view src/cs/layer1/tm_cust0/l1tm_cust.c @ 244:96784b8974eb

Switch_ON(): detect charging mode by CHGPRES bit Consider the following scenario: the phone is on, the user plugs in the charger, and then executes the power-off operation. In the Iota VRPC this sequence translates to a switch-off immediately followed by another switch-on - but the CHGSTS bit doesn't get set on the second switch-on cycle! Disassembly of Pirelli's fw shows that they check the CHGPRES bit, and furthermore, if both CHGPRES and ONBSTS are set, the code they pass to their modified Power_ON_Button() function is the one for charging - so let's adopt the same CHGPRES check and the same priority order for switch-on causes.
author Mychaela Falconia <falcon@freecalypso.org>
date Mon, 03 May 2021 06:51:29 +0000
parents 4e78acac3d88
children
line wrap: on
line source

/************* Revision Controle System Header *************
 *                  GSM Layer 1 software
 * L1TM_CUST.C
 *
 *        Filename %M%
 *        Version  %I%
 *        Date     %G%
 * 
 ************* Revision Controle System Header *************/

#include "l1_confg.h"
#if TESTMODE

#include "tm_defs.h"
#include "l1_const.h"
#include "l1_types.h"

#include "l1tm_defty.h"
#include "l1tm_cust.h"

#if (AUDIO_TASK == 1)
  #include "l1audio_const.h"
  #include "l1audio_cust.h"
  #include "l1audio_defty.h"
#endif
  
#if (L1_GTT == 1)
  #include "l1gtt_const.h"
  #include "l1gtt_defty.h"
#endif
#include "l1_defty.h"
#include "l1_msgty.h"
#include "l1_tabs.h"

#include "l1tm_msgty.h"
#include "l1tm_varex.h"

#include "abb.h"

#if (RF==35)
  #include "tpudrv35.h"
  #include "l1_rf35.h"
#endif

#if (RF==12)
  #include "tpudrv12.h"
  #include "l1_rf12.h"
#endif

#if (RF==10)
  #include "tpudrv10.h"
  #include "l1_rf10.h"
#endif

#if (RF==8)
  #include "tpudrv8.h"
  #include "l1_rf8.h"
#endif

#if (RF==2)
  #include "l1_rf2.h"
#endif

#include <string.h>

// Import band configuration from Flash module (need to replace by an access function)
//extern UWORD8       std;
extern T_L1_CONFIG  l1_config;
extern T_RF rf;
extern T_RF_BAND rf_band[GSM_BANDS];
extern UWORD16 AGC_TABLE[AGC_TABLE_SIZE];
extern T_ADC adc;
extern T_ADCCAL adc_cal;
extern UWORD16 TM_ul_data[16]; //Uplink data to be stored into ABB Uplink buffer
extern T_STD_CONFIG std_config[];
static UWORD8 tm_band = 0;

// External function prototypes
void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
void Cust_init_std(void);
void l1_tpu_init_light(void);

enum {
  TM_RF_ID        = 0,
  TM_ADC_ID       = 1
};

typedef signed char effs_t;
// external FFS function prototypes
effs_t ffs_mkdir(const char *pathname);
void config_ffs_write(char type);

/***********************************************************************/
/*                           TESTMODE 4.X                              */
/***********************************************************************/


/*----------------------------------------------------------*/
/* Cust_tm_init()                                           */
/*----------------------------------------------------------*/
/* Parameters :                                             */
/* Return     :                                             */
/* Functionality : Init default configuration for TM params */
/*----------------------------------------------------------*/

void Cust_tm_init(void)
{
  UWORD32 i;

  l1_config.adc_enable                             = ADC_ENABLE; // ADC readings enabled
  l1_config.agc_enable                             = AGC_ENABLE; // AGC algo enabled
  l1_config.afc_enable                             = AFC_ENABLE; // AFC algo enabled
  l1_config.tmode.rf_params.bcch_arfcn             = TM_BCCH_ARFCN;
  l1_config.tmode.rf_params.tch_arfcn              = TM_TCH_ARFCN;
  l1_config.tmode.rf_params.mon_arfcn              = TM_MON_ARFCN;
  l1_config.tmode.rf_params.channel_type           = TM_CHAN_TYPE; // TCH_F
  l1_config.tmode.rf_params.subchannel             = TM_SUB_CHAN;
  l1_config.tmode.rf_params.reload_ramps_flag      = 0;
  l1_config.tmode.rf_params.tmode_continuous       = TM_NO_CONTINUOUS;
  l1_config.tmode.rx_params.slot_num               = TM_SLOT_NUM; // Time Slot
  l1_config.tmode.rx_params.agc                    = TM_AGC_VALUE; //This may be outside the range of the RF chip used
  l1_config.tmode.rx_params.pm_enable              = TM_PM_ENABLE;
  l1_config.tmode.rx_params.lna_off                = TM_LNA_OFF;
  l1_config.tmode.rx_params.number_of_measurements = TM_NUM_MEAS;  
  l1_config.tmode.rx_params.place_of_measurement   = TM_WIN_MEAS;
  l1_config.tmode.tx_params.txpwr                  = TM_TXPWR; // Min power level for GSM900
  l1_config.tmode.tx_params.txpwr_skip             = TM_TXPWR_SKIP;
  l1_config.tmode.tx_params.timing_advance         = TM_TA;
  l1_config.tmode.tx_params.burst_type             = TM_BURST_TYPE; // default is normal up-link burst
  l1_config.tmode.tx_params.burst_data             = TM_BURST_DATA; // default is all zeros
  l1_config.tmode.tx_params.tsc                    = TM_TSC; // Training Sequence ("BCC" on BSS)
  #if (CODE_VERSION != SIMULATION)
    l1_config.tmode.stats_config.num_loops         = TM_NUM_LOOPS; // 0 actually means infinite
  #else
    l1_config.tmode.stats_config.num_loops         = 4; // 0 actually means infinite
  #endif
  l1_config.tmode.stats_config.auto_result_loops   = TM_AUTO_RESULT_LOOPS; // 0 actually means infinite
  l1_config.tmode.stats_config.auto_reset_loops    = TM_AUTO_RESET_LOOPS; // 0 actually means infinite
  l1_config.tmode.stats_config.stat_type           = TM_STAT_TYPE;
  l1_config.tmode.stats_config.stat_bitmask        = TM_STAT_BITMASK;

  #if (CODE_VERSION != SIMULATION)
    // Initialize APCDEL1 register of Omega
    ABB_Write_Register_on_page(PAGE0, APCDEL1, (C_APCDEL1 - 0x0004) >> 6);
  #endif

  l1tm.tm_msg_received                       = FALSE;

  for (i=0;i<16;i++)
    TM_ul_data[i]=0;

  #if L1_GPRS
    l1_config.tmode.rf_params.pdtch_arfcn          = TM_PDTCH_ARFCN;
    l1_config.tmode.rf_params.multislot_class      = TM_MULTISLOT_CLASS;
    l1_config.tmode.stats_config.stat_gprs_slots   = TM_STAT_GPRS_SLOTS;
    l1_config.tmode.rx_params.timeslot_alloc       = TM_RX_ALLOCATION;
    l1_config.tmode.rx_params.coding_scheme        = TM_RX_CODING_SCHEME;
    l1_config.tmode.tx_params.timeslot_alloc       = TM_TX_ALLOCATION;
    l1_config.tmode.tx_params.coding_scheme        = TM_TX_CODING_SCHEME;
    for (i=0; i<8; i++)
      l1_config.tmode.tx_params.txpwr_gprs[i]      = TM_TXPWR_GPRS;

    for (i=0; i<27; i++)
      l1_config.tmode.tx_params.rlc_buffer[i] = 0;
  #endif
}


/**********************************************************************/
/* Test mode functions used for RF calibration                        */
/**********************************************************************/

void Cust_tm_rf_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value)
{
  switch (index)
  {
    case STD_BAND_FLAG:
    {
      UWORD8 std_temp, band_temp;

      std_temp  = value & 0xff;  // tm_band = b7..0 of value
      band_temp = value >> 8;    // band    = b15..8 of value
          // get define 
      //if (sizeof(std_config)/sizeof(T_STD_CONFIG) <= std_temp)
      if (9 <= std_temp)  // std max
      {
        tm_return->status = E_BADINDEX;
        break;
      }
      else if ( GSM_BANDS <= band_temp)
      {
        tm_return->status = E_BADINDEX;
        break;
      }
      else if ( BAND_NONE == std_config[std_temp].band[band_temp])
      {
        tm_return->status = E_BADINDEX;
        break;
      } 
      else
      {
        l1_config.std.id = std_temp;  
        tm_band = band_temp; 
        // update RAM struct with either default or ffs
        Cust_init_std();
        l1_tpu_init_light();
        tm_return->status = E_OK;
        break;
      }
    }
    
    case INITIAL_AFC_DAC:
    {
      rf.afc.eeprom_afc = (WORD16) value << 3; // shift to put into F13.3 format
      l1_config.params.eeprom_afc = rf.afc.eeprom_afc;

      tm_return->status = E_OK;
      break;
    }
    default:
    {
      tm_return->status = E_BADINDEX;
      break;
    }
  } // end switch
}

void Cust_tm_rf_param_read(T_TM_RETURN *tm_return, WORD16 index)
{
  volatile UWORD16 value;

  switch (index)
  {
    case STD_BAND_FLAG:
    {
       value = ((tm_band << 8) | (l1_config.std.id) ); // return global std, tm_band (intel format)
      break;
    }
    case INITIAL_AFC_DAC:
    {
      value = rf.afc.eeprom_afc >> 3; // returned as F13.3
      break;
    }
    default:
    {
      tm_return->size = 0;
      tm_return->status = E_BADINDEX;
      return;
    }
  } // end switch

  memcpy(tm_return->result, (UWORD8 *)&value, 2);
  tm_return->size = 2;
  tm_return->status = E_OK;
}

void Cust_tm_rf_table_write(T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[])
{
  UWORD8 band=0;

  tm_return->index = index;  // store index before it gets modified
  tm_return->size = 0;

  switch (index)
  {
    case RX_AGC_TABLE:
    {
      if (size != sizeof(AGC_TABLE))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&AGC_TABLE[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case AFC_PARAMS:
    {

      #if (VCXO_ALGO == 1)
        if (size != 24)  //  4 UWORD32 + 4 WORD16 values
      #else
        if (size != 16)  // 4 UWORD32 values
      #endif
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf.afc.psi_sta_inv, table, size);
      l1_config.params.psi_sta_inv  = rf.afc.psi_sta_inv;
      l1_config.params.psi_st       = rf.afc.psi_st;
      l1_config.params.psi_st_32    = rf.afc.psi_st_32;
      l1_config.params.psi_st_inv   = rf.afc.psi_st_inv;

    #if (CODE_VERSION == NOT_SIMULATION)
      #if (VCXO_ALGO == 1)
        l1_config.params.afc_dac_center = rf.afc.dac_center;
        l1_config.params.afc_dac_min    = rf.afc.dac_min;   
        l1_config.params.afc_dac_max    = rf.afc.dac_max;   
        l1_config.params.afc_snr_thr    = rf.afc.snr_thr;   
      #endif
    #endif

      tm_return->status = E_OK;
      break;
    }
    case RX_AGC_GLOBAL_PARAMS:
    {
      if (size != 8)  // 4 UWORD16 values
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf.rx.agc.low_agc_noise_thr, table, size);
      l1_config.params.low_agc_noise_thr  = rf.rx.agc.low_agc_noise_thr;
      l1_config.params.high_agc_sat_thr   = rf.rx.agc.high_agc_sat_thr;
      l1_config.params.low_agc            = rf.rx.agc.low_agc;
      l1_config.params.high_agc           = rf.rx.agc.high_agc;

      tm_return->status = E_OK;
      break;
    }
    case RX_IL_2_AGC_MAX:
    {
      if (size != sizeof(rf.rx.agc.il2agc_max))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf.rx.agc.il2agc_max[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case RX_IL_2_AGC_PWR:
    {
      if (size != sizeof(rf.rx.agc.il2agc_pwr))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf.rx.agc.il2agc_pwr[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case RX_IL_2_AGC_AV:
    {
      if (size != sizeof(rf.rx.agc.il2agc_av))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf.rx.agc.il2agc_av[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case TX_LEVELS:
    {
      if (size != sizeof(rf_band[tm_band].tx.levels))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf_band[tm_band].tx.levels[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case TX_CAL_CHAN: // generic for all bands
    {
      if (size != sizeof(rf_band[tm_band].tx.chan_cal_table))
      {
        tm_return->status = E_BADSIZE;
        break;
      }
      
      memcpy(&rf_band[tm_band].tx.chan_cal_table[0][0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case TX_CAL_TEMP: // generic for all bands
    {
      if (size != sizeof(rf_band[tm_band].tx.temp))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf_band[tm_band].tx.temp[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case RX_CAL_CHAN:  // generic for all bands
    {
      if (size != sizeof(rf_band[tm_band].rx.agc_bands))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf_band[tm_band].rx.agc_bands[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case RX_CAL_TEMP:  // generic for all bands
    {
      if (size != sizeof(rf_band[tm_band].rx.temp))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf_band[tm_band].rx.temp[0], table, size);
      tm_return->status = E_OK;
      break;
    }
    case RX_AGC_PARAMS:
    {
      if (size != sizeof(rf_band[tm_band].rx.rx_cal_params))
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&rf_band[tm_band].rx.rx_cal_params, table, size);
      if (tm_band == 0)
      {
          l1_config.std.g_magic_band1             = rf_band[tm_band].rx.rx_cal_params.g_magic;
          l1_config.std.lna_att_band1             = rf_band[tm_band].rx.rx_cal_params.lna_att;
          l1_config.std.lna_switch_thr_low_band1  = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_low;
          l1_config.std.lna_switch_thr_high_band1 = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_high;
        }
      else if (tm_band == 1)
        {
          l1_config.std.g_magic_band2             = rf_band[tm_band].rx.rx_cal_params.g_magic;
          l1_config.std.lna_att_band2             = rf_band[tm_band].rx.rx_cal_params.lna_att;
          l1_config.std.lna_switch_thr_low_band2  = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_low;
          l1_config.std.lna_switch_thr_high_band2 = rf_band[tm_band].rx.rx_cal_params.lna_switch_thr_high;
        }
        else
        {
          tm_return->status = E_INVAL;
          break;
        }

      tm_return->status = E_OK;
      break;
    }
    case TX_CAL_EXTREME:
    case RX_CAL_LEVEL:
    {
      tm_return->status = E_NOSUBSYS;
      break;
    }
    #if L1_GPRS
      case RLC_TX_BUFFER_CS1:
      case RLC_TX_BUFFER_CS2:
      case RLC_TX_BUFFER_CS3:
      case RLC_TX_BUFFER_CS4:
      {
        UWORD8 i, buffer_size;

        tm_return->index = index;  // store index before it gets modified
        tm_return->size  = 0;

        buffer_size = size/2 + size%2;  // bytes will be concatenated into UWORD16

        if (buffer_size > 27)  //max. number of data bytes
        {
          tm_return->status = E_BADSIZE;
          break;
        }

        // make sure that last byte is zero in case of odd number of bytes
        table[size] = 0; 
 
        // init the whole buffer before downloading new data
        for (i=0; i<27; i++)
          l1_config.tmode.tx_params.rlc_buffer[i] = 0;

        for (i=0; i<buffer_size; i++)
        {
          l1_config.tmode.tx_params.rlc_buffer[i] = (table[2*i+1] << 8) | table[2*i];
        }
        l1_config.tmode.tx_params.rlc_buffer_size = buffer_size;

        tm_return->status = E_OK;
        break;
      }
    #endif
    case TX_DATA_BUFFER:
    {
      UWORD8 i;

      tm_return->index = index;  // store index before it gets modified
      tm_return->size  = 0;

      if (size != 32)  // 16 UWORD16 (containing 10 data bits each)
      {
        tm_return->status = E_BADSIZE;
        break;
      }

      memcpy(&TM_ul_data, table, size);

      for (i=0; i<16; i++)
      {
        TM_ul_data[i] = TM_ul_data[i] << 6;
      }        	    

      tm_return->status = E_OK;
      break;
    }  
    default:
    {
      tm_return->status = E_BADINDEX;
      break;
    }
  } // end switch
}

void Cust_tm_rf_table_read(T_TM_RETURN *tm_return, WORD8 index)
{
  switch (index)
  {
    case RX_AGC_TABLE:
    {
      tm_return->size = sizeof(AGC_TABLE);
      memcpy(tm_return->result, &AGC_TABLE[0], tm_return->size);
      break;
    }
    case AFC_PARAMS:
    {
      #if (VCXO_ALGO == 1)
      tm_return->size = 24;  // 4 UWORD32's + 4 WORD16
      #else
      tm_return->size = 16;  // 4 UWORD32's
      #endif
      memcpy(tm_return->result, &rf.afc.psi_sta_inv, tm_return->size);
      break;
    }
    case RX_AGC_GLOBAL_PARAMS:
    {
      tm_return->size = 8;  // 4 UWORD16's
      memcpy(tm_return->result, &rf.rx.agc.low_agc_noise_thr, tm_return->size);

      break;
    }
    case RX_IL_2_AGC_MAX:
    {
      tm_return->size = sizeof(rf.rx.agc.il2agc_max);
      memcpy(tm_return->result, &rf.rx.agc.il2agc_max[0], tm_return->size);
      break;
    }
    case RX_IL_2_AGC_PWR:
    {
      tm_return->size = sizeof(rf.rx.agc.il2agc_pwr);
      memcpy(tm_return->result, &rf.rx.agc.il2agc_pwr[0], tm_return->size);
      break;
    }
    case RX_IL_2_AGC_AV:
    {
      tm_return->size = sizeof(rf.rx.agc.il2agc_av);
      memcpy(tm_return->result, &rf.rx.agc.il2agc_av[0], tm_return->size);
      break;
    }
    case TX_LEVELS:
    {
      tm_return->size = sizeof(rf_band[tm_band].tx.levels);
      memcpy(tm_return->result, &rf_band[tm_band].tx.levels[0], tm_return->size);
      break;
    }
    case TX_CAL_CHAN: // generic for all bands
    {
      tm_return->size = sizeof(rf_band[tm_band].tx.chan_cal_table);
      memcpy(tm_return->result, &rf_band[tm_band].tx.chan_cal_table[0][0], tm_return->size);
      break;
    }
    case TX_CAL_TEMP:  // generic for all bands
    {
      tm_return->size = sizeof(rf_band[tm_band].tx.temp);
      memcpy(tm_return->result, &rf_band[tm_band].tx.temp[0], tm_return->size);
      break;
    }
    case RX_CAL_CHAN:  // generic for all bands
    {
      tm_return->size = sizeof(rf_band[tm_band].rx.agc_bands);
      memcpy(tm_return->result, &rf_band[tm_band].rx.agc_bands[0], tm_return->size);
      break;
    }
    case RX_CAL_TEMP:  // generic for all bands
    {
      tm_return->size = sizeof(rf_band[tm_band].rx.temp);
      memcpy(tm_return->result, &rf_band[tm_band].rx.temp[0], tm_return->size);
      break;
    }
    case RX_AGC_PARAMS:
    {
      // WARNING: sizeof(rf.rx.rx_cal_params[band]) returns 12 because of alignment
      tm_return->size = 10;  // five UWORD16's
      memcpy(tm_return->result, &rf_band[tm_band].rx.rx_cal_params, tm_return->size);
      break;
    }
    case TX_CAL_EXTREME:
    case RX_CAL_LEVEL:
    {
      tm_return->size = 0;
      tm_return->status = E_NOSUBSYS;
      return;
    }

    #if L1_GPRS
      case RLC_TX_BUFFER_CS1:
      case RLC_TX_BUFFER_CS2:
      case RLC_TX_BUFFER_CS3:
      case RLC_TX_BUFFER_CS4:
      {
        tm_return->size = l1_config.tmode.tx_params.rlc_buffer_size * 2; // UWORD16's
        memcpy(tm_return->result, &l1_config.tmode.tx_params.rlc_buffer[0], tm_return->size);
        break;
      }
    #endif

    case TX_DATA_BUFFER:
    {
      UWORD8 i;
      for (i=0; i<16; i++)
      {
        tm_return->result[2*i]=(TM_ul_data[i] >> 6) & 0x00FF;
        tm_return->result[2*i+1]=(TM_ul_data[i] >> 14) & 0x0003;
      }

      tm_return->size = 32; //16*UWORD16
      break;
    }

    #if (RF==35)
    case RX_PLL_TUNING_TABLE:
    {
      tm_return->size = sizeof(pll_tuning); //6*UWORD16
      memcpy(tm_return->result, &pll_tuning, tm_return->size);
      pll_tuning.enable    = 0;
      break;
    }
    #endif

    default:
    {
      tm_return->size = 0;
      tm_return->status = E_BADINDEX;
      return;
    }
  }  // end switch

  tm_return->index  = index;
  tm_return->status = E_OK;
}

void Cust_tm_rx_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value)
{
  switch (index)
  {
    case RX_FRONT_DELAY:
    {
      //delay for dual band not implemented yet
      rf.tx.prg_tx = value;
      l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
      l1_config.params.prg_tx_dcs = rf.tx.prg_tx;

      tm_return->status = E_OK;
      break;
    }
    default:
    {
      tm_return->status = E_BADINDEX;
      break;
    }
  } // end switch
}

void Cust_tm_rx_param_read(T_TM_RETURN *tm_return, WORD16 index)
{
  volatile UWORD16 value;

  switch (index)
  {
    case RX_FRONT_DELAY:
    {
      value = rf.tx.prg_tx;
      break;
    }
    default:
    {
      tm_return->status = E_BADINDEX;
      tm_return->size = 0;
      return;
    }
  } // end switch

  memcpy(tm_return->result, (UWORD8 *)&value, 2);
  tm_return->size = 2;
  tm_return->status = E_OK;
}

void Cust_tm_tx_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value, UWORD8 band)
{
  switch (index)
  {
    case TX_APC_DAC:
    {
      // generic for all bands
      rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].apc = value;

      tm_return->status = E_OK;
      break;
    }
    case TX_RAMP_TEMPLATE:
    {
      if (value >= sizeof(rf_band[tm_band].tx.ramp_tables)/sizeof(rf_band[tm_band].tx.ramp_tables[0]))  // [0..15]
      {
        tm_return->status = E_INVAL;
        break;
      }

      // generic for all bands
        rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].ramp_index = value;

      tm_return->status = E_OK;
      l1_config.tmode.rf_params.reload_ramps_flag = 1;
      break;
    }
    case TX_CHAN_CAL_TABLE:
    {
      if (value >= sizeof(rf_band[tm_band].tx.chan_cal_table)/sizeof(rf_band[tm_band].tx.chan_cal_table[0]))
      {
        tm_return->status = E_INVAL;
        break;
      }

      // generic for all bands
      rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].chan_cal_index = value;

        tm_return->status = E_OK;
      
      break;
      }
    case TX_BURST_TYPE:
      {
      if (value > 1)  // [0..1]
      {
        tm_return->status = E_INVAL;
        break;
      }
      l1_config.tmode.tx_params.burst_type = value;
      tm_return->status = E_OK;
      break;
    }
    case TX_BURST_DATA:
    {
      // range is [0..10], currently we support [0..13] at the moment
      if (value > 13)
      {
        tm_return->status = E_INVAL;
        break;
      }
      l1_config.tmode.tx_params.burst_data = value;
      tm_return->status = E_OK;
      break;
    }
    case TX_TRAINING_SEQ:
    {
      if (value > 7)  // [0..7]
      {
        tm_return->status = E_INVAL;
        break;
      }
      l1_config.tmode.tx_params.tsc = value;
      tm_return->status = E_OK;
      break;
    }
    default:
    {
      tm_return->status = E_BADINDEX;
      break;
    }
  } // end switch
}

void Cust_tm_tx_param_read(T_TM_RETURN *tm_return, WORD16 index, UWORD8 band)
{
  volatile UWORD16 value;

  switch (index)
  {
    case TX_PWR_LEVEL:
    {
      value = l1_config.tmode.tx_params.txpwr;
      break;
    }
    case TX_APC_DAC:
    {
      value = rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].apc;
      break;
    }
    case TX_RAMP_TEMPLATE:
    {
      value = rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].ramp_index;
      break;
    }
    case TX_CHAN_CAL_TABLE:
    {
      value = rf_band[tm_band].tx.levels[l1_config.tmode.tx_params.txpwr].chan_cal_index;
      break;
    }
    case TX_BURST_TYPE:
    {
      value = l1_config.tmode.tx_params.burst_type;
      break;
    }
    case TX_BURST_DATA:
    {
      value = l1_config.tmode.tx_params.burst_data;
      break;
    }
    case TX_TIMING_ADVANCE:
    {
      value = l1_config.tmode.tx_params.timing_advance;
      break;
    }
    case TX_TRAINING_SEQ:
    {
      value = l1_config.tmode.tx_params.tsc;
      break;
    }
    case TX_PWR_SKIP:
    {
     value = l1_config.tmode.tx_params.txpwr_skip;
     break;
    }
    #if L1_GPRS
      case TX_GPRS_POWER0:
      case TX_GPRS_POWER1:
      case TX_GPRS_POWER2:
      case TX_GPRS_POWER3:
      case TX_GPRS_POWER4:
      case TX_GPRS_POWER5:
      case TX_GPRS_POWER6:
      case TX_GPRS_POWER7:
      {
        value = l1_config.tmode.tx_params.txpwr_gprs[index - TX_GPRS_POWER0];
        break;
      }
      case TX_GPRS_SLOTS:
      {
        value = l1_config.tmode.tx_params.timeslot_alloc;
        break;
      }
      case TX_GPRS_CODING:
      {
        value = l1_config.tmode.tx_params.coding_scheme;
        break;
      }
    #endif
    default:
    {
      tm_return->status = E_BADINDEX;
      tm_return->size = 0;
      return;
    }
  } // end switch

  memcpy(tm_return->result, (UWORD8 *)&value, 2);
  tm_return->size = 2;
  tm_return->status = E_OK;
}

void Cust_tm_tx_template_write(T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[])
{
  if (index >= sizeof(rf_band[tm_band].tx.ramp_tables)/sizeof(T_TX_RAMP))
  {
    tm_return->status = E_BADINDEX;
  }
  else if (size != sizeof(T_TX_RAMP))
  {
    // We are writing both the up and down ramps; size must be exact.
    tm_return->status = E_BADSIZE;
  }
  else
  {
    memcpy(rf_band[tm_band].tx.ramp_tables[index].ramp_up, &table[0], size/2);
    memcpy(rf_band[tm_band].tx.ramp_tables[index].ramp_down, &table[size/2], size/2);
    tm_return->status = E_OK;
    l1_config.tmode.rf_params.reload_ramps_flag = 1;
  }

  tm_return->index = index;
  tm_return->size = 0;
}

void Cust_tm_tx_template_read(T_TM_RETURN *tm_return, WORD8 index)
{
  tm_return->index = index;

  if (index >= sizeof(rf_band[tm_band].tx.ramp_tables)/sizeof(T_TX_RAMP))
  {
    tm_return->status = E_BADINDEX;
    tm_return->size = 0;
    return;
  }
   
  memcpy(&tm_return->result[0], rf_band[tm_band].tx.ramp_tables[index].ramp_up, sizeof(rf_band[tm_band].tx.ramp_tables[index].ramp_up));
  memcpy(&tm_return->result[sizeof(rf_band[tm_band].tx.ramp_tables[index].ramp_up)], rf_band[tm_band].tx.ramp_tables[index].ramp_down, sizeof(rf_band[tm_band].tx.ramp_tables[index].ramp_down));
  tm_return->size = sizeof(rf_band[tm_band].tx.ramp_tables[index]);
  tm_return->status = E_OK;
}

void Cust_tm_misc_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value)
{
  switch (index)
  {
    case GPIOSTATE0:
    case GPIODIR0:
    case GPIOSTATE1:
    case GPIODIR1:
    case GPIOSTATE0P:
    case GPIODIR0P:
    case GPIOSTATE1P:
    case GPIODIR1P:
    {
      tm_return->status = E_NOSUBSYS;
      break;
    }
    case CONVERTED_ADC0:
    case CONVERTED_ADC1:
    case CONVERTED_ADC2:
    case CONVERTED_ADC3:
    case CONVERTED_ADC4:
    case CONVERTED_ADC5:
    case CONVERTED_ADC6:
    case CONVERTED_ADC7:
    case CONVERTED_ADC8:
    {
      adc.converted[index - CONVERTED_ADC0] = value;
      tm_return->status = E_OK;
      break;
    }
    
    case RAW_ADC0:
    case RAW_ADC1:
    case RAW_ADC2:
    case RAW_ADC3:
    case RAW_ADC4:
    case RAW_ADC5:
    case RAW_ADC6:
    case RAW_ADC7:
    case RAW_ADC8:
    {
      adc.raw[index - RAW_ADC0]  = value;
      tm_return->status = E_OK;
      break;
    }
    
    case ADC0_COEFF_A:
    case ADC1_COEFF_A:
    case ADC2_COEFF_A:
    case ADC3_COEFF_A:
    case ADC4_COEFF_A:
    case ADC5_COEFF_A:
    case ADC6_COEFF_A:
    case ADC7_COEFF_A:
    case ADC8_COEFF_A:
    {
      adc_cal.a[index - ADC0_COEFF_A]  = value;
      tm_return->status = E_OK;
      break;
    }
    
    case ADC0_COEFF_B:
    case ADC1_COEFF_B:
    case ADC2_COEFF_B:
    case ADC3_COEFF_B:
    case ADC4_COEFF_B:
    case ADC5_COEFF_B:
    case ADC6_COEFF_B:
    case ADC7_COEFF_B:
    case ADC8_COEFF_B:
    {
      adc_cal.b[index - ADC0_COEFF_B]  = value;
      tm_return->status = E_OK;
      break;
    }
    case SLEEP_MODE:
    {
      tm_return->status = E_NOSUBSYS;
      break;
    }
    default:
    {
      tm_return->status = E_BADINDEX;
      break;
    }
  } // end switch
}

void Cust_tm_misc_param_read(T_TM_RETURN *tm_return, WORD16 index)
{
  volatile UWORD16 value;

  switch (index)
  {
    case GPIOSTATE0:
    case GPIODIR0:
    case GPIOSTATE1:
    case GPIODIR1:
    case GPIOSTATE0P:
    case GPIODIR0P:
    case GPIOSTATE1P:
    case GPIODIR1P:
    {
      tm_return->status = E_NOSUBSYS;
      tm_return->size = 0;
      return;
    }
    case CONVERTED_ADC0:
    case CONVERTED_ADC1:
    case CONVERTED_ADC2:
    case CONVERTED_ADC3:
    case CONVERTED_ADC4:
    case CONVERTED_ADC5:
    case CONVERTED_ADC6:
    case CONVERTED_ADC7:
    case CONVERTED_ADC8:
    {
      value = adc.converted[index - CONVERTED_ADC0];
      break;
    }
    case RAW_ADC0:
    case RAW_ADC1:
    case RAW_ADC2:
    case RAW_ADC3:
    case RAW_ADC4:
    case RAW_ADC5:
    case RAW_ADC6:
    case RAW_ADC7:
    case RAW_ADC8:
    {
      value = adc.raw[index - RAW_ADC0];
      break;
    }
    case ADC0_COEFF_A:
    case ADC1_COEFF_A:
    case ADC2_COEFF_A:
    case ADC3_COEFF_A:
    case ADC4_COEFF_A:
    case ADC5_COEFF_A:
    case ADC6_COEFF_A:
    case ADC7_COEFF_A:
    case ADC8_COEFF_A:
    {
      value = adc_cal.a[index - ADC0_COEFF_A];
      break;
    }
    case ADC0_COEFF_B:
    case ADC1_COEFF_B:
    case ADC2_COEFF_B:
    case ADC3_COEFF_B:
    case ADC4_COEFF_B:
    case ADC5_COEFF_B:
    case ADC6_COEFF_B:
    case ADC7_COEFF_B:
    case ADC8_COEFF_B:
    {
      value = adc_cal.b[index - ADC0_COEFF_B];
      break;
    }
    case SLEEP_MODE:
    {
      tm_return->status = E_NOSUBSYS;
      tm_return->size = 0;
      return;
    }
    default:
    {
      tm_return->status = E_BADINDEX;
      tm_return->size = 0;
      return;
    }
  } // end switch

  memcpy(tm_return->result, (UWORD8 *)&value, 2);
  tm_return->size = 2;
  tm_return->status = E_OK;
}

void Cust_tm_misc_enable(T_TM_RETURN *tm_return, WORD16 action)
{
    UWORD8 status;
  
    // FIXME: This enum really should go into testmode header file.
    enum ME_CFG_WRITE_E {
        CFG_WRITE_MKDIRS   = 100,
        CFG_WRITE_RF_CAL   = 102,
        CFG_WRITE_RF_CFG   = 103,
        CFG_WRITE_TX_CAL   = 104,
        CFG_WRITE_TX_CFG   = 105,
        CFG_WRITE_RX_CAL   = 106,
        CFG_WRITE_RX_CFG   = 107,
        CFG_WRITE_SYS_CAL  = 108,
        CFG_WRITE_SYS_CFG  = 109
  };

  tm_return->size = 0;
  tm_return->index = action;
  tm_return->status = E_OK;

    // FIXME: This code should actually be in misc_enable()
  switch(action)
  {
    case CFG_WRITE_MKDIRS:
        ffs_mkdir("/gsm");
        ffs_mkdir("/pcm");
        ffs_mkdir("/sys");
        ffs_mkdir("/mmi");
        ffs_mkdir("/vos");
        ffs_mkdir("/var");
        ffs_mkdir("/gsm/rf");
        ffs_mkdir("/gsm/com");
        ffs_mkdir("/vos/vm");
        ffs_mkdir("/vos/vrm");
        ffs_mkdir("/vos/vrp");
        ffs_mkdir("/var/log");
        ffs_mkdir("/var/tst");
        ffs_mkdir("/gsm/rf/tx");
        ffs_mkdir("/gsm/rf/rx");
      break;
    case CFG_WRITE_RF_CAL:   config_ffs_write('f'); break;
    case CFG_WRITE_RF_CFG:   config_ffs_write('F'); break;
    case CFG_WRITE_TX_CAL:   config_ffs_write('t'); break;
    case CFG_WRITE_TX_CFG:   config_ffs_write('T'); break;
    case CFG_WRITE_RX_CAL:   config_ffs_write('r'); break;
    case CFG_WRITE_RX_CFG:   config_ffs_write('R'); break;
    case CFG_WRITE_SYS_CAL:  config_ffs_write('s'); break;
    case CFG_WRITE_SYS_CFG:  config_ffs_write('S'); break;
    default:
      tm_return->status = E_BADINDEX;
    }
}

void Cust_tm_special_param_write(T_TM_RETURN *tm_return, WORD16 index, UWORD16 value)
{
  tm_return->size = 0;
  tm_return->index = index;
  tm_return->status = E_NOSYS;
}

void Cust_tm_special_param_read(T_TM_RETURN *tm_return, WORD16 index)
{
  tm_return->size = 0;
  tm_return->index = index;
  tm_return->status = E_NOSYS;
}

void Cust_tm_special_table_write(T_TM_RETURN *tm_return, WORD8 index, UWORD8 size, UWORD8 table[])
{
  tm_return->size = 0;
  tm_return->index = index;
  tm_return->status = E_NOSYS;
}

void Cust_tm_special_table_read(T_TM_RETURN *tm_return, WORD8 index)
{
  tm_return->size = 0;
  tm_return->index = index;
  tm_return->status = E_NOSYS;
}

void Cust_tm_special_enable(T_TM_RETURN *tm_return, WORD16 action)
{
  tm_return->size = 0;
  tm_return->index = action;
  tm_return->status = E_NOSYS;
}

#endif // TESTMODE