FreeCalypso > hg > fc-tourmaline
view src/g23m-gprs/grlc/grlc_measf.c @ 51:04aaa5622fa7
disable deep sleep when Iota LEDB is on
TI's Iota chip docs say that CLK13M must be running in order for
LEDB to work, and practical experience on Mot C139 which uses
Iota LEDB for its keypad backlight concurs: if Calypso enters
deep sleep while the keypad backlight is turned on, the light
flickers visibly as the chipset goes into and out of deep sleep.
TI's original L1 sleep manager code had logic to disable deep sleep
when LT_Status() returns nonzero, but that function only works
for B-Sample and C-Sample LT, always returns 0 on BOARD 41 - no
check of Iota LEDB status anywhere. Change this code for our
current hardware: disable deep sleep when Iota LEDB has been
turned on through LLS.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Mon, 19 Oct 2020 05:11:29 +0000 |
parents | fa8dc04885d8 |
children |
line wrap: on
line source
/* +----------------------------------------------------------------------------- | Project : GPRS (8441) | Modul : GRLC +----------------------------------------------------------------------------- | Copyright 2002 Texas Instruments Berlin, AG | All rights reserved. | | This file is confidential and a trade secret of Texas | Instruments Berlin, AG | The receipt of or possession of this file does not convey | any rights to reproduce or disclose its contents or to | manufacture, use, or sell anything it may describe, in | whole, or in part, without the specific written consent of | Texas Instruments Berlin, AG. +----------------------------------------------------------------------------- | Purpose : This module implements local functions for service | MEAS of entity GRLC. +----------------------------------------------------------------------------- */ #ifndef GRLC_MEASF_C #define GRLC_MEASF_C #endif /* #ifndef GRLC_MEASF_C */ #define ENTITY_GRLC /*==== INCLUDES =============================================================*/ #include "typedefs.h" #include "vsi.h" #include "macdef.h" #include "gprs.h" #include "gsm.h" #include "ccdapi.h" #include "prim.h" #include "message.h" #include "grlc.h" #include "grlc_measf.h" /*==== CONST ================================================================*/ #define I_LEVEL_MIN I_LEVEL_0 #define I_LEVEL_0 0 /* i.lev. is greater than C */ #define I_LEVEL_15 15 /* i.lev. is less than or equal to C - 28 dB */ #define I_LEVEL_MAX I_LEVEL_15 #define I_LEVEL_GAMMA_0_SKIPPED 0xF0 /* used for tracing */ #define I_LEVEL_GAMMA_1_SKIPPED 0xF1 /* used for tracing */ #define I_LEVEL_GAMMA_2_SKIPPED 0xF2 /* used for tracing */ #define I_LEVEL_GAMMA_3_SKIPPED 0xF3 /* used for tracing */ #define I_LEVEL_STATE_MISMATCH 0xFD /* used for tracing */ #define I_LEVEL_IDX_TO_SMALL 0xFE /* used for tracing */ #define I_LEVEL_NOT_AVAIL 0xFF /* used for tracing */ /*==== LOCAL VARS ===========================================================*/ /*==== LOCAL TYPES===========================================================*/ /*==== PUBLIC FUNCTIONS =====================================================*/ /* +------------------------------------------------------------------------------ | Function : meas_c_calc_mean +------------------------------------------------------------------------------ | Description : This function calculates the mean of the received signal level | of the four normal bursts that compose a block. It returns | the amount of bursts with valid receibed signal values. | | Parameters : burst_level - receive signal level of the first valid downlink | PDCH radio block | radio_freq - radio frequency of TDMA frame within a | radio block | ss_block - mean of the received signal level | pb_rdc - Pb reduction | +------------------------------------------------------------------------------ */ GLOBAL UBYTE meas_c_calc_mean ( UBYTE *burst_level, USHORT *radio_freq, ULONG *ss_block, UBYTE *pb_rdc, T_CGRLC_freq_param *freq_param ) { UBYTE i; /* used for counting */ UBYTE vld_smpl = 0; /* valid measurement samples */ TRACE_FUNCTION( "meas_c_calc_mean" ); *pb_rdc = 0; *ss_block = 0; /* add up all measurement data */ for( i = 0; i < MAC_BURST_PER_BLOCK; i++ ) { if( burst_level[i] NEQ MAC_RXLEV_NONE ) { vld_smpl++; *ss_block += burst_level[i]; if( !( grlc_data->tm.freq_param.pdch_hopping EQ FALSE AND grlc_data->tm.freq_param.bcch_arfcn EQ radio_freq[i] ) ) { *pb_rdc += 1; } } } /* calculate the mean */ if( vld_smpl ) { *ss_block = ( *ss_block * MEAS_ACRCY ) / vld_smpl; } return( vld_smpl ); } /* meas_c_calc_mean() */ /* +------------------------------------------------------------------------------ | Function : meas_int_fill_rel_iLevel +------------------------------------------------------------------------------ | Description : ... | | Parameters : ... | +------------------------------------------------------------------------------ */ GLOBAL void meas_int_fill_rel_iLevel ( UBYTE *v_ilev, UBYTE *ilev, UBYTE idx, USHORT c_raw_data_lev ) { UBYTE val; /* holds interference level data */ if( grlc_data->meas.ilev.ilev[idx] NEQ CGRLC_ILEV_NONE ) { if( c_raw_data_lev < grlc_data->meas.ilev.ilev[idx] * MEAS_ACRCY ) { *ilev = I_LEVEL_MIN; } else { val = ( c_raw_data_lev - grlc_data->meas.ilev.ilev[idx] * MEAS_ACRCY ) / ( 2 * MEAS_ACRCY ) + 1; if( val > I_LEVEL_MAX ) *ilev = I_LEVEL_MAX; else *ilev = val; } *v_ilev = TRUE; } else { *v_ilev = FALSE; } } /* meas_int_fill_rel_iLevel() */