FreeCalypso > hg > fc-sim-sniff
view doc/Sniffing-hw-setup @ 42:5804ff735f9e
sw/sniff-dec/Makefile: no LIBS
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 31 Aug 2023 08:47:32 +0000 |
parents | f1c3dd2173d3 |
children | 1068f9fd41d5 |
line wrap: on
line source
The hardware setup for SIM sniffing with SIMtrace3 consists of the following components: * The same SIMtrace FPC cables (going from a SIM socket to the 6-pin FPC connector) that were originally developed for SIMtrace1/2 and are sold by Sysmocom; * An off-the-shelf Lattice Icestick FPGA board (sold by Digi-Key, for example) that has been outfitted with header pins: the board ships with empty PTHs (plated through holes) at J1, hence a small soldering job is required to populate this header; * Some in-between components described below. For the in-between components of the last bullet point above, there are 3 possibilities, each described in its own section below. HW setup version 0 ================== (works today) The piece between the SIMtrace FPC cable from Sysmocom and the Icestick FPGA board is the "SIMtrace FPC passive connection" adapter (design files in boards/sim-fpc-pasv directory) from the fall of 2022. The electrical connection from the ME/ID SIM socket to the physical SIM is direct and physically continuous (no switches, no Heisenbugs), and a trio of FPGA I/O pins (configured as inputs) are connected directly to this SIM bus with jumper wires. This hw setup is intended only as a very temporary prototype until we get hw setup version 1 described below. The present hw setup version 0 works ONLY if the ME/ID operates with class B voltage levels: if you try class A (5V), you'll instantly damage the FPGA by grossly exceeding its Absolute Maximum Ratings (don't do it!), and if you try class C (1.8V), the high level will fall right between Vil_max and Vih_min, causing the FPGA to receive garbage. However, this otherwise-unusable hw setup was good enough to prove the FPGA logic working, using an FCDEV3B as the ME/ID, manually forced into class B operation. HW setup version 1 ================== (coming very soon) Compared to hw setup version 0, one extra component is added between the sim-fpc-pasv adapter and the Icestick board: another little adapter board called "SIMtrace-ice multivolt sniffer", design files in boards/mv-sniffer directory. The only active component on the mv-sniffer board is a Nexperia 74LVC4T3144 dual supply logic voltage level translator IC, powered from SIM_VCC on its A side and from Icestick board +3.3V rail on its B side. The mv-sniffer PCB is currently on its way to FreeCalypso HQ from the PCB fab in China, and once the PCB arrives, assembly will require another trip to Technotronix. Once we have this board assembled, we should have a working SIMtrace3 sniffing path that is fully compatible with all 3 voltage classes, per the original intent of SIMtrace3 project. HW setup version 2 ================== (a little more distant, but will be needed before wider spread) The solution with separate sim-fpc-pasv and mv-sniffer boards is expected to be quite inconvenient because of the number of pieces required - clutter on the lab bench - plus poor electrical design with jumper wires between the two boards extending the electrical length of the SIM bus before the LVC buffer. In the fully polished version of SIMtrace3, these two adapter boards will need to be combined into one. The final SIMtrace3 sniffer pod is expected to be a single board (still very simple and low cost) featuring the following components: 1) SIMtrace FPC connector 2) SIM socket 3) 74LVC4T3144 buffer IC 4) SIM bus solidly connected between components 1, 2 and 3 5) A header for FPGA board connection, wired to the 'B' side of component 3