view src/gpf/osl/os_tim_fl.c @ 51:04aaa5622fa7

disable deep sleep when Iota LEDB is on TI's Iota chip docs say that CLK13M must be running in order for LEDB to work, and practical experience on Mot C139 which uses Iota LEDB for its keypad backlight concurs: if Calypso enters deep sleep while the keypad backlight is turned on, the light flickers visibly as the chipset goes into and out of deep sleep. TI's original L1 sleep manager code had logic to disable deep sleep when LT_Status() returns nonzero, but that function only works for B-Sample and C-Sample LT, always returns 0 on BOARD 41 - no check of Iota LEDB status anywhere. Change this code for our current hardware: disable deep sleep when Iota LEDB has been turned on through LLS.
author Mychaela Falconia <falcon@freecalypso.org>
date Mon, 19 Oct 2020 05:11:29 +0000
parents 4e78acac3d88
children
line wrap: on
line source

/*
 * This C module is a reconstruction based on the disassembly of
 * os_tim.obj in frame_na7_db_fl.lib from the Leonardo package,
 * subsequently reworked by Space Falcon.
 */

/* set of included headers from COFF symtab: */
#include <stdio.h>
#include "nucleus.h"
#include "typedefs.h"
#include "os.h"
#include "gdi.h"
#include "os_types.h"
#include "os_glob.h"

extern UNSIGNED TMD_Timer;
extern INT      TMD_Timer_State;

extern T_OS_TIMER_ENTRY TimerTable[];
extern T_OS_TIMER_TABLE_ENTRY *p_list[];

extern void os_Timeout(UNSIGNED t_handle);
extern void timer_error(int err);

unsigned os_time_to_tick_multiplier = TIME_TO_TICK_TDMA_FRAME_MULTIPLIER;
unsigned os_tick_to_time_multiplier = TICK_TO_TIME_TDMA_FRAME_MULTIPLIER;

unsigned volatile t_start_ticks;
T_OS_TIMER_TABLE_ENTRY *t_running;
int used_timers;
int next_t_handle;
int volatile t_list_access;
int max_used_timers;
NU_SEMAPHORE TimSemCB;
NU_TIMER os_timer_cb;

#ifdef __GNUC__
#define	BARRIER	asm volatile ("": : :"memory")
#else
#define	BARRIER	/* prayer */
#endif

GLOBAL LONG
os_set_tick(int os_system_tick)
{
	switch (os_system_tick) {
	case SYSTEM_TICK_TDMA_FRAME:
		os_time_to_tick_multiplier = TIME_TO_TICK_TDMA_FRAME_MULTIPLIER;
		os_tick_to_time_multiplier = TICK_TO_TIME_TDMA_FRAME_MULTIPLIER;
		return(OS_OK);
	case SYSTEM_TICK_10_MS:
		os_time_to_tick_multiplier = TIME_TO_TICK_10MS_MULTIPLIER;
		os_tick_to_time_multiplier = TICK_TO_TIME_10MS_MULTIPLIER;
		return(OS_OK);
	default:
		return(OS_ERROR);
	}
}

GLOBAL LONG
os_TimerInformation(USHORT Index, char *Buffer)
{
	static int t_info_read;

	if (t_info_read) {
		t_info_read = 0;
		return(OS_ERROR);
	}
	sprintf(Buffer, "Maximum %d of %d available timers running",
		max_used_timers, MaxSimultaneousTimer);
	t_info_read = 1;
	return(OS_OK);
}

GLOBAL LONG
os_TimInit(void)
{
	int i;

	if (NU_Create_Semaphore(&TimSemCB, "TIMSEM", 1, NU_PRIORITY)
			!= NU_SUCCESS)
		return(OS_ERROR);
	if (NU_Create_Timer(&os_timer_cb, "OS_TIMER", os_Timeout, 0, 1, 0,
			    NU_DISABLE_TIMER) != NU_SUCCESS)
		return(OS_ERROR);
	used_timers = 0;
	max_used_timers = 0;
	next_t_handle = 1;
	t_list_access = 0;
	t_start_ticks = 0;
	p_list[0] = 0;
	for (i = 1; i < MaxSimultaneousTimer; i++) {
		TimerTable[i].entry.status = TMR_FREE;
		TimerTable[i].entry.next = 0;
		TimerTable[i].entry.prev = 0;
		TimerTable[i].next_t_handle = i + 1;
		p_list[i] = 0;
	}
	TimerTable[MaxSimultaneousTimer].entry.status = TMR_FREE;
	TimerTable[MaxSimultaneousTimer].next_t_handle = 0;
	t_running = 0;
	return(OS_OK);
}

GLOBAL LONG
os_RecoverTick(OS_TICK ticks)
{
	UNSIGNED current_system_clock;

	current_system_clock = NU_Retrieve_Clock();
	NU_Set_Clock(current_system_clock + ticks);
	if (TMD_Timer_State == TM_ACTIVE) {
		if (TMD_Timer <= ticks) {
			TMD_Timer_State = TM_EXPIRED;
			TMD_Timer = 0;
		} else
			TMD_Timer -= ticks;
	}
	return(OS_OK);
}

GLOBAL LONG
os_QueryTimer(OS_HANDLE TaskHandle, OS_HANDLE TimerHandle,
		OS_TIME *RemainingTime)
{
	T_OS_TIMER_TABLE_ENTRY *timer, *t_iter;
	OS_TICK c_ticks, r_ticks, e_ticks;
	STATUS sts;

	if (TimerHandle > MaxSimultaneousTimer)
		return(OS_ERROR);
	sts = NU_Obtain_Semaphore(&TimSemCB, NU_SUSPEND);
	timer = &TimerTable[TimerHandle].entry;
	if (timer->status == TMR_FREE) {
		if (sts == NU_SUCCESS)
			NU_Release_Semaphore(&TimSemCB);
		return(OS_ERROR);
	}
	t_list_access = 1;
	BARRIER;
	if (!t_running) {
		r_ticks = 0;
		goto out;
	}
	c_ticks = NU_Retrieve_Clock();
	e_ticks = c_ticks - t_start_ticks;
	t_iter = t_running;
	if (t_iter->r_ticks >= e_ticks)
		r_ticks = t_iter->r_ticks - e_ticks;
	else
		r_ticks = 0;
	while (t_iter != timer) {
		t_iter = t_iter->next;
		if (t_iter == t_running) {
			r_ticks = 0;
			goto out;
		}
		r_ticks += t_iter->r_ticks;
	}
out:	BARRIER;
	t_list_access = 0;
	if (sts == NU_SUCCESS)
		NU_Release_Semaphore(&TimSemCB);
	*RemainingTime = SYSTEM_TICKS_TO_TIME(r_ticks);
	return(OS_OK);
}

GLOBAL LONG
os_InactivityTicks(int *next_event, OS_TICK *next_event_ticks)
{
	*next_event = 1;
	switch (TMD_Timer_State) {
	case TM_ACTIVE:
		*next_event_ticks = TMD_Timer;
		return(OS_OK);
	case TM_NOT_ACTIVE:
		*next_event_ticks = 0;
		*next_event = 0;
		return(OS_OK);
	default:
		*next_event_ticks = 0;
		return(OS_OK);
	}
}