/*+-----------------------------------------------------------------------------| Project :| Modul :+-----------------------------------------------------------------------------| Copyright 2002 Texas Instruments Berlin, AG| All rights reserved.|| This file is confidential and a trade secret of Texas| Instruments Berlin, AG| The receipt of or possession of this file does not convey| any rights to reproduce or disclose its contents or to| manufacture, use, or sell anything it may describe, in| whole, or in part, without the specific written consent of| Texas Instruments Berlin, AG.+-----------------------------------------------------------------------------| Purpose : Definitions for the Protocol Stack Entity| Logical Link Control (LLC)+-----------------------------------------------------------------------------*/#ifndef LLC_H#define LLC_H/*#ifdef FF_EGPRS#ifndef LLC_EDGE#define LLC_EDGE#endif *//*LLC_EDGE*//*#endif */ /*FF_EGPRS*//* * Shift of constants from SAPs LL and LLGMM to PS_include are handled here. */#ifdef LL_2to1#ifndef DTACS_MOBILITY_MANAGEMENT#define DTACS_MOBILITY_MANAGEMENT GRLC_MOBILITY_MANAGEMENT#endif#ifndef GRR_DTACS_DEFGRR_DTACS_DEF#define GRR_DTACS_DEF GRLC_DTACS_DEF#endif#ifndef GRR_DTACS_MOBILITY_MANAGEMENT#define GRR_DTACS_MOBILITY_MANAGEMENT GRLC_DTACS_MOBILITY_MANAGEMENT#endif#ifndef LLC_MAX_CNF#define LLC_MAX_CNF LL_MAX_CNF#endif#ifndef LLC_MAX_L3_XID_LEN#define LLC_MAX_L3_XID_LEN LL_MAX_L3_XID_LEN#endif#ifndef LLGMM_ERRCS_ACK_NO_PEER_RES_REEST#define LLGMM_ERRCS_ACK_NO_PEER_RES_REEST CAUSE_LLC_ACK_NO_PEER_RES_REEST#endif#ifndef LLGMM_ERRCS_DISC_NO_PEER_RES#define LLGMM_ERRCS_DISC_NO_PEER_RES CAUSE_LLC_DISC_NO_PEER_RES#endif#ifndef LLGMM_ERRCS_DM1_RECEIVED#define LLGMM_ERRCS_DM1_RECEIVED CAUSE_LLC_DM1_RECEIVED#endif#ifndef LLGMM_ERRCS_DM1_RECEIVED_REEST#define LLGMM_ERRCS_DM1_RECEIVED_REEST CAUSE_LLC_DM1_RECEIVED_REEST#endif#ifndef LLGMM_ERRCS_FRMR_COND#define LLGMM_ERRCS_FRMR_COND CAUSE_LLC_FRMR_COND#endif#ifndef LLGMM_ERRCS_FRMR_COND_REEST#define LLGMM_ERRCS_FRMR_COND_REEST CAUSE_LLC_FRMR_COND_REEST#endif#ifndef LLGMM_ERRCS_FRMR_RECEIVED#define LLGMM_ERRCS_FRMR_RECEIVED CAUSE_LLC_FRMR_RECEIVED#endif#ifndef LLGMM_ERRCS_L3_REEST#define LLGMM_ERRCS_L3_REEST CAUSE_LLC_L3_REEST#endif#ifndef LLGMM_ERRCS_MULT_ASS_TLLI#define LLGMM_ERRCS_MULT_ASS_TLLI CAUSE_LLC_MULT_ASS_TLLI#endif#ifndef LLGMM_ERRCS_NO_PEER_RES#define LLGMM_ERRCS_NO_PEER_RES CAUSE_LLC_NO_PEER_RES#endif#ifndef LLGMM_ERRCS_PEER_BUSY_REEST#define LLGMM_ERRCS_PEER_BUSY_REEST CAUSE_LLC_PEER_BUSY_REEST#endif#ifndef LLGMM_ERRCS_PEER_REEST#define LLGMM_ERRCS_PEER_REEST CAUSE_LLC_PEER_REEST#endif#ifndef LLGMM_ERRCS_SABM_NO_PEER_RES#define LLGMM_ERRCS_SABM_NO_PEER_RES CAUSE_LLC_SABM_NO_PEER_RES#endif#ifndef LLGMM_ERRCS_XID_NO_PEER_RE#define LLGMM_ERRCS_XID_NO_PEER_RES CAUSE_LLC_XID_NO_PEER_RES#endif#ifndef LLGMM_ERRCS_DM0_RECEIVED_REEST#define LLGMM_ERRCS_DM0_RECEIVED_REEST CAUSE_LLC_DM0_RECEIVED_REEST#endif#ifndef LL_ERRCS_NO_PEER_RES#define LL_ERRCS_NO_PEER_RES CAUSE_LLC_NO_PEER_RES#endif#ifndef LL_ERRCS_INVALID_XID#define LL_ERRCS_INVALID_XID CAUSE_LLC_INVALID_XID#endif#ifndef LL_PEAK_SUB#define LL_PEAK_SUB PS_PEAK_SUB#endif#ifndef LL_RELCS_DM_RECEIVED#define LL_RELCS_DM_RECEIVED CAUSE_LLC_DM_RECEIVED#endif#ifndef LL_RELCS_INVALID_XID#define LL_RELCS_INVALID_XID CAUSE_LLC_INVALID_XID#endif#ifndef LL_RELCS_NORMAL#define LL_RELCS_NORMAL CAUSE_LLC_NORMAL_REL#endif#ifndef LL_RELCS_NO_PEER_RES#define LL_RELCS_NO_PEER_RES CAUSE_LLC_NO_PEER_RES#endif#ifndef LL_DELAY_SUB#define LL_DELAY_SUB PS_DELAY_SUB#endif#ifndef LL_MEAN_SUB#define LL_MEAN_SUB PS_MEAN_SUB#endif#ifndef LL_NO_REL#define LL_NO_REL PS_NO_REL#endif#ifndef LL_PRECED_SUB#define LL_PRECED_SUB PS_PRECED_SUB#endif#ifndef LL_RLC_PROT#define LL_RLC_PROT PS_RLC_PROT#endif#ifndef LL_SAPI_1#define LL_SAPI_1 PS_SAPI_1#endif#ifndef LL_SAPI_3#define LL_SAPI_3 PS_SAPI_3#endif#ifndef LL_SAPI_5#define LL_SAPI_5 PS_SAPI_5#endif#ifndef LL_SAPI_7#define LL_SAPI_7 PS_SAPI_7#endif#ifndef LL_SAPI_9#define LL_SAPI_9 PS_SAPI_9#endif#ifndef LL_SAPI_11#define LL_SAPI_11 PS_SAPI_11#endif#ifndef LL_RADIO_PRIO_1#define LL_RADIO_PRIO_1 PS_RADIO_PRIO_1#endif#ifndef LL_TLLI_INVALID#define LL_TLLI_INVALID PS_TLLI_INVALID#endif#ifndef GRLC_RADIO_PRIO_1#define GRLC_RADIO_PRIO_1 PS_RADIO_PRIO_1#endif#ifndef GRLC_PEAK_SUB#define GRLC_PEAK_SUB PS_PEAK_SUB#endif#ifndef T_desc_list3#define T_desc_list3 T_LL_desc_list3#endif#endif /* LL_2to1 *//* --------------------------------------------------------------------------------- *//* remove traces */#ifndef _SIMULATION_#ifdef GET_STATE #undef GET_STATE #define GET_STATE(P) (ENTITY_DATA->P state)#endif#endif /* _SIMULATION_ *//* --------------------------------------------------------------------------------- */#ifdef TRACE_EVE #define TRACE_0_INFO(s) TRACE_EVENT ("Info: " s) #define TRACE_1_INFO(s,p1) TRACE_EVENT_P1("Info: " s,p1) #define TRACE_2_INFO(s,p1,p2) TRACE_EVENT_P2("Info: " s,p1,p2) #define TRACE_3_INFO(s,p1,p2,p3) TRACE_EVENT_P3("Info: " s,p1,p2,p3) #define TRACE_4_INFO(s,p1,p2,p3,p4) TRACE_EVENT_P4("Info: " s,p1,p2,p3,p4)#else #define TRACE_0_INFO(s) #define TRACE_1_INFO(s,p1) #define TRACE_2_INFO(s,p1,p2) #define TRACE_3_INFO(s,p1,p2,p3) #define TRACE_4_INFO(s,p1,p2,p3,p4)#endif#ifdef TRACE_PRIM #define TRACE_0_PARA(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s) #define TRACE_1_PARA(s,p1) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1) #define TRACE_2_PARA(s,p1,p2) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1,p2) #define TRACE_3_PARA(s,p1,p2,p3) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1,p2,p3) #define TRACE_4_PARA(s,p1,p2,p3,p4) vsi_o_ttrace(VSI_CALLER TC_PRIM, "IPar: " s,p1,p2,p3,p4) #define TRACE_0_OUT_PARA(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s) #define TRACE_1_OUT_PARA(s,p1) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1) #define TRACE_2_OUT_PARA(s,p1,p2) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1,p2) #define TRACE_3_OUT_PARA(s,p1,p2,p3) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1,p2,p3) #define TRACE_4_OUT_PARA(s,p1,p2,p3,p4) vsi_o_ttrace(VSI_CALLER TC_PRIM, "OPar: " s,p1,p2,p3,p4) #define TRACE_PRIM_FROM(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "Pdir: " s) #define TRACE_PRIM_TO(s) vsi_o_ttrace(VSI_CALLER TC_PRIM, "Pdir: " s)#else #define TRACE_0_PARA(s) #define TRACE_1_PARA(s,p1) #define TRACE_2_PARA(s,p1,p2) #define TRACE_3_PARA(s,p1,p2,p3) #define TRACE_4_PARA(s,p1,p2,p3,p4) #define TRACE_0_OUT_PARA(s) #define TRACE_1_OUT_PARA(s,p1) #define TRACE_2_OUT_PARA(s,p1,p2) #define TRACE_3_OUT_PARA(s,p1,p2,p3) #define TRACE_4_OUT_PARA(s,p1,p2,p3,p4) #define TRACE_PRIM_FROM(s) #define TRACE_PRIM_TO(s)#endif/* --------------------------------------------------------------------------------- *//* * The following macro is similar to PFREE_DESC2. Instead of doing * a PFREE(P) it does a MFREE(p). This macro is used to free CCI primitives * which are removed from CCI SAP and added into this header file. */#define MFREE_PRIM_DESC2(p) { MFREE_DESC2 ((p)->desc_list2.first); \ MFREE ((p)); \ }/* * The following macro is similar to PFREE_DESC. Instead of doing * a PFREE(P) it does a MFREE(p). This macro is used to free CCI primitives * which are removed from CCI SAP and added into this header file. */#define MFREE_PRIM_DESC(p) { MFREE_DESC ((p)->desc_list.first); \ MFREE ((p)); \ }/* * defines the user of the vsi interface */#define VSI_CALLER LLC_handle,#define VSI_CALLER_SINGLE LLC_handle/* * Macros *//* * Switch all LLC services with multiple incarnations to use the incarnation * for the given SAPI. Current sapi is stored and all LLC layer parameters * with multiple incarnations are switched to use the incarnation for the * given SAPI. */#define SWITCH_LLC(s) llc_data->current_sapi = s; \ SWITCH_PARAM (iov_i, IMAP(s)); \ SWITCH_PARAM (n200, UIMAP(s)); \ SWITCH_PARAM (n201_u, UIMAP(s)); \ SWITCH_PARAM (n201_i, IMAP(s)); \ SWITCH_PARAM (md, IMAP(s)); \ SWITCH_PARAM (mu, IMAP(s)); \ SWITCH_PARAM (kd, IMAP(s)); \ SWITCH_PARAM (ku, IMAP(s)); \ SWITCH_PARAM (requested_l3_xid, IMAP(s)); \ SWITCH_SERVICE (llc, sapi, UIMAP(s)); \ SWITCH_SERVICE (llc, u, UIMAP(s)); \ SWITCH_SERVICE (llc, itx, IMAP(s)); \ SWITCH_SERVICE (llc, irx, IMAP(s)); \ SWITCH_SERVICE (llc, uitx, UIMAP(s)); \ SWITCH_SERVICE (llc, uirx, UIMAP(s)); \ SWITCH_SERVICE (llc, t200, UIMAP(s));/* * Switch service s of entity e to use incarnation i. */#define SWITCH_SERVICE(e,s,i) e##_data->s = &(e##_data->s##_base[i]);/* * Switch LLC layer parameter p to incarnation i. */#define SWITCH_PARAM(p,i) llc_data->p = &(llc_data->p##_base[i]);/* * Map SAPI to incarnation, for either acknowledged (4 incarnations) or * unacknowledged operation (6 incarnations) */#ifdef LL_2to1#define IMAP(s) (s == PS_SAPI_3 ? 0 : \ s == PS_SAPI_5 ? 1 : \ s == PS_SAPI_9 ? 2 : \ s == PS_SAPI_11? 3 : 0)#define UIMAP(s) (s == PS_SAPI_1 ? 0 : \ s == PS_SAPI_3 ? 1 : \ s == PS_SAPI_5 ? 2 : \ s == PS_SAPI_7 ? 3 : \ s == PS_SAPI_9 ? 4 : \ s == PS_SAPI_11? 5 : 0)#else#define IMAP(s) (s == LL_SAPI_3 ? 0 : \ s == LL_SAPI_5 ? 1 : \ s == LL_SAPI_9 ? 2 : \ s == LL_SAPI_11? 3 : 0)#define UIMAP(s) (s == LL_SAPI_1 ? 0 : \ s == LL_SAPI_3 ? 1 : \ s == LL_SAPI_5 ? 2 : \ s == LL_SAPI_7 ? 3 : \ s == LL_SAPI_9 ? 4 : \ s == LL_SAPI_11? 5 : 0)#endif/* * Add octet size of XID parameter P to variable V if the parameter is tagged. */#define ADD_IF_TAGGED(V,P) \ if (llc_data->u->xid_tag & (0x00000001L << P)) \ { \ V += P##_LEN + P##_HDR_LEN; \ }/* * Tag XID parameter if requested to negotiate */#define TAG_IF_REQUESTED(V,P) \ if (llc_data->V valid) \ { \ llc_data->u->xid_tag |= (0x00000001L << P); \ }/* * Tag XID parameter if requested to negotiate and sense of negotiation fits */#define TAG_IF_REQUESTED_RSP(S,V,P) \ if (llc_data->u->requested_xid.V.valid) \ { \ if (llc_data->decoded_xid.V.valid) \ { \ /* simple add parameter. Sense of negotiation is already checked */ \ llc_data->u->xid_tag |= (0x00000001L << P); \ } \ else \ { \ /* Sense of negotiation compared with current values */ \ if (llc_data->u->requested_xid.V.value S *(llc_data->V)) \ { \ llc_data->u->xid_tag |= (0x00000001L << P); \ } \ } \ }/* * Timer values are negotiated in units of 0.1 seconds but internally stored * in milliseconds. Therefore a conversion must be done with each XID * negotiation of timer values. */#define XID_TIMER_CONVERSION 100#define XID2INT(l) (l * XID_TIMER_CONVERSION)#define INT2XID(l) (l / XID_TIMER_CONVERSION)/* * Timer start- and stop macros for LLC */#define TIMERSTART(t,d) itx_##t##_start((d))#define TIMERSTOP(t) itx_##t##_stop()/* * Number of service incarnations (LLME, TX, and RX have only one incarnation) */#define ACKNOWLEDGED_INC 4#define UNACKNOWLEDGED_INC 6#define MAX_SAPI_INC 6#define U_NUM_INC UNACKNOWLEDGED_INC#define ITX_NUM_INC ACKNOWLEDGED_INC#define IRX_NUM_INC ACKNOWLEDGED_INC#define UITX_NUM_INC UNACKNOWLEDGED_INC#define UIRX_NUM_INC UNACKNOWLEDGED_INC#define T200_NUM_INC UNACKNOWLEDGED_INC#define T201_NUM_INC ACKNOWLEDGED_INC/* * Constants *//* * Value constants for attached_counter */#define CCI_NO_ATTACHE (0x0) /* no entity/service is attached to the primitive *//* * Value constants for fcs_check */#define CCI_FCS_PASSED (0x0) /* FCS check has been successfully passed */#define CCI_FCS_FAILED (0x1) /* FCS check has been failed *//* * Value constants for pm */#define CCI_PM_UNPROTECTED (0x0) /* FCS covers frame header and information fields */#define CCI_PM_PROTECTED (0x1) /* FCS covers frame header field and first N202 octets of information field *//* * Value constants for ciphering_algorithm */#define CCI_CIPHER_NO_ALGORITHM (0x0) /* frame shall not be ciphered */#define CCI_CIPHER_GPRS_A5_1 (0x1) /* frame shall be ciphered using algorithm GPRS A5/1 */#define CCI_CIPHER_GPRS_A5_2 (0x2) /* frame shall be ciphered using algorithm GPRS A5/2 *//* * Value constants for direction */#define CCI_DIRECTION_UPLINK (0x0) /* direction of LLC frame transmission is MS to SGSN */#define CCI_DIRECTION_DOWNLINK (0x1) /* direction of LLC frame transmission is SGSN to MS *//* * Bitoffset for encoding/decoding */#define ENCODE_OFFSET 0/* * C/R bit */#define SGSN_COMMAND 1#define SGSN_RESPONSE 0#define MS_COMMAND 0#define MS_RESPONSE 1/* * Size definitions for common U frames (in octets and in bits). * Define only the header of the frame. FCS_SIZE will be added when the FCS * is calculated! */#define U_HDR_SIZE 2#define U_HDR_SIZE_BITS (U_HDR_SIZE * 8)#define FCS_SIZE 3#define FCS_SIZE_BITS (FCS_SIZE * 8)#ifdef REL99 #define U_NULL_SIZE (U_HDR_SIZE)#define U_NULL_SIZE_BITS (U_NULL_SIZE * 8)#endif /* REL99 */#define U_DISC_SIZE (U_HDR_SIZE)#define U_DISC_SIZE_BITS (U_DISC_SIZE * 8)#define U_DM_SIZE (U_HDR_SIZE)#define U_DM_SIZE_BITS (U_DM_SIZE * 8)#define U_FRMR_INFO_SIZE 10#define U_FRMR_SIZE (U_HDR_SIZE + U_FRMR_INFO_SIZE)#define U_FRMR_SIZE_BITS (U_FRMR_SIZE * 8)/* * Masks and IDs for the different frame formats. Bitwise AND *_MASK with * the first octet of the control field must result in *_ID. */#define I_FRAME_MASK 0x80#define S_FRAME_MASK 0xC0#define UI_FRAME_MASK 0xE0#define U_FRAME_MASK 0xE0#define I_FRAME_ID 0x00#define S_FRAME_ID 0x80#define UI_FRAME_ID 0xC0#define U_FRAME_ID 0xE0/* * Number of octets that must be contained in a valid control field of a frame. */#define I_CTRL_OCTETS 3#define S_CTRL_OCTETS 2#define UI_CTRL_OCTETS 2#define U_CTRL_OCTETS 1/* * Minimum number of octets that must be contained in a frame to access * the complete control field. */#define CTRL_MIN_OCTETS 2#define I_CTRL_MIN_OCTETS 4#define S_CTRL_MIN_OCTETS 3#define UI_CTRL_MIN_OCTETS 3#define U_CTRL_MIN_OCTETS 2/* * Minimum number of octets that must be contained in a valid frame, excluding * the FCS field. */#define I_FRAME_MIN_OCTETS_WITHOUT_FCS 5#define S_FRAME_MIN_OCTETS_WITHOUT_FCS 3#define UI_FRAME_MIN_OCTETS_WITHOUT_FCS 3#define U_FRAME_MIN_OCTETS_WITHOUT_FCS 2/* * Minimum number of octets that must be contained in a valid frame. */#define FRAME_MIN_OCTETS 5#define I_FRAME_MIN_OCTETS 8#define S_FRAME_MIN_OCTETS 6#define UI_FRAME_MIN_OCTETS 6#define U_FRAME_MIN_OCTETS 5#define U_FRAME_FRMR_INFO_OCTETS U_FRMR_INFO_SIZE#define S_FRAME_SACK_MIN_CTRL_OCTETS 1#define S_FRAME_SACK_MAX_CTRL_OCTETS 32/* * I frame and S frame commands/responses (bits S1, S2). */#define I_FRAME_RR 0x00#define I_FRAME_ACK 0x01#define I_FRAME_RNR 0x02#define I_FRAME_SACK 0x03/* * U frame commands/responses (bits M4, M3, M2, M1). */#ifdef REL99 #define U_FRAME_NULL 0x00#endif /*REL99*/#define U_FRAME_DM 0x01#define U_FRAME_DISC 0x04#define U_FRAME_UA 0x06#define U_FRAME_SABM 0x07#define U_FRAME_FRMR 0x08#define U_FRAME_XID 0x0B/* * Reasons of frame rejection condition. The lower nibble conforms * to W4-W1 in the FRMR response frame. */#define FRMR_W1 0x01#define FRMR_W2 0x02#define FRMR_W3 0x04#define FRMR_W4 0x08/* * !!!!!asap <R.LLC.XCEPTION.A.010> "W1 bit: Bit W3 shall be set to 1 in * conjunction with this bit." Is that always the case? */#define FRMR_INCORRECT_LENGTH FRMR_W1#define FRMR_INCORRECT_LENGTH_ABM (FRMR_W1 | FRMR_W4)#define FRMR_EXCEEDS_N201 FRMR_W2#define FRMR_EXCEEDS_N201_ABM (FRMR_W2 | FRMR_W4)#define FRMR_UNDEFINED_CTRL FRMR_W3#define FRMR_UNDEFINED_CTRL_ABM (FRMR_W3 | FRMR_W4)#define FRMR_CTRL_LENGTH_UNKNOWN 0x00/* * Maximum value of LLC sequence numbers and state variables: * N(S), N(R), V(S), V(R), ... */#define MAX_SEQUENCE_NUMBER 511/* * UITX_*_QUEUE_SIZE defines the maximum number of frames for the various * UITX service incarnations (depeding on SAPI). UITX is the only service * which is limited with uplink flow control. Enough memory must be present * for all other services (U, ITX). U requires a maximum of 2 simultaneously * stored frames per SAPI: the first being a received response to a * previously sent command, and the second being a command which is to be sent * directly afterwards. */#define UITX_1_QUEUE_SIZE 10#define UITX_3_QUEUE_SIZE 1#define UITX_5_QUEUE_SIZE 1#define UITX_7_QUEUE_SIZE 1#define UITX_9_QUEUE_SIZE 1#define UITX_11_QUEUE_SIZE 1#define ITX_3_QUEUE_SIZE 1#define ITX_5_QUEUE_SIZE 1#define ITX_9_QUEUE_SIZE 1#define ITX_11_QUEUE_SIZE 1/* * Because of the lack of flow control between GRLC and LLC, it is possible, * that LLC recieve frames from GRLC, but can not forward them to the higher * layers. The following constants define the number of UI frames to buffer * per SAPI until we get an LL_GETUNITDATA_REQ */#define UIRX_QUEUE_SIZE 32 /* * The number of queued I-frames in ITX is limited to the windowsize ku. * If only ku frames are queued and we got an acknowledge for this, LLC * would have no more frames to send. The following variable defines a * number of additional frames to buffer. */#ifdef _SIMULATION_ #define ITX_ADD_QUEUE_SIZE 8#else #define ITX_ADD_QUEUE_SIZE 1#endif/* * Maximum supported LLC parameter which should be negotiated initial. * Only values which are different to the default should be defined here. * In future this value should be read from the flash file system. */#define N201_U_SUPPORTED 520#define N201_I_SUPPORTED 520#define KD_KD_SUPPORTED 64#if defined (LL_2to1) || defined (REL99) #define KD_KU_SUPPORTED 16#else#define KD_KU_SUPPORTED 8#endif#define KD_MD_SUPPORTED 0#define KD_MU_SUPPORTED 0/* * Service definitions. Used to access service data with GET/SET_STATE. * * Services with multiple incarnation have to be defined as xxx-> * Services with only one incarnation have to be defined as xxx. */#define LLME llme.#define SAPI sapi->#define U u->#define ITX itx->#define IRX irx->#define UITX uitx->#define UIRX uirx->#define T200 t200->#define T201 t201->#define TX tx.#define RX rx./* #ifndef NTRACE*//* * These defintions are only needed for debugging purposes (!NTRACE). *//* * The following definitions are necessary for the state initialisation of * services with the INIT_STATE() macro. */#define U_0 U#define U_1 U#define U_2 U#define U_3 U#define U_4 U#define U_5 U#define ITX_0 ITX#define ITX_1 ITX#define ITX_2 ITX#define ITX_3 ITX#define IRX_0 IRX#define IRX_1 IRX#define IRX_2 IRX#define IRX_3 IRX#define UITX_0 UITX#define UITX_1 UITX#define UITX_2 UITX#define UITX_3 UITX#define UITX_4 UITX#define UITX_5 UITX#define UIRX_0 UIRX#define UIRX_1 UIRX#define UIRX_2 UIRX#define UIRX_3 UIRX#define UIRX_4 UIRX#define UIRX_5 UIRX#define T200_0 T200#define T200_1 T200#define T200_2 T200#define T200_3 T200#define T200_4 T200#define T200_5 T200#define T201_0 T201#define T201_1 T201#define T201_2 T201#define T201_3 T201/* * Service name definitions for trace purposes. The service abbrevation * (e.g. LLME) has to be the same as above for the service definitions. */#define SERVICE_NAME_LLME "LLME"#define SERVICE_NAME_U_0 "U_1"#define SERVICE_NAME_U_1 "U_3"#define SERVICE_NAME_U_2 "U_5"#define SERVICE_NAME_U_3 "U_7"#define SERVICE_NAME_U_4 "U_9"#define SERVICE_NAME_U_5 "U_11"#define SERVICE_NAME_ITX_0 "ITX_3"#define SERVICE_NAME_ITX_1 "ITX_5"#define SERVICE_NAME_ITX_2 "ITX_9"#define SERVICE_NAME_ITX_3 "ITX_11"#define SERVICE_NAME_IRX_0 "IRX_3"#define SERVICE_NAME_IRX_1 "IRX_5"#define SERVICE_NAME_IRX_2 "IRX_9"#define SERVICE_NAME_IRX_3 "IRX_11"#define SERVICE_NAME_UITX_0 "UITX_1"#define SERVICE_NAME_UITX_1 "UITX_3"#define SERVICE_NAME_UITX_2 "UITX_5"#define SERVICE_NAME_UITX_3 "UITX_7"#define SERVICE_NAME_UITX_4 "UITX_9"#define SERVICE_NAME_UITX_5 "UITX_11"#define SERVICE_NAME_UIRX_0 "UIRX_1"#define SERVICE_NAME_UIRX_1 "UIRX_3"#define SERVICE_NAME_UIRX_2 "UIRX_5"#define SERVICE_NAME_UIRX_3 "UIRX_7"#define SERVICE_NAME_UIRX_4 "UIRX_9"#define SERVICE_NAME_UIRX_5 "UIRX_11"#define SERVICE_NAME_T200_0 "T200_1"#define SERVICE_NAME_T200_1 "T200_3"#define SERVICE_NAME_T200_2 "T200_5"#define SERVICE_NAME_T200_3 "T200_7"#define SERVICE_NAME_T200_4 "T200_9"#define SERVICE_NAME_T200_5 "T200_11"#define SERVICE_NAME_TX "TX"#define SERVICE_NAME_RX "RX"/* #endif !NTRACE *//* * Timer definitions. For each timer a BASE and MAX value is defined. */#define TIMER_T200_BASE (0)#define TIMER_T200_1 (TIMER_T200_BASE)#define TIMER_T200_3 (TIMER_T200_BASE+1)#define TIMER_T200_5 (TIMER_T200_BASE+2)#define TIMER_T200_7 (TIMER_T200_BASE+3)#define TIMER_T200_9 (TIMER_T200_BASE+4)#define TIMER_T200_11 (TIMER_T200_BASE+5)#define TIMER_T200_MAX (TIMER_T200_11)#define TIMER_T201_BASE (TIMER_T200_MAX+1)#define TIMER_T201_3 (TIMER_T201_BASE)#define TIMER_T201_5 (TIMER_T201_BASE+1)#define TIMER_T201_9 (TIMER_T201_BASE+2)#define TIMER_T201_11 (TIMER_T201_BASE+3)#define TIMER_T201_MAX (TIMER_T201_11)#define TIMER_MAX (TIMER_T201_MAX)#define TIMER_NUM (TIMER_MAX+1)/* * State definitions for each service. */#define LLME_TLLI_UNASSIGNED 1#define LLME_TLLI_ASSIGNED 2#define LLME_TLLI_ASSIGNED_SUSPENDED 3#define U_TLLI_UNASSIGNED 1#define U_ADM 2#define U_LOCAL_ESTABLISHMENT 3#define U_REMOTE_ESTABLISHMENT 4#define U_ABM 5#define U_LOCAL_RELEASE 6#define U_ESTABLISH_RES_PENDING 7#define ITX_TLLI_UNASSIGNED 1#define ITX_TLLI_ASSIGNED 2#define ITX_ABM 3#define ITX_ABM_PEER_BUSY 4#define IRX_TLLI_UNASSIGNED 1#define IRX_TLLI_ASSIGNED 2#define IRX_ABM 3#define IRX_ABM_BUSY 4#define UITX_TLLI_UNASSIGNED_NOT_READY 1#define UITX_TLLI_UNASSIGNED_READY 2#define UITX_ADM_NOT_READY 3#define UITX_ADM_READY 4#define UIRX_TLLI_UNASSIGNED_NOT_READY 1#define UIRX_TLLI_UNASSIGNED_READY 2#define UIRX_ADM_NOT_READY 3#define UIRX_ADM_READY 4#define T200_TLLI_UNASSIGNED 1#define T200_RESET 2#define T200_RUNNING 3#define TX_TLLI_UNASSIGNED_NOT_READY 1#define TX_TLLI_UNASSIGNED_READY 2#define TX_TLLI_ASSIGNED_NOT_READY 3#define TX_TLLI_ASSIGNED_READY 4#define RX_TLLI_UNASSIGNED 1#define RX_TLLI_ASSIGNED 2#ifndef TI_PS_OP_CIPH_DRIVER/* * user defined constants */#define CIPH_SIZE_CK (0x10) #define CIPH_MAX_ELEM (0x14) #define CIPH_MAX_HEADER_SIZE (0x25) #define CIPH_N202 (0x4) /*==== TYPES ======================================================*//* * The following definitions was originally generated by CCD. The definitions are not used as * primitive definitions anymore, only for SNDCP internal usage. *//* --------------------------------------------------------------------------------- */ /* * enum to Variable algo * Ciphering algorithm. * CCDGEN:WriteEnum_Count==2834 */#ifndef __T_CIPH_algo__#define __T_CIPH_algo__typedef enum{ CIPH_EA0 = 0x0, /* No encryption */ CIPH_EA1 = 0x1, /* Frame shall be ciphered using algorithm EA1 */ CIPH_EA2 = 0x2, /* Frame shall be ciphered using algorithm EA2 */ CIPH_EA3 = 0x3 /* Frame shall be ciphered using algorithm EA3 */}T_CIPH_algo;#endif/* * enum to Variable direction * DIRECTION parameter * CCDGEN:WriteEnum_Count==2836 */#ifndef __T_CIPH_direction__#define __T_CIPH_direction__typedef enum{ CIPH_UPLINK_DIR = 0x0, /* See [3G 33.102] */ CIPH_DOWNLINK_DIR = 0x1 /* See [3G 33.102] */}T_CIPH_direction;#endif/* * enum to Variable status * Status of the ciphering process * CCDGEN:WriteEnum_Count==2853 */#ifndef __T_CIPH_status__#define __T_CIPH_status__typedef enum{ CIPH_CIPH_FAIL = 0x0, /* Ciphering successful */ CIPH_CIPH_PASS = 0x1, /* Ciphering failed */ CIPH_CIPH_BUSY = 0x2, /* Ongoing ciphering */ CIPH_FCS_ERROR = 0x3 /* FCS error */}T_CIPH_status;#endif/* * enum to Variable pm * Protected or unprotected mode * CCDGEN:WriteEnum_Count==2840 */#ifndef __T_CIPH_pm__#define __T_CIPH_pm__typedef enum{ CIPH_PM_UNPROTECTED = 0x0, /* FCS covers frame header field and first N202 octets of information field */ CIPH_PM_PROTECTED = 0x1 /* FCS covers frame header and information fields */}T_CIPH_pm;#endif#ifndef __T_CIPH_ck__#define __T_CIPH_ck__/* * Ciphering key. * CCDGEN:WriteStruct_Count==13956 */typedef struct{ U8 ck_element[CIPH_SIZE_CK]; /*< 0: 16> T_CIPH_ck_element, Ciphering key element */} T_CIPH_ck;#endif#ifndef __T_CIPH_init_cipher_req_parms__#define __T_CIPH_init_cipher_req_parms__/* * Ciphering algorithm initialisation parameters. * CCDGEN:WriteStruct_Count==13968 */typedef struct{ U8 algo; /*< 0: 1> T_CIPH_algo, Ciphering algorithm. */ U8 direction; /*< 1: 1> T_CIPH_direction, DIRECTION parameter */ U8 zzz_align0; /*< 2: 1> alignment */ U8 zzz_align1; /*< 3: 1> alignment */ T_CIPH_ck *ptr_ck; /*< 4: 4> pointer to Ciphering key. */} T_CIPH_init_cipher_req_parms;#endif#ifndef __T_CIPH_gprs_parameters__#define __T_CIPH_gprs_parameters__/* * Structure containing LLC parameters * CCDGEN:WriteStruct_Count==13976 */typedef struct{ U8 pm; /*< 0: 1> T_CIPH_pm, Protected or unprotected mode */ U8 zzz_align0; /*< 1: 1> alignment */ U16 header_size; /*< 2: 2> T_CIPH_header_size, Frame header size */ U32 ciphering_input; /*< 4: 4> frame-dependent ciphering input */ U32 threshold; /*< 8: 4> T_CIPH_threshold, Threshold parameter */} T_CIPH_gprs_parameters;#endif#ifndef __T_CIPH_umts_parameters__#define __T_CIPH_umts_parameters__/* * Structure containing umts parameters * CCDGEN:WriteStruct_Count==13980 */typedef struct{ U8 bearer; /*< 0: 1> T_CIPH_bearer, BEARER parameter */ U8 zzz_align0; /*< 1: 1> alignment */ U8 zzz_align1; /*< 2: 1> alignment */ U8 zzz_align2; /*< 3: 1> alignment */ U32 count_c; /*< 4: 4> COUNT-C parameter */ U8 dest_bit_offset; /*< 8: 1> T_CIPH_dest_bit_offset, Bit offset */ U8 org_bit_offset; /*< 9: 1> T_CIPH_org_bit_offset, Bit offset */ U8 zzz_align3; /*< 10: 1> alignment */ U8 zzz_align4; /*< 11: 1> alignment */ U32 threshold; /*< 12: 4> T_CIPH_threshold, Threshold parameter */} T_CIPH_umts_parameters;#endif#ifndef __T_CIPH_in_data__#define __T_CIPH_in_data__/* * Structure containing length and pointer to the data * CCDGEN:WriteStruct_Count==13984 */typedef struct{ U16 len; /*< 0: 2> Length of buffer */ U8 zzz_align0; /*< 2: 1> alignment */ U8 zzz_align1; /*< 3: 1> alignment */ U32 buf; /*< 4: 4> Pointer to the data in buffer */} T_CIPH_in_data;#endif/* * Stucture containing length and pointer to the data * CCDGEN:WriteStruct_Count==13988 */#ifndef __T_CIPH_out_data__#define __T_CIPH_out_data__typedef T_CIPH_in_data T_CIPH_out_data;#endif#ifndef __T_CIPH_cipher_req_parms__#define __T_CIPH_cipher_req_parms__/* * Ciphering algorithm parameters. * CCDGEN:WriteStruct_Count==13990 */typedef union{ T_CIPH_gprs_parameters gprs_parameters; /*< 0: 12> Structure containing LLC parameters */ T_CIPH_umts_parameters umts_parameters; /*< 0: 16> Structure containing umts parameters */} T_CIPH_cipher_req_parms;#endif#ifndef __T_CIPH_in_data_list__#define __T_CIPH_in_data_list__/* * Structure containing a list of in_data elements * CCDGEN:WriteStruct_Count==13994 */typedef struct{ T_CIPH_in_data *ptr_in_data; /*< 0: 4> pointer to Structure containing length and pointer to the data */ U16 c_in_data; /*< 4: 2> Number of elements */ U8 zzz_align0; /*< 6: 1> alignment */ U8 zzz_align1; /*< 7: 1> alignment */} T_CIPH_in_data_list;#endif#endif /* TI_PS_OP_CIPH_DRIVER *//* --------------------------------------------------------------------------------- */#ifndef __T_kc__#define __T_kc__typedef struct{ U8 key[8]; /*< 0: 8> ciphering key content */} T_kc;#endif#ifndef __T_CCI_CIPHER_REQ__#define __T_CCI_CIPHER_REQ__typedef struct{ U8 pm; /*< 0: 1> protected mode */ U8 ciphering_algorithm; /*< 16: 1> ciphering algorithm */ U8 direction; /*< 17: 1> ciphering transfer direction */ U8 attached_counter; /*< 29: 1> attached to primitive data counter */ U32 ciphering_input; /*< 4: 4> frame-dependent ciphering input */ T_kc kc; /*< 8: 8> ciphering key */ U32 reference1; /*< 32: 4> frame reference number */ U16 header_size; /*< 36: 2> frame header size */ U8 zzz_align0; /*< 38: 1> alignment */ U8 zzz_align1; /*< 39: 1> alignment */ T_sdu sdu; /*< 40: ? > service data unit */} T_CCI_CIPHER_REQ;#endif#ifndef __T_CCI_DECIPHER_REQ__#define __T_CCI_DECIPHER_REQ__typedef struct{ U8 pm; /*< 0: 1> protected mode */ U8 ciphering_algorithm; /*< 1: 1> ciphering algorithm */ U8 direction; /*< 16: 1> ciphering transfer direction */ U8 zzz_align0; /*< 30: 1> alignment */ T_kc kc; /*< 4: 8> ciphering key */ U32 ciphering_input; /*< 12: 4> frame-dependent ciphering input */ U32 reference1; /*< 20: 4> frame reference number */ U32 reference2; /*< 24: 4> second frame reference number */ U16 header_size; /*< 28: 2> frame header size */ U8 zzz_align1; /*< 30: 1> alignment */ U8 zzz_align2; /*< 31: 1> alignment */ T_desc_list desc_list; /*< 32: ? > list of generic data descriptors */} T_CCI_DECIPHER_REQ;#endif#ifndef __T_CCI_RESET_REQ__#define __T_CCI_RESET_REQ__typedef struct{ U8 dummy; /*< 0: 1> no parameters */} T_CCI_RESET_REQ;#endif#ifndef __T_CCI_CIPHER_DESC_REQ__#define __T_CCI_CIPHER_DESC_REQ__typedef struct{ U8 pm; /*< 0: 1> protected mode */ U8 ciphering_algorithm; /*< 16: 1> ciphering algorithm */ U8 direction; /*< 17: 1> ciphering transfer direction */ U8 attached_counter; /*< 29: 1> attached to primitive data counter */ U32 ciphering_input; /*< 4: 4> frame-dependent ciphering input */ T_kc kc; /*< 8: 8> ciphering key */ U32 reference1; /*< 32: 4> frame reference number */ U16 header_size; /*< 36: 2> frame header size */ U8 zzz_align0; /*< 38: 1> alignment */ U8 zzz_align1; /*< 39: 1> alignment */ T_desc_list3 desc_list3; /*< 40: 8> List of generic data descriptors */} T_CCI_CIPHER_DESC_REQ;#endif/* --------------------------------------------------------------------------------- *//* * LLC global typedefs */typedef UBYTE T_BIT_INT;typedef T_BIT_INT T_BIT;/* * T_FRAME_NUM must be unsigned! */typedef USHORT T_FRAME_NUM;/* * FRAME_NUM_VALID(a, b, c) equal to ETSI: a <= b <= c */#define FRAME_NUM_VALID(a,b,c) ( (((T_FRAME_NUM)((b)-(a)))%(MAX_SEQUENCE_NUMBER+1)) <= \ (((T_FRAME_NUM)((c)-(a)))%(MAX_SEQUENCE_NUMBER+1)) )/* * FRAME_WIN_VALID(a, b, k) equal to ETSI: a < b + k */#define FRAME_WIN_VALID(a,b,k) ( (((T_FRAME_NUM)((a)-(b)))%(MAX_SEQUENCE_NUMBER+1)) < (k) )/* * FRAME_NUM_DISTANCE(a,b) equal to b - a for frame nums */#define FRAME_NUM_DISTANCE(a,b) ((T_FRAME_NUM)((b)-(a))%(MAX_SEQUENCE_NUMBER+1))typedef struct{ UBYTE data[S_FRAME_SACK_MAX_CTRL_OCTETS];} T_SACK_BITMAP;typedef enum{ ABIT_NO_REQ, ABIT_SET_REQ} T_ABIT_REQ_TYPE;typedef enum{ IQ_NO_FRAME, /* return code only */ IQ_NEW_FRAME, /* new in the queue */ IQ_RETR_FRAME, /* ITX - marked for retransmission */ IQ_W4ACK_FRAME, /* ITX - is send, but no ack up to now */ IQ_IS_ACK_FRAME /* ITX - is ack and waiting for to be next in sequence */} T_IQ_STATUS;typedef enum{ NS_EQUAL_VR, NS_NO_SEQUENCE_ERROR, NS_EQUAL_VR_PLUS_1, NS_IN_RANGE_VR_KU} T_LAST_NS_TYPE;typedef enum{ I_FRAME = I_FRAME_ID, S_FRAME = S_FRAME_ID, UI_FRAME = UI_FRAME_ID, U_FRAME = U_FRAME_ID} T_PDU_TYPE;typedef enum{ /* * The values are chosen to correspond with the Sx and Mx bits in the frame * control field. Thus these commands can be used to build the header of a * frame. * NOTE: * Some I and U frame commands have the same value. */#ifdef REL99 U_NULL = U_FRAME_NULL,#endif /* REL99 */ I_RR = I_FRAME_RR, I_ACK = I_FRAME_ACK, I_RNR = I_FRAME_RNR, I_SACK = I_FRAME_SACK, U_SABM = U_FRAME_SABM, U_DISC = U_FRAME_DISC, U_UA = U_FRAME_UA, U_DM = U_FRAME_DM, U_FRMR = U_FRAME_FRMR, U_XID = U_FRAME_XID} T_COMMAND;typedef enum{ NO_SERVICE, SERVICE_LLME, SERVICE_ITX, SERVICE_IRX, SERVICE_UITX, SERVICE_UIRX, SERVICE_U, SERVICE_TX, SERVICE_RX, SERVICE_T200} T_SERVICE;typedef enum{ PRIM_DATA, PRIM_UNITDATA, PRIM_REMOVED, NO_PRIM} T_PRIM_TYPE;typedef enum{ EXPIRY_TIMED, EXPIRY_REQUESTED} T_EXPIRY_MODE_TYPE;/* * Don't use enum for SAPI, because that's larger in size than UBYTE. */typedef UBYTE T_SAPI;#define SAPI_1 LL_SAPI_1#define SAPI_2 LL_SAPI_INVALID#define SAPI_3 LL_SAPI_3#define SAPI_4 LL_SAPI_INVALID#define SAPI_5 LL_SAPI_5#define SAPI_6 LL_SAPI_INVALID#define SAPI_7 LL_SAPI_7#define SAPI_8 LL_SAPI_INVALID#define SAPI_9 LL_SAPI_9#define SAPI_10 LL_SAPI_INVALID#define SAPI_11 LL_SAPI_11#define SAPI_12 LL_SAPI_INVALID#define SAPI_13 LL_SAPI_INVALID#define SAPI_14 LL_SAPI_INVALID#define SAPI_15 LL_SAPI_INVALID/* * Indicates which primitive to use after successful (re-)establishment: * LL_ESTABLISH_IND/CNF */typedef UBYTE T_ESTABLISHMENT;#define IND_ESTABLISHMENT 1#define CNF_ESTABLISHMENT 2/* * Local TX transmit queue. * NOTE: * The ph_* variables must exactly match the types of T_GRLC_DATA_REQ / * T_GRLC_UNITDATA_REQ. */typedef struct T_TX_QUEUE_ELEMENT{ struct T_TX_QUEUE_ELEMENT *next; /* pointer to next element */ ULONG primitive; /* stored primitive */ ULONG reference; /* entry reference number */ T_PRIM_TYPE prim_type; /* primitive type */ UBYTE ph_sapi; /* primitive header: sapi */ ULONG ph_tlli; /* tlli */ UBYTE ph_grlc_qos_peak; /* grlc_qos.peak */ UBYTE ph_radio_prio; /* radio_prio */ UBYTE ph_cause; /* cause */ T_SERVICE rx_service; /* flow control service */ BOOL remove_frame; /* TRUE: frame has to remove */#ifdef REL99 UBYTE ph_pkt_flow_id; /* packet flow identifier */#endif /* REL99 */} T_TX_QUEUE;typedef struct T_ITX_I_QUEUE_ENTRY{ struct T_ITX_I_QUEUE_ENTRY *next; /* pointer to next element */#ifdef LL_DESC T_LL_DESC_REQ* frame; /* pointer to L3 prim */#else T_LL_DATA_REQ* frame; /* pointer to L3 prim */#endif USHORT n_retr; /* retransmission counter */ T_IQ_STATUS status; /* status flag */ T_FRAME_NUM ns; /* send sequence number N(S) */ ULONG oc_i_tx; /* OC to use for this N(S) */ /* * Copy of original LL_DATA_REQ parameter for attached_counter handling */#ifdef LL_2to1 T_PS_qos_r97 ll_qos; /* quality of service */ T_LL_reference1 reference; /* ciphering indicator */#else T_ll_qos ll_qos; /* quality of service */ T_reference1 reference; /* ciphering indicator */#endif#ifdef REL99 UBYTE pkt_flow_id; /*Packet Flow Identifier */#endif /* REL99 */#ifdef LL_DESC USHORT offset; /* Offset of buffer */ USHORT len; /* Length of buffer */#else USHORT sdu_o_buf; /* Offset of SDU data */ USHORT sdu_l_buf; /* Length of SDU data */#endif UBYTE radio_prio; /* Radio Priority */ UBYTE seg_pos; /* First and/or last seg? */} T_ITX_I_QUEUE_ENTRY;typedef struct{ struct T_ITX_I_QUEUE_ENTRY *first; /* pointer to first element */ USHORT entries; /* number of Queue enties */} T_ITX_I_QUEUE;typedef struct T_ITX_S_QUEUE_ENTRY{ struct T_ITX_S_QUEUE_ENTRY *next; /* pointer to next element */ T_COMMAND sx; /* Supervisiory command Sx */ T_ABIT_REQ_TYPE rt; /* A bit request flag */ T_FRAME_NUM nr; /* N(R) of command */ T_SACK_BITMAP bitmap; /* SACK bitmap */} T_ITX_S_QUEUE_ENTRY;typedef struct T_IRX_QUEUE{ struct T_IRX_QUEUE *next; /* pointer to next element */ T_LL_UNITDATA_IND* frame; /* pointer to L3 prim */ T_FRAME_NUM ns; /* received frame number N(S) */} T_IRX_QUEUE;typedef struct T_UIRX_QUEUE{ struct T_UIRX_QUEUE *next; /* pointer to next element */ T_LL_UNITDATA_IND* frame; /* pointer to L3 prim */} T_UIRX_QUEUE;typedef struct /* T_XID_PARAMETERS */{ struct /* Version */ { BOOL valid; UBYTE value; } version; struct /* IOV-UI */ { BOOL valid; ULONG value; } iov_ui; struct /* IOV-I */ { BOOL valid; ULONG value; } iov_i; struct /* T200 */ { BOOL valid; USHORT value; } t200; struct /* N200 */ { BOOL valid; UBYTE value; } n200; struct /* N201-U */ { BOOL valid; USHORT value; } n201_u; struct /* N201-I */ { BOOL valid; USHORT value; } n201_i; struct /* mD */ { BOOL valid; USHORT value; } md; struct /* mU */ { BOOL valid; USHORT value; } mu; struct /* kD */ { BOOL valid; UBYTE value; } kd; struct /* kU */ { BOOL valid; UBYTE value; } ku; struct /* Reset */ { BOOL valid; } reset;} T_XID_PARAMETERS;typedef struct /* T_FFS_XID_PARAMETERS */{ struct /* T200 */ { BOOL valid; USHORT value; } t200[UNACKNOWLEDGED_INC]; struct /* N200 */ { BOOL valid; UBYTE value; } n200[UNACKNOWLEDGED_INC]; struct /* N201-U */ { BOOL valid; USHORT value; } n201_u[UNACKNOWLEDGED_INC]; struct /* N201-I */ { BOOL valid; USHORT value; } n201_i[ACKNOWLEDGED_INC]; struct /* mD */ { BOOL valid; USHORT value; } md[ACKNOWLEDGED_INC]; struct /* mU */ { BOOL valid; USHORT value; } mu[ACKNOWLEDGED_INC]; struct /* kD */ { BOOL valid; UBYTE value; } kd[ACKNOWLEDGED_INC]; struct /* kU */ { BOOL valid; UBYTE value; } ku[ACKNOWLEDGED_INC];} T_FFS_XID_PARAMETERS;typedef struct /* T_LLME_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif} T_LLME_DATA;typedef struct /* T_U_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif /* * TLLI of current transaction (is set with incoming primitives, time-outs, * and signals with primitive payload). */ ULONG current_tlli; /* * Number of retransmissions per sent command frame. */ UBYTE retransmission_counter; /* * If LLC receives an release request from Layer 3 and is not able to confirm * the request immediately, release_requested has to be set to TRUE. */ UBYTE release_requested; /* * Send LL_ESTABLISH_IND/CNF after successful establishment. */ T_ESTABLISHMENT ind_cnf_establishment; /* * Indicates if XID command has been sent. */ BOOL xid_pending; /* * Indicates that an LL_XID_IND has been sent. */ BOOL ll_xid_resp_pending; /* * Reason of frame rejection condition. */ UBYTE frmr_reason; /* * Used to tag parameters for the next XID response. This is done by * setting the corresponding bit (with the definitions from llc_uf.h) to 1. * This variable is initialised by llme_init(), and with every call of * u_eval_xid(). */ ULONG xid_tag; /* * Tags parameters for further negotiation that have not been included in * the XID command but are included in the XID response. These parameters * have to be included in every XID response until the parameter has been * explicitly negotiated, either by responding to an XID command that * included the parameter, or by explicitly including the parameter * the next time an XID command is transmitted. * <R.LLC.XIDNEG_R.A.015> * This variable is initialised by llme_init(). */ ULONG xid_tag_negotiate; /* * Used to tag parameters that have actually been sent in the last command * or response frame. It is used for collision checks and the like. * This variable is initialised by llme_init(), and with every call of * u_insert_xid(). */ ULONG xid_tag_sent; /* * Structure to contain XID parameters that are requested to be negotiated. * Valid flags are initialised by llme_init(), and are being reset when * the parameter has explicitly been included in a response. */ T_XID_PARAMETERS requested_xid;} T_U_DATA;typedef struct /* T_ITX_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif BOOL tx_waiting; BOOL buffer_was_full; /* * I frame buffer size variables: Total length of * transmitted and not acknowlegded information fields. */ ULONG B_tx; /* * Local transmit queues for I- and S frames */ T_ITX_I_QUEUE i_queue; T_ITX_S_QUEUE_ENTRY *s_queue; /* * T201 Data */ T_ITX_I_QUEUE_ENTRY *t201_entry; USHORT n_pb_retr;} T_ITX_DATA;typedef struct /* T_IRX_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif /* * I frame buffer size variables: Total length of * stored information fields. */ ULONG B_rx; /* * Next frame number to forward to L3 */ T_FRAME_NUM vf; /* * L3 ready to receive a data indication flag */ BOOL ll_send_ready; T_LAST_NS_TYPE last_ns; T_IRX_QUEUE *queue;} T_IRX_DATA;typedef struct /* T_UITX_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif /* * Unacknowledged send sequence number */ T_FRAME_NUM vu;} T_UITX_DATA;typedef struct /* T_UIRX_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif /* * Bit field for received N(U) values, relative to V(UR). */ ULONG last_32_frames_bitfield; T_UIRX_QUEUE *queue;} T_UIRX_DATA;typedef struct /* T_T200_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif /* * Length of timer T200 in milliseconds (is negotiated in 0.1s!). * LLC layer parameter. */ T_TIME length; /* * The frame which is associated with the timer, the RLC/MAC cause of the * frame, and the service that started the timer. This is the t200_data * array of SDL. */#ifdef LL_DESC T_LL_UNITDESC_REQ *frame;#else T_LL_UNITDATA_REQ *frame;#endif UBYTE cause; T_SERVICE originator;} T_T200_DATA;typedef struct /* T_TX_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif /* * Local transmit queue (single-linked dynamic list). */ T_TX_QUEUE *queue; /* * Counter of available space for UITX primitives in the queue. */ UBYTE queue_counter_itx[ITX_NUM_INC]; UBYTE queue_counter_uitx[UITX_NUM_INC];} T_TX_DATA;typedef struct /* T_RX_DATA */{ UBYTE state; /* * Required for state traces. */#ifndef NTRACE char *name; char *state_name;#endif} T_RX_DATA;typedef struct /* T_SAPI_DATA */{ /* * Unacknowledged receive sequence numbers (0..511) */ T_FRAME_NUM vur; T_FRAME_NUM last_vur; /* * Acknowledged mode frame numbers (0..511) */ T_FRAME_NUM vr; T_FRAME_NUM va; T_FRAME_NUM vs; /* * Binary overflow counters for acknowledged/unacknowledged mode and * uplink/downlink. These variables are initialised with llme_init(), * and the unacknowledged OCs are reset when XID reset has been received. */ ULONG oc_ui_tx; ULONG oc_ui_rx; ULONG oc_i_tx; ULONG oc_i_rx; /* * pbit_outstanding set to TRUE indicates that a frame with P bit set to 1 * is currently outstanding */ BOOL pbit_outstanding;} T_SAPI_DATA;typedef struct /* Layer 3 */{ BOOL valid; UBYTE length;#ifdef LL_2to1 UBYTE value[LL_MAX_L3_XID_LEN];#else UBYTE value[LLC_MAX_L3_XID_LEN];#endif} T_L3_XID;/* * CCI global typedefs */typedef enum{ CIPHER_REQ, DECIPHER_REQ, NO_REQ} T_CCI_PRIM_TYPE;/* CCI data base */typedef struct /*T_FBS_SERVICE */{ UBYTE state;#ifndef NTRACE char *name; char *state_name;#endif USHORT volatile *cntl_reg; USHORT volatile *status_reg; USHORT volatile *status_irq_reg; USHORT volatile *conf_ul_reg1; USHORT volatile *conf_ul_reg2; USHORT volatile *conf_ul_reg3; USHORT volatile *conf_ul_reg4; USHORT volatile *conf_ul_reg5; USHORT volatile *conf_dl_reg1; USHORT volatile *conf_dl_reg2; USHORT volatile *conf_dl_reg3; USHORT volatile *conf_dl_reg4; USHORT volatile *conf_dl_reg5; USHORT volatile *kc_reg1; USHORT volatile *kc_reg2; USHORT volatile *kc_reg3; USHORT volatile *kc_reg4; USHORT volatile *fcs_ul_reg1; USHORT volatile *fcs_ul_reg2; USHORT volatile *fcs_dl_reg1; USHORT volatile *fcs_dl_reg2;#if (BOARD == 61 OR BOARD == 71) /* G-Sample or I-Sample */ USHORT volatile *switch_reg;#endif USHORT volatile *data16_reg; UBYTE volatile *data8_reg;#ifdef _GEA_SIMULATION_ UBYTE *simulated_reg; UBYTE *simulated_reg_buffer;#endif /*primitives should also be defined as global */#ifdef LL_DESC T_CCI_CIPHER_DESC_REQ *cci_cipher_req;#else T_CCI_CIPHER_REQ *cci_cipher_req;#endif T_CCI_DECIPHER_REQ *cci_decipher_req;#ifndef TI_PS_OP_CIPH_DRIVER T_CIPH_init_cipher_req_parms ciph_params; BOOL initialized;#endif ULONG cci_freed_partition; BOOL cci_info_trace;} T_FBS_DATA;typedef struct /* T_LLC_DATA */{ /* * Indicates LLC is suspended or not (default). * This variable is initialised by llme_init(). */ BOOL suspended; /* * Indicates LLC that GRLC is suspended or not (default). * This variable is initialised by llme_init(). */ BOOL grlc_suspended; /* * Current SAPI number. This is used for outgoing primitives. It is set * with each external event, like an incoming primitive or a time-out. */ T_SAPI current_sapi; /* * TLLI New and TLLI Old. These are set by GMM via LLGMM_ASSIGN_REQ. * TLLI New is used for sending primitives (if the upper layer did not * already specify the TLLI). TLLI Old is currently unused. * Both variables are initialised by llme_init(). */ ULONG tlli_new; ULONG tlli_old; /* * LLC layer parameters (according to GSM 04.64, Version 6.4.0). These * parameters are initialised by llc_init_parameters(). */ UBYTE version; ULONG iov_ui; ULONG iov_i_base[ACKNOWLEDGED_INC]; ULONG *iov_i; /* * T200 and T201 values are defined in the respective service data arrays. */ UBYTE n200_base[UNACKNOWLEDGED_INC]; UBYTE *n200; USHORT n201_u_base[UNACKNOWLEDGED_INC]; USHORT n201_i_base[ACKNOWLEDGED_INC]; USHORT *n201_u; USHORT *n201_i; USHORT md_base[ACKNOWLEDGED_INC]; USHORT mu_base[ACKNOWLEDGED_INC]; USHORT *md; USHORT *mu; UBYTE kd_base[ACKNOWLEDGED_INC]; UBYTE ku_base[ACKNOWLEDGED_INC]; UBYTE *kd; UBYTE *ku; T_L3_XID requested_l3_xid_base[ACKNOWLEDGED_INC]; T_L3_XID *requested_l3_xid; /* * Structure to contain decoded XID parameters. * Valid flags are initialized by u_check_xid() each time received XID * is checked. */ T_XID_PARAMETERS decoded_xid; T_L3_XID decoded_l3_xid; /* * LLC layer variables needed for ciphering (see services TX/RX). These * variables are set with LLGMM_ASSIGN_REQ by GMM. */#ifdef LL_2to1 T_LLGMM_llgmm_kc kc;#else T_llgmm_kc kc;#endif UBYTE ciphering_algorithm; /* * Service data structures. * * Services with multiple incarnations require an array of structures * named xxx_base[] with xxx = service abbrevation, and additionally a * pointer named *xxx, which will be accessed instead of xxx_base. * * Services with only one incarnation just have to declare one structure * named xxx (no need for xxx_base[] and *xxx). * * The differentiation between the two access possibilites is made with * the defines of the service names above (LLC_SERVICE_XXX). */ T_LLME_DATA llme; T_SAPI_DATA sapi_base[MAX_SAPI_INC]; T_SAPI_DATA *sapi; T_U_DATA u_base[U_NUM_INC]; T_U_DATA *u; T_ITX_DATA itx_base[ITX_NUM_INC]; T_IRX_DATA irx_base[IRX_NUM_INC]; T_ITX_DATA *itx; T_IRX_DATA *irx; T_UITX_DATA uitx_base[UITX_NUM_INC]; T_UIRX_DATA uirx_base[UIRX_NUM_INC]; T_UITX_DATA *uitx; T_UIRX_DATA *uirx; T_T200_DATA t200_base[T200_NUM_INC]; T_T200_DATA *t200; T_TX_DATA tx; T_RX_DATA rx; T_FBS_DATA fbs;#ifdef _SIMULATION_ /* * Structure to contain XID parameters that are configured in ffs. */ T_FFS_XID_PARAMETERS ffs_xid;#endif /*Number of milliseconds to delay after sending reset_ind to SNDCP*/ USHORT millis;#ifdef REL99 U16 cur_pfi; /* current packet flow identifier */#endif T_ll_qos cur_qos; /* quality of service R97 */ U8 cur_radio_prio; /* T_PS_radio_prio, Radio priority */} T_LLC_DATA;/*==== EXPORT =====================================================*//* * Entity data base */#ifdef LLC_PEI_C T_LLC_DATA llc_data_base, *llc_data;#elseEXTERN T_LLC_DATA llc_data_base, *llc_data;#endif#define ENTITY_DATA llc_data/* * Communication handles (see also LLC_PEI.C) */#define hCommGMM llc_hCommGMM#define hCommSNDCP llc_hCommSNDCP#ifdef LL_2to1#define hCommMM llc_hCommMM#else#define hCommGSMS llc_hCommGSMS#endif#define hCommGRLC llc_hCommGRLC#ifdef LLC_PEI_C T_HANDLE hCommGMM = VSI_ERROR; T_HANDLE hCommSNDCP = VSI_ERROR;#ifdef LL_2to1 T_HANDLE hCommMM = VSI_ERROR;#else T_HANDLE hCommGSMS = VSI_ERROR;#endif T_HANDLE hCommGRLC = VSI_ERROR; T_HANDLE LLC_handle;/* * make the pei_create function unique */#define pei_create llc_pei_create#elseEXTERN T_HANDLE hCommGMM;EXTERN T_HANDLE hCommSNDCP;#ifdef LL_2to1EXTERN T_HANDLE hCommMM;#elseEXTERN T_HANDLE hCommGSMS;#endifEXTERN T_HANDLE hCommGRLC;EXTERN T_HANDLE LLC_handle;#endif /* LLC_PEI_C */#endif /* LLC_H */