view src/cs/drivers/drv_core/clkm/clkm.c @ 287:3dee79757ae4

UI fw: load handheld audio mode on boot We have now reached the point where use of audio mode config files should be considered mandatory. In ACI usage we can tell users that they need to perform an AT@AUL of some appropriate audio mode, but in UI-enabled fw we really need to have the firmware load audio modes on its own, so that correct audio config gets established when the handset or development board runs on its own, without a connected host computer. Once have FC Venus with both main and headset audio channels and headset plug insertion detection, our fw will need to automatically load the handheld mode or the headset mode depending on the plug insertion state. For now we load only the handheld mode, which has been tuned for FC-HDS4 on FC Luna.
author Mychaela Falconia <falcon@freecalypso.org>
date Sat, 13 Nov 2021 03:20:57 +0000
parents 4e78acac3d88
children
line wrap: on
line source

/******************************************************************************
            TEXAS INSTRUMENTS INCORPORATED PROPRIETARY INFORMATION           
                                                                             
   Property of Texas Instruments -- For  Unrestricted  Internal  Use  Only 
   Unauthorized reproduction and/or distribution is strictly prohibited.  This 
   product  is  protected  under  copyright  law  and  trade  secret law as an 
   unpublished work.  Created 1987, (C) Copyright 1997 Texas Instruments.  All 
   rights reserved.                                                            
                  
                                                           
   Filename       	: clkm.c

   Description    	: Set of functions useful to test the Saturn
			  CLKM peripheral 

   Project        	: drivers

   Author         	: pmonteil@tif.ti.com  Patrice Monteil.

   Version number   : 1.13

   Date             : 05/23/03

   Previous delta 	: 10/23/01 14:43:31

   Sccs Id  (SID)       : '@(#) clkm.c 1.11 10/23/01 14:43:31 '

*****************************************************************************/

           //############################################################
           //############################################################
           //### Be careful: this file must be placed in Flash Memory ###
           //###     and compiled in 16 bits length intructions       ###
           //###        (CF. the function wait_ARM_cycles()           ###
           //############################################################
           //############################################################
           
#include "l1sw.cfg"
#include "chipset.cfg"
#include "board.cfg"
#include "swconfig.cfg"

#if (OP_L1_STANDALONE == 0)
  #include "main/sys_types.h"
#else
  #include "sys_types.h"
#endif

#include "clkm.h" 


#if (CHIPSET == 12)
    #include "sys_memif.h"
#else
    #include "memif/mem.h"
#endif

#if (BOARD == 34)
  #include "armio/armio.h"
  #include "timer/timer.h"
#endif

static SYS_UWORD32 ratio_wait_loop = 0;

#if (CHIPSET == 12)
  const double dsp_div_value[CLKM_NB_DSP_DIV_VALUE] = {1, 1.5, 2, 3};
#endif

#if (BOARD == 34)
/*
 *  CLKM_InitARMClock()
 *
 * This init is for VTCX0 = 13 MHz
 *   (use CLKM_VTCXO_26 if VTCX0 is 26 MHz)
 * Parameters :    src : 0x0 means EXT CLK (mpu dpll) selected
 *                       0x1 means VTCX0 selected
 *                 div : Division factor applied to clock
 *                         source
 *                        (div = 3 -> divise by 3/2 in fact)
 *             WARNING : reverse order in comparison to ULYSSE
 *
 * Return     : none
 * Functionality :Initialize the ARM Clock frequency
 */

void CLKM_InitARMClock(int src, int div)
{
    SYS_UWORD16 cntl = * (volatile SYS_UWORD16 *) CLKM_ARM_CLK;
    int clk_xp5, clk_div;

    if (div == 3)
    clk_xp5 = 1;
    else
    clk_xp5 = 0;

    if (div == 2)
    clk_div = 1;
    else if (div == 4) 
    clk_div = 0;
    else
    clk_div = 3;

    cntl &= ~(MASK_ARM_MCLK_1P5 | CLKM_MCLK_DIV);
    cntl |= ((clk_xp5 << 3) | (clk_div << 4));

    * (volatile SYS_UWORD16 *) CLKM_ARM_CLK = cntl;
    if (src)
    CLKM_EnableDPLL(0);
    else
    CLKM_EnableDPLL(1);
}

/*
 * CLKM_SetMclkDiv
 *
 * Set divider 
 *
 * Parameter : 2-bit divider as per spec (0-7)
 * 
 * Side-effect : compute magic delay for busy loops
 *
 */
void CLKM_SetMclkDiv(int div)
{
    volatile SYS_UWORD16 clkm_ctrl;
    clkm_ctrl = *((volatile SYS_UWORD16 *) CLKM_ARM_CLK); // read register
    clkm_ctrl &= ~CLKM_MCLK_DIV;	
    clkm_ctrl |= (div << 4);
    *((volatile SYS_UWORD16 *) CLKM_ARM_CLK) = clkm_ctrl;
}

/*
 * CLKM_EnableDPLL
 *
 * Enable or disable 48mhz PLL for ARM clock
 *
 * Parameter : 1 or 0
 *
 * Side-effect : compute magic delay for busy loops
 *
 */
void CLKM_EnableDPLL(int enable)
{
    volatile SYS_UWORD16 clkm_ctrl;

    // read CLKM register
    clkm_ctrl = *((volatile SYS_UWORD16 *) CLKM_ARM_CLK);

    if (enable) 
    {
        // PARAMETERS tuned for the AVENGER 2 reference design
        // we wait before accessing external memory at wake up
        // we have 2.5 ms margin before the first IT TDMA, we wait
        //
        //  5000     loop cycles
        //  5000 * 5 arm7 cycles
        // giving <= 1 ms at 26 MHz
        //
        wait_ARM_cycles(5000);
    }
    else 
    {
        // reset bit for VTCXO
        clkm_ctrl &= ~CLKM_CLKIN_SEL;
        *((volatile SYS_UWORD16 *) CLKM_ARM_CLK) = clkm_ctrl;

        // disable clk48mhz
        AI_ResetBit(6);
    }
}

/*
 * CLKM_EnableSharedMemClock
 *
 * Enable or disable shared mem clock 
 *
 * Parameter : 1 or 0
 *
 */
void CLKM_EnableSharedMemClock(int enable)
{
    if (enable) 
    {
        // request shared mem clock and wait for MPU HW acknowledge
        AI_ResetBit(4);
        while(AI_ReadBit(5)!=1); 
    }
    else 
    {
        // disable shared mem clock
        AI_SetBit(4);
    }
}

/*
 * CLKM_InitLeadClock
 * 
 * Parameter : onoff, mul, ndiv, div 
 *  
 * onoff -> (1:pll on) (0: pll off)
 * if div = 0  -> x(plmul+1) 
 * if div = 1  -> x(plmul+1)/2 if plmul is even
 *                x(plmul/4)   if plmul is odd
 * ndiv
 */

void CLKM_InitLeadClock(int onoff, int mul, int ndiv, int div)
{
    int pldiv, pllndiv ;
    SYS_UWORD16 value = 0;

    value |=  onoff & CLKM_PLONOFF ;
    value |= (mul << 1) & CLKM_PLMUL;
    value |= (ndiv << 5)& CLKM_PLLNDIV;
    value |= (div << 6) & CLKM_PLDIV;

    CLKM_INITLEADPLL(value);
}

#elif ((CHIPSET == 4) || (CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12))
  /*--------------------------------------------------------------*/
  /*  CLKM_InitARMClock()                                         */
  /*--------------------------------------------------------------*/
  /* Parameters :  clk_src : 0x00 means DPLL selected             */
  /*                         0x01 means VTCX0 selected            */
  /*                         0x03 means CLKIN selected            */
  /*               clk_xp5 : Enable 1.5 or 2.5 division factor    */
  /*                         (0 or 1)                             */
  /*               clk_div : Division factor applied to clock     */
  /*                         source                               */
  /*             WARNING : reverse order in comparison to ULYSSE  */
  /*                                                              */
  /* Return     : none                                            */
  /* Functionality :Initialize the ARM Clock frequency            */
  /*--------------------------------------------------------------*/
  void CLKM_InitARMClock(SYS_UWORD16 clk_src, SYS_UWORD16 clk_div, SYS_UWORD16 clk_xp5)
  {
    SYS_UWORD16 cntl = * (volatile SYS_UWORD16 *) CLKM_ARM_CLK;
        
    cntl &= ~(CLKM_CLKIN0 | CLKM_CLKIN_SEL | CLKM_ARM_MCLK_XP5 | CLKM_MCLK_DIV);
    
    cntl |= ((clk_src << 1) | (clk_xp5 << 3) | (clk_div << 4));
    
    * (volatile SYS_UWORD16 *) CLKM_ARM_CLK = cntl;
  }
#else
  /*--------------------------------------------------------------
   *  CLKM_InitARMClock()
   *--------------------------------------------------------------
   * Parameters :  clk_src : 0x00 means CLKIN selected
   *	  	  	   0x01 means 32 K selected
   *	 	  	   0x02 means External clock selected
   *
   * Return     :	none
   * Functionality :Initialize the ARM Clock frequency
   *--------------------------------------------------------------*/
  void CLKM_InitARMClock(SYS_UWORD16 clk_src, SYS_UWORD16 clk_div)
  {
    SYS_UWORD16 cntl = * (volatile SYS_UWORD16 *) CLKM_ARM_CLK;

    cntl &= ~(CLKM_LOW_FRQ | CLKM_CLKIN_SEL | CLKM_MCLK_DIV);

    cntl |= ((clk_src << 1) | (clk_div << 4));

    * (volatile SYS_UWORD16 *) CLKM_ARM_CLK = cntl;
  }

#endif


/*-------------------------------------------------------*/ 
/* convert_nanosec_to_cycles()                           */
/*-------------------------------------------------------*/
/* parameter: time in 10E-9 seconds                      */
/* return: Number of cycles for the wait_ARM_cycles()    */
/*         function                                      */
/*                                                       */
/* Description:                                          */
/* ------------                                          */
/* convert x nanoseconds in y cycles used by the ASM loop*/
/* function . Before calling this function, call the     */ 
/* initialize_wait_loop() function                       */
/* Called when the HardWare needs time to wait           */
/*-------------------------------------------------------*/ 
SYS_UWORD32 convert_nanosec_to_cycles(SYS_UWORD32 time)
{ 
  return( time / ratio_wait_loop);  
}


/*-------------------------------------------------------*/
/* initialize_wait_loop()                                */
/*-------------------------------------------------------*/
/*                                                       */
/* Description:                                          */
/* ------------                                          */
/* Init the ratio used to convert time->Cycles according */
/* to hardware parameters                                */
/* measurement time for this function (ARM 39Mhz, 3 waits*/
/* states) = 75 micoseconds                              */
/*-------------------------------------------------------*/

void initialize_wait_loop(void)
{
#if (BOARD == 34)
    unsigned long ulTimeSpent=0;

    // set up timer 2 for wait_ARM_cycles function calibration
    TM_EnableTimer (2);
    TM_ResetTimer (2, 0xFFFF, 0, 0);

    // run wait_ARM_cycles() for 10000 loops
    wait_ARM_cycles(10000);

    // time spent expressed in timer cycles
    // where 1 timer cycle = 2462 ns with prescale 0
    // 13 MHz divided by 16 = timer clkin 
    // prescale 0 -> divided by 2
    ulTimeSpent = TM_ReadTimer (2);

    TM_StopTimer (2);

    ulTimeSpent = 0xFFFF - ulTimeSpent;
    ulTimeSpent *= 2462;

    // compute ratio_wait_loop
    ratio_wait_loop = (unsigned long)(ulTimeSpent/10000.);
#else
  #define NBR_CYCLES_IN_LOOP   5   // this value is got from an oscilloscope measurement
  
  double src_ratio;
  double final_ratio;

  SYS_UWORD16 flash_access_size;
  SYS_UWORD16 flash_wait_state;
  SYS_UWORD32 nbr;
  SYS_UWORD32 arm_clock;

  //////////////////////////////////
  //  compute the ARM clock used  //
  //////////////////////////////////
  {
    SYS_UWORD16 arm_mclk_xp5;
    SYS_UWORD16 arm_ratio;
    SYS_UWORD16 clk_src;
    SYS_UWORD16 clkm_cntl_arm_clk_reg = * (volatile SYS_UWORD16 *) CLKM_CNTL_ARM_CLK;

    #if ((CHIPSET == 4) || (CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12))
      clk_src  = (clkm_cntl_arm_clk_reg & MASK_CLKIN) >> 1;
      switch (clk_src)
      {
        case 0x00: //DPLL selected 
          // select the DPLL factor
           #if (CHIPSET == 12)
              if (((* (volatile SYS_UWORD16 *) C_MAP_DPLL_BASE) & DPLL_LOCK) != 0)
           #else
              if (((* (volatile SYS_UWORD16 *) MEM_DPLL_ADDR) & DPLL_LOCK) != 0)
           #endif 
          {
             SYS_UWORD16 dpll_div;
             SYS_UWORD16 dpll_mul;

             dpll_div=DPLL_READ_DPLL_DIV;
             dpll_mul=DPLL_READ_DPLL_MUL;
             src_ratio = (double)(dpll_mul)/(double)(dpll_div+1);              
          }
          else // DPLL in bypass mode
          {
             SYS_UWORD16 dpll_div = DPLL_BYPASS_DIV;
             src_ratio= (double)(1)/(double)(dpll_div+1);
          }
          break;
        case 0x01: //VTCX0 selected 
          src_ratio = 1;
          break;
        case 0x03: //CLKIN selected   (external clock)
          src_ratio = 1;
          break;
      }
      // define the division factor applied to clock source (CLKIN or VTCXO or DPLL)
      arm_ratio = (clkm_cntl_arm_clk_reg & CLKM_MCLK_DIV) >> 4;

      // check if the 1.5 or 2.5 division factor is enabled
      arm_mclk_xp5  = clkm_cntl_arm_clk_reg & CLKM_ARM_MCLK_XP5;

      if (arm_mclk_xp5 == 0) // division factor enable for ARM clock ?
      {
        if (arm_ratio == 0) 
          arm_ratio =1; 
      }
      else
        arm_ratio = ((arm_ratio>>1) & 0x0001) == 0 ? 1.5 : 2.5;


     #else
      src_ratio = 1;

      // define the division factor applied to clock source (CLKIN or VTCXO or DPLL)
      arm_ratio = (clkm_cntl_arm_clk_reg & CLKM_MCLK_DIV) >> 4;

      // check if the 1.5 or 2.5 division factor is enabled
      arm_mclk_xp5  = clkm_cntl_arm_clk_reg & MASK_ARM_MCLK_1P5;

      if (arm_mclk_xp5 == 1) // division factor enable for ARM clock ?
        arm_ratio = 1.5;  
      else
      {
        if (arm_ratio == 0)
          arm_ratio = 4;
        else 
          if (arm_ratio == 1 )
            arm_ratio = 2;
          else 
            arm_ratio = 1;
      }

     #endif

   final_ratio = (src_ratio / (double) arm_ratio);

  }
  //////////////////////////////////////////
  //  compute the Flash wait states used  //
  //////////////////////////////////////////

  #if (CHIPSET == 12)
     flash_access_size  =  1;
  #else
    flash_access_size  =  *((volatile SYS_UWORD16 *) MEM_REG_nCS0);
  #endif
  flash_access_size  = (flash_access_size >> 5) & 0x0003; // 0=>8bits, 1=>16 bits, 2 =>32 bits

  // the loop file is compiled in 16 bits it means
  //    flash 8  bits => 2 loads for 1 16 bits assembler instruction
  //    flash 16 bits => 1 loads for 1 16 bits assembler instruction
  //    flash/internal RAM 32 bits => 1 loads for 1 16 bits assembler instruction (ARM bus 16 bits !!)
  
  // !!!!!!!!! be careful: if this file is compile in 32 bits, change these 2 lines here after !!!
  if (flash_access_size == 0) flash_access_size = 2;
  else                        flash_access_size = 1;

  #if (CHIPSET == 12)
    /*
     *  loop move to run in internal memory, due to page mode in external memory
     */
    flash_wait_state  =  0;
  #else
    flash_wait_state  =  *((volatile SYS_UWORD16 *) MEM_REG_nCS0);
    flash_wait_state &=  0x001F;
  #endif

  //////////////////////////////////////
  //  compute the length of the loop  //
  //////////////////////////////////////

  // Number of flash cycles for the assembler loop
  nbr = NBR_CYCLES_IN_LOOP;

  // Number of ARM cycles for the assembler loop
  nbr = nbr * (flash_wait_state + 1) * (flash_access_size);

  // time for the assembler loop (unit nanoseconds: 10E-9)
  arm_clock = final_ratio * 13; // ARM clock in Mhz 
  ratio_wait_loop = (SYS_UWORD32)((nbr*1000) / arm_clock);
#endif
}

#if (CHIPSET != 12)

/*-------------------------------------------------------*/ 
/* wait_ARM_cycles()                                     */
/*-------------------------------------------------------*/
/*                                                       */
/* Description:                                          */
/* ------------                                          */
/* Called when the HardWare needs time to wait.          */
/* this function wait x cycles and is used with the      */
/* convert_nanosec_to_cycles() & initialize_wait_loop()  */
/*                                                       */
/*  Exemple:  wait 10 micro seconds:                     */
/*  initialize_wait_loop();                              */
/*  wait_ARM_cycles(convert_nanosec_to_cycles(10000))    */
/*                                                       */
/*  minimum time value with cpt_loop = 0  (estimated)    */
/*  and C-SAMPLE / flash 6,5Mhz  ~  1,5 micro seconds    */
/*                                                       */
/*                                                       */
/* Be careful : in order to respect the rule about the   */
/* conversion "time => number of cylcles in this loop"   */
/* (Cf the functions: convert_nanosec_to_cycles() and    */
/* initialize_wait_loop() ) respect the following rules: */
/* This function must be placed in Flash Memory and      */
/* compiled in 16 bits instructions length               */
/*-------------------------------------------------------*/
void wait_ARM_cycles(SYS_UWORD32 cpt_loop) 
{
  // C code:
  // while (cpt_loop -- != 0);

  asm(" CMP       A1, #0");                 
  asm(" BEQ       END_FUNCTION");           

  asm("LOOP_LINE:        ");                
  asm(" SUB       A1, A1, #1");
  asm(" CMP       A1, #0");
  asm(" BNE       LOOP_LINE");

  asm("END_FUNCTION:        ");  
} 

#endif /* (CHIPSET != 12)*/