (INT16)(0xFFFF);

   bat_madc_temp = ABB_Read_Register_on_page(PAGE0, ADIN2REG);

      /* MADC value to Celsius degrees conversion */
   if (!pwr_madc_to_Celsius_conv(THEN_10uA, bat_madc_temp, &(pwr_env_ctrl_blk->bat_celsius_temp)))
      {
         /* ERROR: Reading out of limits */
         rvf_send_trace("Battery temperature reading out of limits", 41, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID);

      /* turn OFF the current source */
      ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT);

      pwr_stop_charging();

      /* informs the upper layer that the battery temperature is not correct */
      pwr_send_charge_not_possible_event(BAT_TEMP_OUTSIDE_LIMITS);

      if (SPI_GBL_INFO_PTR->is_gsm_on == FALSE) /* GSM OFF */
      {
#if (ANLG_FAM == 1) 
         ABB_Write_Register_on_page(PAGE0, VRPCCTL2, 0x00EE);
#elif (ANLG_FAM == 2)
         ABB_Write_Register_on_page(PAGE0, VRPCDEV, 0x0001);
#endif
      }
      else
      {
         pwr_handle_discharge();
      }
   }

   else
   {
      /* The battery temperature is inside the 10uA temp range */
   /* turn OFF the current source */
   ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT);

      /* Go ahead */
      if (pwr_env_ctrl_blk->charging_state == CI_CHARGE_STARTED)
      {
         /* temperature measurement during CI charge */
         pwr_CI_charge_process();
      }
      else if (pwr_env_ctrl_blk->charging_state == CV_CHARGE_STARTED)
      {
         /* temperature measurement during CV charge */
         pwr_CV_charge_process();
      }
      else if (pwr_env_ctrl_blk->charging_state == TESTING_BATTERY)
      {
         /* temperature measurement before calibration */
         pwr_calibration_process();
      }
      else
      {
         /* temperature measurement for battery information */
         pwr_get_bat_info();
      }
   }
}




/*******************************************************************************
** Function         pwr_get_battery_type
**
** Description      Return the type of the battery
**
** Note        If the used battery does not allow to make a battery type 
**             SW detection, the body of this function can be replaced 
**             by the last 2 lines
**
*******************************************************************************/
void pwr_get_battery_type(void)
{

   /* enable bias current for main battery type reading 
   ABB_Write_Register_on_page(PAGE0, BCICTL1, 0x0081);
   rvf_delay(RVF_MS_TO_TICKS(5));

   pwr_env_ctrl_blk->timer0_state = BATTERY_TYPE_TEST;

   if (SPI_GBL_INFO_PTR->is_adc_on == FALSE)
   {
      /* start ADIN1REG channel conversion by writing in the result register 
      ABB_Write_Register_on_page(PAGE0, ADIN1REG, 0x0000);
      rvf_start_timer (SPI_TIMER0,
                       RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_1),
                       FALSE);
   }
   else /* The L1 asks for ADC conversions  
   {
      /* Let time for the L1 to ask for new AD conversions 
      rvf_start_timer (SPI_TIMER0,
                       RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_2),
                       FALSE);
   }
   */



   /****************************************/
   /* If the battery can not be detected,  */
   /* the code above has to be replaced by */
   /* those 2 lines (with the type of the  */
   /* used battery).                       */
   /****************************************/

   pwr_env_ctrl_blk->bat_type = LI_ION;

   /* Check if the battery is OK */
   pwr_battery_qualification();


}



/*******************************************************************************
** Function         pwr_type_test_timer_process
**
** Description     
**
**
*******************************************************************************/
void pwr_type_test_timer_process(void)
{
   UINT16 bat_type_voltage;

   rvf_send_trace("TIMER0: Battery type test",25, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID);

   bat_type_voltage = ABB_Read_Register_on_page(PAGE0, ADIN1REG);

   /* turn OFF the current source */
   ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT);

   if ((bat_type_voltage >= BAT_TYPE_LI_ION_MIN) &&
      (bat_type_voltage <= BAT_TYPE_LI_ION_MAX))   /* Li-ion batteries */
   {
      pwr_env_ctrl_blk->bat_type = LI_ION;

      /* Check if the battery is OK */
      pwr_battery_qualification();

   }

   else /* battery type unknown */
   {
      pwr_env_ctrl_blk->bat_type = UNKNOWN;

      /* informs the upper layer that the battery type is unknown */
      pwr_send_charge_not_possible_event(BAT_TYPE_UNKNOWN);
      if (SPI_GBL_INFO_PTR->is_gsm_on == FALSE) /* GSM OFF */
      {
#if (ANLG_FAM == 1) 
         ABB_Write_Register_on_page(PAGE0, VRPCCTL2, 0x00EE);
#elif (ANLG_FAM == 2)
         ABB_Write_Register_on_page(PAGE0, VRPCDEV, 0x0001);
#endif
      }
      else
      {
         pwr_handle_discharge();
      }
   }
}



/*******************************************************************************
** Function         pwr_get_capacity_vs_voltage
**
** Description    Compares the battery voltage with the thresholds given in the
**                a_pwr_thresholds array and returns the remaining capacity
**                corresponding to the threshold above this voltage.
**
** Parameters:    UINT16 bat_voltage: battery voltage in mV !!!
**
*******************************************************************************/
T_PWR_PERCENT pwr_get_capacity_vs_voltage(UINT16 bat_voltage)
{
   volatile UINT16 i;
   T_PWR_PERCENT remaining_capacity;

   for(i=0; i<NB_THRESHOLDS; i++)
   {
      if(bat_voltage > a_pwr_thresholds[i].bat_voltage)
      {
         if(i==0)
         {
            remaining_capacity = a_pwr_thresholds[0].remain_capa;
         }
         else
         {
            remaining_capacity = a_pwr_thresholds[i-1].remain_capa;
         }

         return (remaining_capacity);
      }
      /* else, try the next threshold */
   }

   if(i==NB_THRESHOLDS)
   {
      /* battery voltage below the last threshold */
      remaining_capacity = a_pwr_thresholds[i-1].remain_capa;
      return (remaining_capacity);
   }

   return 0; /* dummy return */
}

#endif /* #ifdef RVM_PWR_SWE */