FreeCalypso > hg > fc-tourmaline
view src/cs/drivers/drv_app/sim/sim.c @ 78:c632896652ba
mfw/ti1_key.c: properly initialize notified_keys array
The code in this ti1_key.c layer needs to call kpd_subscribe() and
kpd_define_key_notification() functions in order to register with the
KPD driver. The original code passed KPD_NB_PHYSICAL_KEYS in
nb_notified_keys - this constant is defined to 24 in kpd_cfg.h on all
platforms of interest to us - but it only filled the first 23 slots
in the notified_keys array, resulting in stack garbage being passed
to KPD API functions. The fix consists of initializing the last
missed array slot to KPD_KEY_RECORD, the key ID for the right side
button on the D-Sample handset.
On our current hw targets this "Record" button exists as the EXTRA
button on our Luna keypad board and as the camera button on the
Pirelli DP-L10. There is no support whatsoever for this button
in current BMI+MFW, we have no plans of doing anything with Pirelli's
camera button even if we do get our UI fw running on that phone,
and the Mother's dream of building our own FreeCalypso handset with
the same button arrangement as D-Sample (including the right side
button) is currently very nebulous - but let us nonetheless handle
the full set of buttons on the KPD to MFW interface, and let upper
layers weed out unsupported buttons.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Sun, 25 Oct 2020 23:41:01 +0000 |
parents | 4e78acac3d88 |
children | b37e6c916df1 |
line wrap: on
line source
/* * SIM.C * * Pole Star SIM * * Target : ARM * * * SIM card driver. This module contents all functions * included in specifications GSM 11.11 V4.10 * * * Copyright (c) Texas Instruments 1995-1997 * */ #define SIM_C 1 #ifndef _WINDOWS #include "l1sw.cfg" #include "chipset.cfg" #endif #include "main/sys_types.h" #include "memif/mem.h" //#include "assert.h" #if (CHIPSET == 12) #include "inth/sys_inth.h" #else #include "inth/iq.h" #endif #include "sim.h" #include <string.h> #include "armio/armio.h" #include "ind_os.h" #include "abb/abb.h" //controls level shifter of ABB #include "ffs/ffs_api.h" /* FreeCalypso addition */ //current voltage mode 3V or 5V, or 1.8V SYS_UWORD8 CurrentVolt; /* FreeCalypso addition */ SYS_UWORD8 SIM_allow_speed_enhancement = 1; #ifdef SIM_DEBUG_TRACE #ifdef SIM_RETRY /* one byte more to trace the number of retry for each functions */ #define SIM_DBG_NULL 5 #else /* size of buffer tracing the reception of NULL byte */ #define SIM_DBG_NULL 4 #endif /* working buffer for NULL BYTE and number of RETRY */ SYS_UWORD8 SIM_dbg_null[SIM_DBG_NULL]; /* size of buffer tracing the chronology of calls */ #define SIM_DBG_CMD 7500 /* working buffer for chronology calls */ SYS_UWORD8 SIM_dbg_cmd[SIM_DBG_CMD]; /* index for positionning in working buffer for chronology calls */ SYS_UWORD16 SIM_dbg_cmd_cmpt; /* working variable to calculate the TDMA ecart */ SYS_UWORD16 SIM_dbg_tdma_diff; /* working variable to store the maximum TDMA frame between two characters */ SYS_UWORD16 SIM_dbg_max_interchardelay; /* working variable used in each L2/L3 access function */ SYS_UWORD8 SIM_dbg_tmp[10]; /* internal function due to factorization of use of traces */ void SIM_dbg_write_trace(SYS_UWORD8 *ptr, SYS_UWORD16 len); #endif #ifdef SIM_RETRY /* number of retry */ #define NUM_SIM_RETRIES 10 /* Add variables to support sim retry */ SYS_UWORD8 SimRetries; #endif /* * Low level routines : mapped to hardware * SIM_WriteBuffer * SIM_Command * SIM_Reset * */ /* * SIM_WriteBuffer * * Write n bytes to SIM card in interrupt mode: * return the line, write first byte and let interrupt handler do the rest * return the line, write first byte and let interrupt handler do the rest * * Parameters : * SIM_PORT *p : buffer for received chars * offset : starting point for reading data. * n : number of chars to read. */ void SIM_WriteBuffer(SIM_PORT *p, SYS_UWORD16 offset, SYS_UWORD16 n) { unsigned volatile i; // Set write direction p->conf1 |= SIM_CONF1_TXRX; p->c->conf1 = p->conf1; p->SWcount = 0; p->rx_index = 0; p->expected_data = 0; p->xOut = p->xbuf + offset; p->xIn = p->xbuf + offset + n; if ((p->xIn - p->xOut) == 1) //if only one char is transmitted { //need to wait a minimum of 1 ETU ind_os_sleep (1); //for IO line to stay in TX mode } // Write first byte p->c->tx = *(p->xOut); // transmit if ((p->xIn - p->xOut) == 1) //if only one char to transmit { // return the direction to rx p->conf1 &= ~SIM_CONF1_TXRX; //to be able to receive ACK char p->c->conf1 = p->conf1; } } /* * SIM_Result * * Parameters : SIM port, buffer for received chars, pointer to receive size * * Return the result code (SW1/SW2) at the end of the string */ SYS_UWORD16 SIM_Result(SIM_PORT *p, SYS_UWORD8 *rP, SYS_UWORD16 *lenP, SYS_UWORD8 offset) { SYS_UWORD8 sw1, sw2; SYS_UWORD8 verdict; SYS_UWORD16 len; // Check if all characters were transmitted if (p->xIn - 1 != p->xOut) return (SIM_ERR_XMIT); len = p->rx_index; *lenP = len - offset; if ((*lenP == 0) && (p->apdu_ans_length == 256)) *lenP = 256; if (p->expected_data == 256) { verdict = SIM_Memcpy(rP, ((p->rbuf) + offset), 256 - offset); if (verdict != 0) { return (verdict); } } else if ((len != 0) && (len >= offset)) { verdict = SIM_Memcpy(rP, ((p->rbuf) + offset), len - offset); if (verdict != 0) { return (verdict); } } // change to remove SW1 and SW2 bytes from the receive buffer of data sw1 = p->rSW12[0]; sw2 = p->rSW12[1]; return((sw1 << 8) | sw2); } /* * SIM_Command_base * * Perform a command with the SIM T=0 protocol * * Arguments : pointer to SIM port structure * number of characters above 5 * expected command time in TDMA * * Returns an error code : * SIM_ERR_READ : no answer from the card to a command * SIM_ERR_LEN : the answer is not corresponding to a * correct answer of T=0 protocol * 06/11/2002 JYT * Modified to be base command function. New SIM_Command() created to call it * with wrapper. Created to manage retries on Internals errors of the driver. */ SYS_UWORD16 SIM_Command_Base(SIM_PORT *p, SYS_UWORD16 n, SYS_UWORD8 *dP, SYS_UWORD16 *lP) { SYS_UWORD16 res; SYS_UWORD8 err; SYS_UWORD8 ins; SYS_UWORD8 nack; SYS_UWORD8 nack1; SYS_UWORD16 offset; if (SIM_sleep_status == SIM_SLEEP_DESACT) { //freeze the timer status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); } else if (SIM_sleep_status == SIM_SLEEP_ACT) { //get out sleep mode status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); SIM_SleepMode_Out (p); //get up SIM card of sleep mode before executing the command } SIM_WriteBuffer(p, 0, 5); //adaptative driver if (n > 0) //need to send data to the card, TX mode { offset = 0; // protocol T=0 returns a acknowledge char which is // ins or (ins+1) : transmit the rest of the command in one time // ~ins or ~(ins+1) : transmit the rest of the command char by char ins = p->xbuf[1] & p->hw_mask; nack = (~p->xbuf[1]) & p->hw_mask;; p->moderx = 6; //mode of wait for ACK char NEXT_CHAR_PROC: if (err = SIM_Waitforchars(p, p->etu9600)) { if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) { //enable to count 2.5s before entering in sleep mode status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, SIM_SLEEP_WAITING_TIME, 0, NU_ENABLE_TIMER); } return (err); } if (p->moderx == 5) //return SW1/SW2 { res = SIM_Result(p, dP, lP, 0); if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) { //enable to count 2.5s before entering in sleep mode status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, SIM_SLEEP_WAITING_TIME, 0, NU_ENABLE_TIMER); } return(res); } else if ((p->ack & p->hw_mask) == ins) { // Write the rest of the command if needed // if more than 5 characters, the ack character will disappear SIM_WriteBuffer(p, 5 + offset, n - offset); } // special transmission mode if ACK = ~INS or ~(INS + 1). // refer to ISO/CEI 7816-3 [8.2.2] // need to send char by char else if ((p->ack & p->hw_mask) == nack) { SIM_WriteBuffer(p, 5 + offset, 1); offset++; goto NEXT_CHAR_PROC; } p->moderx = 5; if (err = SIM_Waitforchars (p, p->etu9600)) //wait SW1 / SW2 { if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) { //enable to count 2.5s before entering in sleep mode status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, SIM_SLEEP_WAITING_TIME, 0, NU_ENABLE_TIMER); } return (err); } } else //receive mode { if (err = SIM_WaitReception(p)) //wait for next procedure character { if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) { //enable to count 2.5s before entering in sleep mode status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, SIM_SLEEP_WAITING_TIME, 0, NU_ENABLE_TIMER); } return (err); } } res = SIM_Result(p, dP, lP, 0); if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) { //enable to count 2.5s before entering in sleep mode status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, SIM_SLEEP_WAITING_TIME, 0, NU_ENABLE_TIMER); } return(res); } /* Main function to manage the retry mechanism */ SYS_UWORD16 SIM_Command(SIM_PORT *p, SYS_UWORD16 n, SYS_UWORD8 *dP, SYS_UWORD16 *lP) { int res; #ifdef SIM_DEBUG_TRACE memset(SIM_dbg_null, 0x00, SIM_DBG_NULL); SIM_dbg_tdma_diff = 0; #endif // Issue initial SIM_Command() call res = SIM_Command_Base(p, n, dP, lP); /* Change from to 10 to 15 for specific SIM card (Racal) */ #ifdef SIM_RETRY // While there is an error then retry NUM_SIM_RETRIES times while ((res & 0xFF00) == 0) { // Reissue command p->errorSIM = 0; if(++SimRetries > NUM_SIM_RETRIES) { // return special retry failure res = SIM_ERR_RETRY_FAILURE; break; } res = SIM_Command_Base(p, n, dP, lP); } #ifdef SIM_DEBUG_TRACE SIM_dbg_null[SIM_DBG_NULL-1] = SimRetries; #endif SimRetries = 0; #endif return(res); } /* * SIM_ByteReverse * * Reverse a byte, both up/down (1 <> 0) and left/right (0001 <> 1000) * */ SYS_UWORD8 SIM_ByteReverse(SYS_UWORD8 b) { SYS_UWORD8 bh, bl; int i; const SYS_UWORD8 Reverse[] = {0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF }; // Up/Down b = ~ b; // left / right (by nibble) bh = (b >> 4) & 0xF; bl = b & 0xF; b = (Reverse[bl]) << 4 | Reverse[bh]; return(b); } /* * SIM_TxParityErrors * * return number of transmit parity errors occured since the last reset * of the SIM card * */ SYS_UWORD16 SIM_TxParityErrors(void) { SIM_PORT *p; p= &(Sim[0]); return(p->txParityErr); } /* * SIM_Reset * * Reset SIM card * Call-back SIM insert if successful * or SIM remove otherwise * * Returns 0 for success, or * SIM_ERR_NOCARD : no card * SIM_ERR_NATR : no answer to reset * SIM_ERR_NOINT : no * SIM_ERR_READ : unknown data return by the card * SIM_ERR_CARDREJECT : card not accepted * * 29/01/02, JYT, adding of low voltage managment for IOTA device * 06/10/03, JYT, Split of Reset to handle Restart */ SYS_UWORD16 SIM_Reset(SIM_CARD *cP) { return(SIM_Reset_Restart_Internal(cP, 1)); } /* * SIM_Restart * * Restart SIM card * * Returns 0 for success, or * SIM_ERR_NOCARD : no card * SIM_ERR_NATR : no answer to reset * SIM_ERR_NOINT : no * SIM_ERR_READ : unknown data return by the card * SIM_ERR_CARDREJECT : card not accepted * * 06/10/03, JYT, Split of Reset to handle Restart */ SYS_UWORD16 SIM_Restart(SIM_CARD *cP) { return(SIM_Reset_Restart_Internal(cP, 0)); } /* * SIM_Reset_Restart_Internal * * Reset SIM card * Call-back SIM insert if successful * or SIM remove otherwise * * Returns 0 for success, or * SIM_ERR_NOCARD : no card * SIM_ERR_NATR : no answer to reset * SIM_ERR_NOINT : no * SIM_ERR_READ : unknown data return by the card * SIM_ERR_CARDREJECT : card not accepted * * 29/01/02, JYT, adding of low voltage managment for IOTA device * 06/10/03, JYT, Split of Reset to handle Restart, ResetFlag added. */ SYS_UWORD16 SIM_Reset_Restart_Internal(SIM_CARD *cP, SYS_UWORD8 ResetFlag) { SIM_PORT *p; unsigned int ATR_Attempt; SYS_UWORD8 BackValue; SYS_UWORD8 Result_ATR; #ifdef SIM_DEBUG_TRACE memset(SIM_dbg_null, 0x00, SIM_DBG_NULL); SIM_dbg_cmd_cmpt = 0; memset(SIM_dbg_cmd, 0x00, SIM_DBG_CMD); #endif // Initialize pointers p = &(Sim[0]); // begin of JYT modifications if ( (BackValue = SIM_StartVolt(ResetFlag)) != SIM_OK) return((SYS_UWORD16)BackValue); // end of JYT modifications p->etu9600 = 867; // old = 239, increase of 363% p->etu400 = 20; p->hw_mask = MASK_INS; ATR_Attempt = 1; COLD_RESET: p->SWcount = 0; p->Freq_Algo = 0; p->PTS_Try = 0; //use to calculate how many PTS try were already done // Initialize pointers p->xIn = p->xOut = p->xbuf; p->rx_index = 0; p->errorSIM = 0; p->moderx = 0; p->null_received = 0; BackValue = SIM_ManualStart(p); if (BackValue != 0) return ((SYS_UWORD16)BackValue); p->c->conf1 = p->conf1 &= ~SIM_CONF1_BYPASS; //switch to automatic mode //#else //SW_WRK_AROUND_H_S == 0 // Automatic procedure -> fails with test 27.11.2.1 // // // Mask all interrupts // p->c->maskit = SIM_MASK_NATR | SIM_MASK_WT | SIM_MASK_OV | // SIM_MASK_TX | SIM_MASK_RX | SIM_MASK_CD; // // // IQ_Unmask (IQ_SIM); // Unmask interrupt controller // // // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_STOP; // ind_os_sleep(1); // // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_SWRST; // Set START bit and wait a while // ind_os_sleep(1); // // Unmask all sources of interrupts except WT, OV, and NATR // p->c->maskit = SIM_MASK_OV | SIM_MASK_WT | SIM_MASK_NATR; // // // Set Configuration bits // p->c->conf1 = p->conf1 = SIM_CONF1_SRSTLEV | SIM_CONF1_SCLKEN; // p->c->conf2 = 0x0940; // // //enable VCC // #if(ANLG_FAM == 1) // SPIABB_wa_VRPC (SPIRead_ABB_Register (PAGE1,VRPCCTRL1) | MODE_ENA_VCC); // #elif(ANLG_FAM == 2) // SPIABB_wa_VRPC (SPIRead_ABB_Register (PAGE1,VRPCSIM) | MODE_ENA_VCC); // #endif // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_START; // //#endif /*-----------------------------------------------------------*/ while (p->PTS_Try != 5) { while (ATR_Attempt != 0) { // Treat ATR response BackValue = SIM_ATRdynamictreatement (p, cP); if (BackValue == SIM_ERR_NOCARD) { SIM_PowerOff (); return (SIM_ERR_NOCARD); } // ATR received but wrong characters value // Comply with Test 27.11.2.4.5 and Test 27.11.1.3 else if (BackValue == SIM_ERR_CARDREJECT) { if (ATR_Attempt >= 3) { SIM_PowerOff (); return ((SYS_UWORD16)BackValue); } ATR_Attempt++; SIM_WARMReset(p); // assert a reset during at least 400 ETU } else if (BackValue != 0) //SIM_ERR_WAIT { if (ATR_Attempt == 3) { // switch to 5V (ANALOG1) or 3V (ANALOG2) if card send wrong ATR 3 consecutive times // Apply 3 consecutive resets at 5V (ANALOG1) or 3V (ANALOG2) // fix prb for old chinese card not GSM compliant if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) { // SIM cannot be supplied at 3V (ANALOG2), because of an Hardware failure SIM_PowerOff (); return((SYS_UWORD16)BackValue); } ATR_Attempt++; goto COLD_RESET; } if (ATR_Attempt >= 6) { SIM_PowerOff (); return ((SYS_UWORD16)BackValue); } ATR_Attempt++; SIM_WARMReset(p); // assert a reset during at least 400 ETU } else { ATR_Attempt = 0; } } /*-----------------------------------------------------------*/ // PTS procedure BackValue = SIM_PTSprocedure(cP,p); //assert PTS if needed // need upgrade with FIFO use to avoid CPU overloading if (BackValue) { if (BackValue == SIM_ERR_CARDREJECT) { SIM_PowerOff (); //must be done by protocol stack return (SIM_ERR_CARDREJECT); } if (p->PTS_Try <= 4) //else error treatement { SIM_WARMReset(p); // assert a reset during at least 400 ETU } } else { p->PTS_Try = 5; } } /*-----------------------------------------------------------*/ //interpret SIM coding concerning SIM supply voltage if (SIM_GetFileCharacteristics(p)) { #if ((SIM_TYPE == SIM_TYPE_3V) || (SIM_TYPE == SIM_TYPE_1_8V)) SIM_PowerOff(); // Needed for tests 27.17.1.5.1 and 27.17.1.5.5 #endif return (SIM_ERR_READ); } // JYT, certainly unused because of previous test if(p->errorSIM) { return(p->errorSIM); } if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_5V) { #if ((SIM_TYPE == SIM_TYPE_3V ) || (SIM_TYPE == SIM_TYPE_1_8_3V) || (SIM_TYPE == SIM_TYPE_1_8V)) SIM_PowerOff (); // required by ETSI if 5V only card is detected and 3V only ME chosen return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 #elif (SIM_TYPE == SIM_TYPE_3_5V) if (CurrentVolt == SIM_3V) //if 5V only SIM present -> the ME may switch to 5V operation { if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) // switch to 5V { SIM_PowerOff (); return ((SYS_UWORD16)BackValue); } ATR_Attempt = 1; goto COLD_RESET; // Test 27.17.1.5.3 } #endif } else { if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_3V) { #if (SIM_TYPE == SIM_TYPE_1_8V) SIM_PowerOff (); // required by ETSI if 3V only card is detected and 1.8V only ME chosen return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 #elif (SIM_TYPE == SIM_TYPE_1_8_3V) if (CurrentVolt == SIM_1_8V) //if 3V only SIM present -> the ME may switch to 3V operation { if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) // switch to 3V { SIM_PowerOff (); return ((SYS_UWORD16)BackValue); } ATR_Attempt = 1; goto COLD_RESET; // Test 27.17.1.5.3 } #endif } else { if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_1_8V) { #if (SIM_TYPE == SIM_TYPE_5V) SIM_PowerOff (); // required by ETSI if 5V only card is detected and 3V only ME chosen return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 #endif } else { // future class of sim card voltage !!!!!! never use it SIM_PowerOff (); // Rec. 11.18 return (SIM_ERR_CARDREJECT); } } } SIM_Interpret_FileCharacteristics(p); //find which frequency (13/4 or 13/8 Mhz) if(p->errorSIM) { return(p->errorSIM); } status_os_sim = NU_Control_Timer (&SIM_timer, NU_ENABLE_TIMER); //enable starting of the os timer for sleep mode if (ResetFlag) { if (p->InsertFunc != NULL) (p->InsertFunc)(cP); } return(0); } /* SIM manual start * * purpose : manage manual start of the SIM interface * input : pointer on sim structure SIM_PORT * output : none */ SYS_UWORD16 SIM_ManualStart (SIM_PORT *p) { volatile int i; //!! p->c->conf1 = p->conf1 = 0x8004; //set conf1 to automatic mode SIO low //enable sim interface clock module p->c->cmd = SIM_CMD_CLKEN; //#if (SW_WRK_AROUND_H_S == 1) // Mask all interrupts p->c->maskit = SIM_MASK_NATR | SIM_MASK_WT | SIM_MASK_OV | SIM_MASK_TX | SIM_MASK_RX | SIM_MASK_CD; // Unmask interrupt controller IQ_Unmask (IQ_SIM); p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_STOP; ind_os_sleep (4); //wait 5 TDMA due to SVCC falling down duration p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_SWRST; ind_os_sleep (1); //wait 5 TDMA due to SVCC falling down duration p->c->conf2 = 0x0940; i = p->c->it; // Unmask all sources of interrupts except WT and OV and NATR p->c->maskit = SIM_MASK_WT | SIM_MASK_OV | SIM_MASK_NATR; //enter in manual mode to start the ATR sequence p->c->conf1 = p->conf1 |= SIM_CONF1_BYPASS; ind_os_sleep(1); p->c->conf1 = p->conf1 |= SIM_CONF1_SVCCLEV; ind_os_sleep(1); #if(ANLG_FAM == 1) //set OMEGA to 3V mode //enable VCC ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) | MODE_ENA_SIMLDOEN); ind_os_sleep(1); ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) | MODE_ENA_SIMEN); ind_os_sleep(1); #elif(ANLG_FAM == 2) //set IOTA to 3V mode //enable VCC ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) | MODE_ENA_SIMEN); ind_os_sleep(1); #elif(ANLG_FAM == 3) //set SYREN to 3V mode //enable VCC ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) | MODE_ENA_SIMEN); ind_os_sleep(1); #endif p->c->conf1 = p->conf1 &= ~SIM_CONF1_SIOLOW; ind_os_sleep(1); p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKEN; p->c->conf1 = p->conf1 &= ~SIM_CONF1_TXRX; //set to receive mode if(p->errorSIM) //check for card detection { return(p->errorSIM); } i = 0; while ((p->rx_index == 0) && (i < 3)) //wait 40000*Tsclk { ind_os_sleep (1); i++; } if ((p->rx_index == 0) && (i >= 3)) //external reset card ATR treatement { i = 0; p->c->conf1 = p->conf1 |= SIM_CONF1_SRSTLEV;//set reset level to high level while ((p->rx_index == 0) && (i < 3)) //wait 40000*Tsclk { ind_os_sleep (1); i++; } } return (0); } /* SIM manual stop * * purpose : manage manual start of the SIM interface * input : pointer on sim structure SIM_PORT * output : none */ void SIM_ManualStop (SIM_PORT *p) { // to write } /* Power off SIM == SIM_CMD_STOP * input : none * output : none */ void SIM_PowerOff(void) { SIM_PORT *p; volatile SYS_UWORD16 cmd; // Initialize pointers p = &(Sim[0]); // Reset and wait a while cmd = p->c->cmd; p->c->cmd = (cmd & MASK_CMD) | SIM_CMD_STOP; ind_os_sleep(5); //wait for falling of SIM signals (RESET/CLK/IO) #if(ANLG_FAM == 1) //disable VCC : disable level shifter then SVDD ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & MODE_DIS_SIMEN); ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & MODE_DIS_SIMLDOEN); #elif(ANLG_FAM == 2) //disable VCC : disable level shifter then SVDD ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & MODE_DIS_SIMEN); ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & MODE_DIS_SIMLDOEN); #elif(ANLG_FAM == 3) //disable VCC : disable level shifter then SVDD ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & MODE_DIS_SIMEN); ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & MODE_DIS_SIMLDOEN); #endif ind_os_sleep(10); //wait for falling of VCC commanf by ABB p->c->cmd = 0x0000; //disable clock of sim module if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) { //SIM sleep timer is not more needed status_os_sim = NU_Delete_Timer (&SIM_timer); } } /* * SIM_Init * * Function for backward compatibility only * */ void SIM_Init(void (Insert(SIM_CARD *cP)), void (Remove(void))) { // Call SIM Registration function. (void) SIM_Register (Insert, Remove); } /* * SIM_Initialize * * Initialize data structures. * */ void SIM_Initialize(void) { int n; SIM_PORT *p; volatile SYS_UWORD32 dum; /* FreeCalypso addition */ ffs_file_read("/etc/SIM_spenh", &SIM_allow_speed_enhancement, 1); // Initialize registers p = &(Sim[0]); p->c = (SIM_CONTROLLER *) SIM_CMD; p->errorSIM = 0; dum = (volatile SYS_UWORD32) SIM_Dummy; // to force linking SIM32 status_os_sim = NU_Create_Timer (&SIM_timer, "SIM_sleep_timer", &SIM_SleepMode_In, 0, SIM_SLEEP_WAITING_TIME, 0, NU_DISABLE_TIMER); //timer start only with NU_Control_Timer function //waiting time set to 2.3s SIM_sleep_status = SIM_SLEEP_NONE; #ifdef SIM_RETRY SimRetries = 0; #endif } /* * SIM_Register * * SIM Registration function: Initialize callback functions * * Insert(void) : pointer to the function called when a card is inserted * Remove(void) : pointer to the function called when the card is removed * */ SYS_UWORD16 SIM_Register(void (Insert(SIM_CARD *cP)), void (Remove(void))) { SIM_PORT *p; // Initialize pointers p = &(Sim[0]); p->InsertFunc = Insert; p->RemoveFunc = Remove; return (SIM_OK); } /* * High level routines : mapped to GSM 11.11 function calls * * Uses a Nucleus semaphore to ensure no simultaneous access to SIM and buffer * * Each routine does : * write command * sleep long enough for the expected transmission and reception * return rest code * * SYS_UWORD8 *result : pointer to the string return by the SIM card * SYS_UWORD8 *rcvSize : size of the string return by the SIM card * * other parameters : parameters needed by the SIM card to * execute the function. * */ //unsigned char SIM_flag = 0; /* * SIM_Select * * Select a DF or a EF */ SYS_UWORD16 SIM_Select(SYS_UWORD16 id, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int res; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_SELECT; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = 2; p->xbuf[5] = id >> 8; // high byte p->xbuf[6] = id & 0xFF; // low byte res = SIM_Command(p, 2, dat, rcvSize); /* Change from to 10 to 15 for specific SIM card (Racal) */ // if (id == 0x6F07) // SIM_flag = 1; #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AACMD", 5); SIM_dbg_write_trace(p->xbuf, 7); SIM_dbg_write_trace((SYS_UWORD8 *)"AAANS", 5); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_Status * * Returns data received from card and number of bytes received */ SYS_UWORD16 SIM_Status(SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) { SIM_PORT *p; short len = 0x16; // length specified in GSM 11.11 int res; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_STATUS; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = len; res = SIM_Command(p, 0, dat, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ABCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"ABANS", 5); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_Status_Extended * * Returns data received from card and number of bytes received * Add extra parameter len : number of returned byte */ SYS_UWORD16 SIM_Status_Extended(SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_STATUS; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = (SYS_UWORD8)llen; res = SIM_Command(p, 0, dat, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ACCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"ACANS", 5); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_ReadBinary * * Read data from the current EF */ SYS_UWORD16 SIM_ReadBinary(SYS_UWORD8 *dat, SYS_UWORD16 offset, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_READ_BINARY; p->xbuf[2] = offset >> 8; p->xbuf[3] = offset & 0xFF; p->xbuf[4] = (SYS_UWORD8)llen; res = SIM_Command(p, 0, dat, rcvSize); // if (SIM_flag) { // SIM_flag = 0; // dat[0] = 0x08; // } #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ADCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"ADANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize>>8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(dat, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_VerifyChv * * Verify the specified CHV (chvType) */ SYS_UWORD16 SIM_VerifyCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 chvType, SYS_UWORD16 *rcvSize) { SIM_PORT *p; SYS_UWORD8 len; int i; int res; p = &(Sim[0]); len = 8; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_VERIFY_CHV; p->xbuf[2] = 0; p->xbuf[3] = chvType; p->xbuf[4] = len; for (i=0;i<8;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, 8, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AECMD", 5); SIM_dbg_write_trace(p->xbuf, len+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AEANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_RunGSMAlgo * * Authentication procedure */ SYS_UWORD16 SIM_RunGSMAlgo(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int len; int i; int res; p = &(Sim[0]); if(p->Freq_Algo) //13/4 Mhz mandatory ?? p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKDIV; len = 16; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_RUN_GSM_ALGO; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = len; for (i=0;i<len;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, len, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AFCMD", 5); SIM_dbg_write_trace(p->xbuf, len+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AFANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif if(p->Freq_Algo) p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKDIV; return(res); } /* * SIM_GetResponse * * Get data from the card * * SYS_UWORD8 len : length of the data to get */ SYS_UWORD16 SIM_GetResponse(SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_GET_RESPONSE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = (SYS_UWORD8)llen; res = SIM_Command(p, 0, dat, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AGCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"AGANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(dat, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_ChangeCHV * * Change the specified CHV (chvType) */ SYS_UWORD16 SIM_ChangeCHV(SYS_UWORD8 *result,SYS_UWORD8 *oldChv, SYS_UWORD8 *newChv, SYS_UWORD8 chvType, SYS_UWORD16 *lP) { SIM_PORT *p; SYS_UWORD16 len; int i; SYS_UWORD16 res; p = &(Sim[0]); len = 16; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_CHANGE_CHV; p->xbuf[2] = 0; p->xbuf[3] = chvType; p->xbuf[4] = (SYS_UWORD8)len; // Copy bytes to buffer for (i=0;i<8;i++) { p->xbuf[5+i] = *(oldChv+i); } for (i=0;i<8;i++) { p->xbuf[13+i] = *(newChv+i); } res = SIM_Command(p, len, result, lP); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AHCMD", 5); SIM_dbg_write_trace(p->xbuf, len+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AHANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *lP); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_DisableCHV * * Disable CHV 1 */ SYS_UWORD16 SIM_DisableCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *lP) { SIM_PORT *p; int len; int i; int res; p = &(Sim[0]); len = 8; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_DISABLE_CHV; p->xbuf[2] = 0; p->xbuf[3] = 1; p->xbuf[4] = 8; for (i=0;i<8;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, len, result, lP); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AICMD", 5); SIM_dbg_write_trace(p->xbuf, 8+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AIANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *lP); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_EnableCHV * * Enable CHV 1 */ SYS_UWORD16 SIM_EnableCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *lP) { SIM_PORT *p; int len; int i; int res; p = &(Sim[0]); len = 8; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_ENABLE_CHV; p->xbuf[2] = 0; p->xbuf[3] = 1; p->xbuf[4] = (SYS_UWORD8)len; for (i=0;i<len;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, len, result, lP); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AJCMD", 5); SIM_dbg_write_trace(p->xbuf, len+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AJANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *lP); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_UnblockCHV * * Unblock the specified CHV (chvType) and store a new CHV */ SYS_UWORD16 SIM_UnblockCHV(SYS_UWORD8 *result, SYS_UWORD8 *unblockChv, SYS_UWORD8 *newChv, SYS_UWORD8 chvType, SYS_UWORD16 *lP) { SIM_PORT *p; int len; int i; int res; p = &(Sim[0]); len = 16; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_UNBLOCK_CHV; p->xbuf[2] = 0; p->xbuf[3] = chvType; p->xbuf[4] = (SYS_UWORD8)len; for (i=0;i<8;i++) { p->xbuf[5+i] = *(unblockChv+i); } for (i=0;i<8;i++) { p->xbuf[13+i] = *(newChv+i); } res = SIM_Command(p, len, result, lP); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AKCMD", 5); SIM_dbg_write_trace(p->xbuf, len+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AKANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *lP); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_Invalidate * * Invalidate the current EF */ SYS_UWORD16 SIM_Invalidate(SYS_UWORD8 *rP, SYS_UWORD16 *lP) { SIM_PORT *p; int i; int res; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_INVALIDATE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = 0; res = SIM_Command(p, 0, rP, lP); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ALCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"ALANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(rP, *lP); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_Rehabilitate * * Rehabilitate the current EF */ SYS_UWORD16 SIM_Rehabilitate(SYS_UWORD8 *rP, SYS_UWORD16 *lP) { SIM_PORT *p; int len; int res; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_REHABILITATE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = 0; res = SIM_Command(p, 0, rP, lP); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AMCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"AMANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(rP, *lP); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_UpdateBinary * * Store data in the current transparent EF */ SYS_UWORD16 SIM_UpdateBinary(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 offset, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_UPDATE_BINARY; p->xbuf[2] = offset >> 8; p->xbuf[3] = offset & 0xFF; p->xbuf[4] = (SYS_UWORD8)llen; for (i=0;i<llen;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, llen, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ANCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"ANANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_ReadRecord * * Read a record (recNum) from the current linear fixed or cyclic EF */ SYS_UWORD16 SIM_ReadRecord(SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD8 recNum, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_READ_RECORD; p->xbuf[2] = recNum; p->xbuf[3] = mode; p->xbuf[4] = (SYS_UWORD8)llen; res = SIM_Command(p, 0, dat, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AOCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AOANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(dat, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } #ifdef SIM_APDU_TEST SYS_UWORD8 snd[270]; SYS_UWORD8 rec[270]; SYS_UWORD8 logchan; SYS_UWORD16 recl; unsigned short resopen, resclose, rescmd; #endif #ifdef SIM_SAT_REFRESH_TEST SIM_CARD ptr; SYS_UWORD16 lrcvSize; SYS_UWORD8 ldat[20]; #endif /* * SIM_UpdateRecord * * Store a record (recNum) in the current linear fixed or cyclic EF */ SYS_UWORD16 SIM_UpdateRecord(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD8 recNum, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; #ifdef SIM_SAT_REFRESH_TEST // do 1000 times the following sequence for (i=0;i<1000;i++) { SIM_PowerOff(); SIM_Restart(&ptr); SIM_Select((SYS_UWORD16)0x7f10, ldat, &lrcvSize); SIM_Select((SYS_UWORD16)0x6f3a, ldat, &lrcvSize); } #endif #ifdef SIM_APDU_TEST // send OPEN LOGICAL CHANNEL snd[0] = 0x00; snd[1] = 0x70; snd[2] = 0x00; snd[3] = 0x00; snd[4] = 0x01; resopen = SIM_XchTPDU(&snd[0], 5, &rec[0], 1, &recl); if (resopen == 0x9000) { logchan = rec[0]; // Select AID PKCS snd[0] = logchan; snd[1] = 0xA4; snd[2] = 0x04; snd[3] = 0x00; snd[4] = 0x0C; snd[5] = 0xA0; snd[6] = 0x00; snd[7] = 0x00; snd[8] = 0x00; snd[9] = 0x63; snd[10] = 0x50; snd[11] = 0x4B; snd[12] = 0x43; snd[13] = 0x53; snd[14] = 0x2D; snd[15] = 0x31; snd[16] = 0x35; rescmd = SIM_XchTPDU(&snd[0], 17, &rec[0], 0, &recl); // Select file EF odf snd[0] = 0x80 | logchan; snd[1] = 0xA4; snd[2] = 0x00; snd[3] = 0x00; snd[4] = 0x02; snd[5] = 0x50; snd[6] = 0x31; rescmd = SIM_XchTPDU(&snd[0], 7, &rec[0], 0, &recl); // get response EF odf snd[0] = logchan; snd[1] = 0xC0; snd[2] = 0x00; snd[3] = 0x00; snd[4] = rescmd; rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); // read binary EF odf snd[0] = 0x80 | logchan; snd[1] = 0xB0; snd[2] = 0x00; snd[3] = 0x00; snd[4] = rec[3]-16; rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); // Select file EF cdf snd[0] = 0x80 | logchan; snd[1] = 0xA4; snd[2] = 0x00; snd[3] = 0x00; snd[4] = 0x02; snd[5] = 0x51; snd[6] = 0x03; rescmd = SIM_XchTPDU(&snd[0], 7, &rec[0], 0, &recl); // get response EF odf snd[0] = logchan; snd[1] = 0xC0; snd[2] = 0x00; snd[3] = 0x00; snd[4] = rescmd; rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); // read binary EF cdf snd[0] = 0x80 | logchan; snd[1] = 0xB0; snd[2] = 0x00; snd[3] = 0x00; snd[4] = 0xff; rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); // read binary EF cdf snd[0] = 0x80 | logchan; snd[1] = 0xB0; snd[2] = 0x00; snd[3] = 0x00; snd[4] = 0x00; rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], 256, &recl); } #endif p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_UPDATE_RECORD; p->xbuf[2] = recNum; p->xbuf[3] = mode; p->xbuf[4] = (SYS_UWORD8)llen; for (i=0;i<llen;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, llen, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"APCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"APANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif #ifdef SIM_APDU_TEST // send CLOSE LOGICAL CHANNEL snd[0] = 0x00; snd[1] = 0x70; snd[2] = 0x80; snd[3] = logchan; snd[4] = 0x00; resclose = SIM_XchTPDU(&snd[0], 5, &rec[0], 0, &recl); #endif return(res); } /* * SIM_Seek * * Search data in a linear fixed or cyclic EF. * return the first record number in which it found the data. */ SYS_UWORD16 SIM_Seek(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_SEEK; p->xbuf[2] = 0; p->xbuf[3] = mode; p->xbuf[4] = (SYS_UWORD8)llen; for (i=0;i<llen;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, llen, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AQCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AQANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_Increase * * Add value to a record of a cyclic EF */ SYS_UWORD16 SIM_Increase(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int len; int i; int res; p = &(Sim[0]); len = 3; p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_INCREASE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = 3; for (i=0;i<3;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, len, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ARCMD", 5); SIM_dbg_write_trace(p->xbuf, 3+5); SIM_dbg_write_trace((SYS_UWORD8 *)"ARANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_TerminalProfile * * Used by ME to send its toolkit capabilities to SIM */ SYS_UWORD16 SIM_TerminalProfile(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_TERMINAL_PROFILE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = (SYS_UWORD8)llen; for (i=0;i<llen;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, llen, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ASCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"ASANS", 5); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_FETCH * * Used by ME to inquiry of what SIM toolkit need to do */ SYS_UWORD16 SIM_Fetch(SYS_UWORD8 *result, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_FETCH; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = (SYS_UWORD8)llen; res = SIM_Command(p, 0, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"ATCMD", 5); SIM_dbg_write_trace(p->xbuf, 5); SIM_dbg_write_trace((SYS_UWORD8 *)"ATANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_TerminalResponse * * Used for ME to respond at a SIM toolkit command */ SYS_UWORD16 SIM_TerminalResponse(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_TERMINAL_RESPONSE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = (SYS_UWORD8)llen; for (i=0;i<llen;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, llen, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AUCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AUANS", 5); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_Envelope * * Used by Network to tansfert data download to the SIM in a transparent way for user */ SYS_UWORD16 SIM_Envelope(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; SYS_UWORD16 llen = len & SIM_UWORD16_MASK; p = &(Sim[0]); p->xbuf[0] = GSM_CLASS; p->xbuf[1] = SIM_ENVELOPE; p->xbuf[2] = 0; p->xbuf[3] = 0; p->xbuf[4] = (SYS_UWORD8)llen; for (i=0;i<llen;i++) { p->xbuf[5+i] = *(dat+i); } res = SIM_Command(p, llen, result, rcvSize); #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AVCMD", 5); SIM_dbg_write_trace(p->xbuf, llen+5); SIM_dbg_write_trace((SYS_UWORD8 *)"AVANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * SIM_XchTPDU * * Used for ME to send generic command to WIM Card */ SYS_UWORD16 SIM_XchTPDU(SYS_UWORD8 *dat, SYS_UWORD16 trxLen, SYS_UWORD8 *result, SYS_UWORD16 rcvLen, SYS_UWORD16 *rcvSize) { SIM_PORT *p; int i; int res; p = &(Sim[0]); p->xbuf[0] = dat[0]; p->xbuf[1] = dat[1]; p->xbuf[2] = dat[2]; p->xbuf[3] = dat[3]; p->xbuf[4] = dat[4]; for (i=5;i<trxLen;i++) { p->xbuf[i] = dat[i]; } // enable the WIM behavior of the sim driver p->apdu_ans_length = rcvLen; res = SIM_Command(p, (trxLen - 5), result, rcvSize); // disable the WIM behavior of the sim driver p->apdu_ans_length = 0; #ifdef SIM_DEBUG_TRACE SIM_dbg_write_trace((SYS_UWORD8 *)"AWCMD", 5); SIM_dbg_write_trace(p->xbuf, trxLen); SIM_dbg_write_trace((SYS_UWORD8 *)"AWANS", 5); SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(result, *rcvSize); SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); SIM_dbg_tmp[1] = (SYS_WORD8)res; SIM_dbg_write_trace(SIM_dbg_tmp, 2); SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); SIM_dbg_write_trace(SIM_dbg_tmp, 2); #endif return(res); } /* * Use to detect end of characters reception * input: p pointer on sim structure * n number of extra character to send * * output: return 0 if sucess * SIM_ERR_x in case of error * */ SYS_UWORD16 SIM_WaitReception(SIM_PORT *p) { SYS_UWORD16 returncode; //analyse the nature of the command to execute if ( (p->xbuf[1] == 0x12) || (p->xbuf[1] == 0xB2) || (p->xbuf[1] == 0xB0) || (p->xbuf[1] == 0xF2) || (p->xbuf[1] == 0xC0) || (p->apdu_ans_length != 0) ) //FETCH, READ_RECORD, READ_BINARY, STATUS, GET_RESPONSE commands == receive command { if (p->xbuf[4] == 0) //if P3 == 0 when sending receive command { p->expected_data = 256; } else { p->expected_data = p->xbuf[4]; } p->moderx = 1; //wait for procedure byte if (returncode = SIM_Waitforchars (p, p->etu9600)) { return returncode; } } else //direct command : INVALIDATE, REHABILITATE, SLEEP { p->moderx = 5; //mode reception of SW1/SW2 if (returncode = SIM_Waitforchars (p, p->etu9600)) { return returncode; } } return (0); } /* * Use to read file characteristics information * input: p pointer on sim structure * * output: return 0 if sucess * 1 in case of error * */ SYS_UWORD8 SIM_GetFileCharacteristics(SIM_PORT *p) { int res; SYS_UWORD8 ubuf[40]; SYS_UWORD16 sz; res = SIM_Select(DF_GSM, ubuf, &sz); if ((res & 0xFF00) != 0x9F00) { res = SIM_Select(DF_DCS1800, ubuf, &sz); if ((res & 0xFF00) != 0x9F00) { return (1); } } res = SIM_GetResponse( ubuf, res & 0x00FF , &sz); if (res != 0x9000) return (1); p->FileC = ubuf[13]; return (0); } /* * Use to determine value of b2 in file caracteristics contained in response * of SELECT Master File command * return 0 if no preferred speed during authentication * 1 if 13/4Mhz mandatory * * */ void SIM_Interpret_FileCharacteristics(SIM_PORT *p) { //interpret b2 bit for operating authentication speed if((p->conf1 & 0x0020) && (p->FileC & 0x02)) { p->Freq_Algo = 1; } //interpret Clock stop behavior // modified by J. Yp-Tcha to integrate all the behaviors required by ETSI. // 18/11/2002 : TI Chip always allowed low level, high level is hard dependant if ((p->FileC & SIM_CLK_STOP_MASK) == SIM_CLK_STOP_NOT_ALLWD) { /* Sim Clock Stop Not Allowed */ SIM_sleep_status = SIM_SLEEP_NOT_ALLOWED; /* There is not need to modifiy p->conf1 */ status_os_sim = NU_Delete_Timer (&SIM_timer); } else { if ((p->FileC & SIM_CLK_STOP_MASK) == SIM_CLK_STOP_ALLWD) { /* Sim Clock Stop Allowed, no prefered level */ /* Default value for TI Chip shall always be Low Level */ SIM_sleep_status = SIM_SLEEP_DESACT; p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKLEV; } else { /* Clock Stop is allowed, the level shall be checked */ if ((p->FileC & SIM_CLK_STOP_HIGH) == SIM_CLK_STOP_HIGH) { /* high level is mandatory */ /* OMEGA/NAUSICA can not handle sim stop clock at high level */ #ifndef ANALOG1 SIM_sleep_status = SIM_SLEEP_DESACT; p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKLEV; #else /* Sim Clock Stop Not Allowed because the interface do not support this level */ SIM_sleep_status = SIM_SLEEP_NOT_ALLOWED; /* There is not need to modifiy p->conf1 */ status_os_sim = NU_Delete_Timer (&SIM_timer); #endif } else { /* by default, Low Level is allowed */ SIM_sleep_status = SIM_SLEEP_DESACT; p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKLEV; } } } if (SIM_sleep_status == SIM_SLEEP_NONE) { status_os_sim = NU_Delete_Timer (&SIM_timer); } } /* * Use to evaluate need of sending PTS procedure regarding * the ATR. If default not used, PTS initiates F and D adequate values * for speed enhancement. * In case of 2 wrong PTS answer (speed enhanced), a third PTS with default value * is used. If the third PTS attempt failed, the ME reset the SIM and use default * value. * Return Value : SIM_ERR_READ, SIM_ERRCARDREJECT, SIM_ERR_WAIT * */ SYS_UWORD16 SIM_PTSprocedure(SIM_CARD *cP, SIM_PORT *p) { SYS_UWORD8 TA1; SYS_UWORD8 n; SYS_UWORD8 err; p->xbuf[0] = 0xFF; //character of PTS proc to send p->xbuf[1] = 0; p->xbuf[2] = 0xFF; p->xbuf[3] = 0x7B; //TA1,TB1,TC1,TD1 present in ATR ? n = 3; p->PTS_Try++; if (p->PTS_Try > 4) { return (SIM_ERR_CARDREJECT); } // at the fourth attempt, PTS procedure is unusefull. Use default value. //TA1 present? Test 27.11.2.6 else if ( p->PTS_Try == 4) { SIM_Calcetu (p); return (0); } if(cP->AtrData[1] & 0x10) { TA1 = cP->AtrData[2]; } else //if TA1 not present, return { SIM_Calcetu (p); return (0); } if (TA1 >= 0x94 && SIM_allow_speed_enhancement) { // JYT 26/9/2003 to check correct behavior of the SIM Driver vs the PPS. //#ifdef NOTTOLOADBECAUSENOTTESTED // SIM_Calcetu (p); // return (0); //temporary disabling of speed enhancement feature if (p->PTS_Try <= 2) { n = 4; p->xbuf[1] = 0x10; p->xbuf[2] = 0x94; // if speed enhancement, then at least (and at most) F = 512 and D = 8 is supported } //#endif } if ((TA1 == 0x11) || (TA1 == 0x01)) { SIM_Calcetu (p); return (0); } //if TA1 != 0x11 and 0x94, need to send PTS request //transmit request of speed enhancement : PTS SIM_WriteBuffer(p, 0, n); p->moderx = 0; //mode of normal reception p->expected_data = n; if (err = SIM_Waitforchars (p, p->etu9600)) { return (err); } //should received same chars as PTS request if ((p->rbuf[0] != p->xbuf[0]) || (p->rbuf[1] != p->xbuf[1]) || (p->rbuf[2] != p->xbuf[2])) { return(SIM_ERR_READ); } if (n == 4) { if (p->rbuf[3] != p->xbuf[3]) { return(SIM_ERR_READ); } //correct response from SIM : with speed enhanced p->c->conf1 = p->conf1 |= SIM_CONF1_ETU; //set F=512 D=8 } SIM_Calcetu (p); return (0); } /* * procedure of WARM reset consists on asserting * reset signal at 0 during at least 400 ETU * input p pointer of type SIM_PORT */ void SIM_WARMReset (SIM_PORT *p) { p->c->conf1 = p->conf1 &= ~SIM_CONF1_SRSTLEV; ind_os_sleep (p->etu400); /// wait 400 ETU p->c->conf1 = p->conf1 |= SIM_CONF1_SRSTLEV; p->rx_index = 0; } /* * procedure use to get out sleepMode * input p pointer of type SIM_PORT */ void SIM_SleepMode_In (SYS_UWORD32 param) { if (SIM_sleep_status == SIM_SLEEP_DESACT) { (&(Sim[0]))->c->conf1 &= ~SIM_CONF1_SCLKEN; //disabled the clock for the SIM card SIM_sleep_status = SIM_SLEEP_ACT; } status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); } /* * procedure use to get out sleepMode * input p pointer of type SIM_PORT */ void SIM_SleepMode_Out (SIM_PORT *p) { if (SIM_sleep_status == SIM_SLEEP_ACT) { p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKEN; // WCS patch for NU_Sleep(0) bug if (p->startclock > 0) ind_os_sleep (p->startclock); // End WCS patch SIM_sleep_status = SIM_SLEEP_DESACT; } } /* * procedure to parse ATR dynamically * input p pointer of type SIM_PORT * output return error code * SIM_ERR_WAIT, p->errorSIM * SIM_ERR_CARDREJECT, * * */ SYS_UWORD16 SIM_ATRdynamictreatement (SIM_PORT *p, SIM_CARD *cP) { volatile SYS_UWORD8 HistChar; volatile SYS_UWORD8 InterfChar; SYS_UWORD16 countT; SYS_UWORD16 mask; SYS_UWORD16 returncode; SYS_UWORD8 i; SYS_UWORD8 firstprotocol; SYS_UWORD8 Tx,T; SYS_UWORD8 TDi; SYS_UWORD8 position_of_TC1, position_of_TB1; SYS_UWORD8 another_protocol_present; SYS_UWORD16 wait80000clk; i = 0; //wait for TS and T0 p->moderx = 0; p->expected_data= 1; firstprotocol = 0; position_of_TC1 = 0; position_of_TB1 = 0; another_protocol_present = 0; wait80000clk = 6; // > 24 ms //wait for first character TS of ATR sequence. It should arrive before 80000sclk if (returncode = SIM_Waitforchars (p, wait80000clk)) { return returncode; } //wait for T0 p->expected_data++; if (returncode = SIM_Waitforchars (p, p->etu9600)) { return returncode; } ind_os_sleep(220); if (((p->rbuf[0] & 0xF0) == 0x30) && (p->rx_index != 0)) { cP->Inverse = 0; } /*-----------------------------------------------------------*/ /* Inverse convention card */ // If first byte is correct for inverse card, return success else if (((p->rbuf[0] & 0x0F) == 0x03) && (p->rx_index != 0)) { cP->Inverse = 1; } else { return (SIM_ERR_CARDREJECT); //Test 27.11.2.4.5 } countT = 0; mask = 0x10; InterfChar = 2; TDi = 1; Tx = SIM_Translate_atr_char (p->rbuf[1], cP); HistChar = Tx & 0x0F; //get K, number of transmitted historical character while (TDi != 0) { while (mask < 0x100) //monitors interface chars { if ((Tx & mask) == mask) //monitors if interface character TAx,TBx,TCx,TDc present { InterfChar++; } //wait for TC1 and save its position if ((firstprotocol == 0) && ((Tx & 0x40) == mask)) { position_of_TC1 = InterfChar - 1; } if ((firstprotocol == 0) && ((Tx & 0x20) == mask)) { position_of_TB1 = InterfChar - 1; } mask = mask << 1; } p->expected_data = InterfChar; //wait for TAi,TBi,TCi,TDi if present if (returncode = SIM_Waitforchars (p, p->etu9600)) { return returncode; } //need to monitor if TC1 present and if equal to 0 or 255 on first protocol if ((firstprotocol == 0) && (position_of_TC1 != 0)) { T = SIM_Translate_atr_char (p->rbuf[position_of_TC1], cP); if ((T != 0) && (T != 255)) //test 27.11.1.3 { //return Error in case of bad TC1 value return (SIM_ERR_CARDREJECT); } } //need to monitor if TB1 present and if differente from 0 on first protocol if ((firstprotocol == 0) && (position_of_TB1 != 0)) { T = SIM_Translate_atr_char (p->rbuf[position_of_TB1], cP); if (T != 0) //ITU { //return Error in case of bad TB1 value return (SIM_ERR_CARDREJECT); } } if ((Tx & 0x80) == 0x80) //TDi byte on first protocol must be 0 { //get new TD char Tx = SIM_Translate_atr_char (p->rbuf[InterfChar - 1], cP); if ((Tx & 0x0F) != 0) { if (firstprotocol == 0) //if first protocol received is not T=0, card is rejected { return (SIM_ERR_CARDREJECT); //protocol other than T=0 } else { //if an another protocol T != 0 present, need to wait for TCK char another_protocol_present = 1; } } mask = 0x10; firstprotocol++; //indicate another protocol T } else { TDi = 0; } } //add TCK if necessary p->expected_data = HistChar + InterfChar + another_protocol_present; if (returncode = SIM_Waitforchars (p, p->etu9600)) { return returncode; } cP->AtrSize = p->rx_index; if (cP->Inverse) //inverse card { // Copy ATR data for (i=0;i<cP->AtrSize;i++) { cP->AtrData[i] = SIM_ByteReverse(p->rbuf[i]); } p->c->conf1 = p->conf1 |= SIM_CONF1_CONV | SIM_CONF1_CHKPAR; } else //direct card { p->c->conf1 = p->conf1 |= SIM_CONF1_CHKPAR; //0x0409 // Copy ATR data for (i=0;i<cP->AtrSize;i++) { cP->AtrData[i] = p->rbuf[i]; } } return (0); } /* ** SIM_Translate_atr_char * * FILENAME: sim.c * * PARAMETERS: input char to translate * cP sim structure (indicates if inverse card present) * DESCRIPTION: return the correct value of input for inverse card * * RETURNS: character after parsing * stays the same if direct card */ SYS_UWORD8 SIM_Translate_atr_char (SYS_UWORD8 input, SIM_CARD *cP) { SYS_UWORD8 translated; if (cP->Inverse) { translated = SIM_ByteReverse(input); } else { translated = input; //get character next char T0 } return (translated); } /* * SIM_Waitforchars is used for waiting nbchar characters from SIM * input p sim port * max_wait max number of TDMA to wait between 2 characters * output * error code 0 if OK */ SYS_UWORD16 SIM_Waitforchars (SIM_PORT *p, SYS_UWORD16 max_wait) { volatile SYS_UWORD8 old_nb_char; volatile SYS_UWORD16 countT; if (p->moderx == 6) //use for reception of ACK when command need to transmit rest of data { p->ack = 0; countT = 0; while((p->ack == 0) && (p->moderx == 6)) { //if p->moderx change from 6 to 5, need to wait for SW1 and SW2 ind_os_sleep(1); countT++; //implementation of software Waiting time overflow if (p->null_received) //if NULL char received, wait for next procedure char { countT = 0; p->null_received = 0; } if (countT > max_wait) { return (SIM_ERR_WAIT); } if (p->errorSIM) { return(p->errorSIM); } } if (p->moderx == 6) //if transition to moderx = 5 in synchronous part { //need to quit for SW1/SW2 reception return (0); } } if ((p->moderx != 6) && (p->moderx != 5)) //treatement of mode 0, 1, 2, 3, 4 { countT = 0; old_nb_char = p->rx_index; //leave while if moderx == 5 while((p->rx_index < p->expected_data) && (p->moderx != 5)) { ind_os_sleep(1); countT++; //implementation of software Waiting time overflow if (p->null_received) //if NULL char received, wait for next procedure char { countT = 0; p->null_received = 0; } if (countT > max_wait) { return (SIM_ERR_WAIT); } if (p->errorSIM) { return(p->errorSIM); } if (p->rx_index > old_nb_char) { old_nb_char = p->rx_index; //if char received before max_wait TDMA, reset the counter countT = 0; } } //end while if (p->moderx == 0) { return (0); } } if (p->moderx == 5) //use for reception of SW1 SW2 { countT = 0; old_nb_char = p->SWcount; while(p->SWcount < 2) { //if p->moderx change from 6 to 5, need to wait for SW1 and SW2 ind_os_sleep(1); countT++; //implementation of software Waiting time overflow if (p->null_received) //if NULL char received, wait for next procedure char { countT = 0; p->null_received = 0; } if (countT > max_wait) { return (SIM_ERR_WAIT); } if (p->errorSIM) { return(p->errorSIM); } if (p->SWcount > old_nb_char) { old_nb_char = p->SWcount; //if char received before max_wait TDMA, reset the counter countT = 0; } } p->SWcount = 0; //reset SWcount buffer index when SW1 SW2 received return (0); } else //treatement of abnormal case of the asynchronous state machine { return (SIM_ERR_ABNORMAL_CASE1); } } /* * SIM_Calcetu is used for calculating 9600 etu and 400 etu depending on sim clock freq * and etu period * input p sim port */ void SIM_Calcetu (SIM_PORT *p) { if (p->conf1 & SIM_CONF1_SCLKDIV) //clock input is 13/8 Mhz { if (p->conf1 & SIM_CONF1_ETU) //etu period is 512/8*Tsclk { p->etu9600 = 319; // old = 88, increase of 363% p->etu400 = 6; p->stopclock = 18; p->startclock = 8; } else //etu period is 372/1*Tsclk { p->etu9600 = 1815; // old = 500, increase of 363% p->etu400 = 28; p->stopclock = 94; p->startclock = 38; } } else //clock input is 13/4 Mhz { if (p->conf1 & SIM_CONF1_ETU) //etu period is 512/8*Tsclk { p->etu9600 = 159; // old = 44, increase of 363% p->etu400 = 3; p->stopclock = 9; p->startclock = 4; } else //etu period is 372/1*Tsclk { p->etu9600 = 907; // old = 250, increase of 363% p->etu400 = 14; p->stopclock = 47; p->startclock = 19; } } } /* * Set the level shifter voltage for start up sequence * */ SYS_UWORD8 SIM_StartVolt (SYS_UWORD8 ResetFlag) { SYS_UWORD8 abbmask; #if(ANLG_FAM == 1) // we assume that in SIM_TYPE_5V there is nothing to do because it is the reset value #if ((SIM_TYPE == SIM_TYPE_3V) || (SIM_TYPE == SIM_TYPE_3_5V)) // { shut down VCC from ABB and prepare to start at 3V mode if (ResetFlag) { abbmask = MODE_INIT_OMEGA_3V; CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. } else { if (CurrentVolt == SIM_3V) abbmask = MODE_INIT_OMEGA_3V; else abbmask = MODE5V_OMEGA; } ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & 0xC0) | abbmask); ind_os_sleep(1); //wait for charge pump regulation return(SIM_OK); #endif #endif #if(ANLG_FAM == 2) SYS_UWORD8 count = 0; // code for Iota // reset value for IOTA is for 1.8V, but specific procedure is needed #if ((SIM_TYPE == SIM_TYPE_1_8V) || (SIM_TYPE == SIM_TYPE_1_8_3V)) // shut down VCC from ABB and prepare to start at 1.8V mode if (ResetFlag) { abbmask = MODE_INIT_IOTA_1_8V; CurrentVolt = SIM_1_8V; // we assume the sim is 1.8v tech. from beginning. } else { if (CurrentVolt == SIM_1_8V) abbmask = MODE_INIT_IOTA_1_8V; else abbmask = MODE_INIT_IOTA_3V; } ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); while(count++ < 5) { if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) // test RSIMRSU return(SIM_OK); ind_os_sleep(1); } // IOTA failure activation return(SIM_ERR_HARDWARE_FAIL); #endif // 3V only #if (SIM_TYPE == SIM_TYPE_3V) abbmask = MODE_INIT_IOTA_3V; CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); while(count++ < 5) { if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) // test RSIMRSU return(SIM_OK); ind_os_sleep(1); } // IOTA failure activation return(SIM_ERR_HARDWARE_FAIL); #endif #endif #if(ANLG_FAM == 3) SYS_UWORD8 count = 0; // code for Syren // reset value for SYREN is for 1.8V, but specific procedure is needed #if ((SIM_TYPE == SIM_TYPE_1_8V) || (SIM_TYPE == SIM_TYPE_1_8_3V)) // { shut down VCC from ABB and prepare to start at 1.8V mode if (ResetFlag) { abbmask = MODE_INIT_SYREN_1_8V; CurrentVolt = SIM_1_8V; // we assume the sim is 1.8v tech. from beginning. } else { if (CurrentVolt == SIM_1_8V) abbmask = MODE_INIT_SYREN_1_8V; else abbmask = MODE_INIT_SYREN_3V; } ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); while(count++ < 5) { if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) // test RSIMRSU return(SIM_OK); ind_os_sleep(1); } // SYREN failure activation return(SIM_ERR_HARDWARE_FAIL); #endif // 3V only #if (SIM_TYPE == SIM_TYPE_3V) abbmask = MODE_INIT_SYREN_3V; CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); while(count++ < 5) { if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) // test RSIMRSU return(SIM_OK); ind_os_sleep(1); } // SYREN failure activation return(SIM_ERR_HARDWARE_FAIL); #endif #endif } /* * Set the level shifter to switch from 3V to 5V * */ SYS_UWORD8 SIM_SwitchVolt (SYS_UWORD8 ResetFlag) { SYS_UWORD8 count = 0; SYS_UWORD8 abbmask; SIM_PowerOff(); #if(ANLG_FAM == 1) #if (SIM_TYPE == SIM_TYPE_3_5V) // shut down VCC from ABB and prepare to start at 5V mode if (ResetFlag) { abbmask = MODE5V_OMEGA; CurrentVolt = SIM_5V; } else { if (CurrentVolt == SIM_3V) abbmask = MODE_INIT_OMEGA_3V; else abbmask = MODE5V_OMEGA; } ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & 0xC0) | abbmask); return(SIM_OK); #endif #elif(ANLG_FAM == 2) #if (SIM_TYPE == SIM_TYPE_1_8_3V) // shut down VCC from ABB and prepare to start at 3V mode if (ResetFlag) { abbmask = MODE_INIT_IOTA_3V; CurrentVolt = SIM_3V; } else { if (CurrentVolt == SIM_1_8V) abbmask = MODE_INIT_IOTA_1_8V; else abbmask = MODE_INIT_IOTA_3V; } ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); while(count++ < 5) { if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) return(SIM_OK); ind_os_sleep(1); } // IOTA failure activation return(SIM_ERR_HARDWARE_FAIL); #endif #elif(ANLG_FAM == 3) #if (SIM_TYPE == SIM_TYPE_1_8_3V) // shut down VCC from ABB and prepare to start at 3V mode if (ResetFlag) { abbmask = MODE_INIT_SYREN_3V; CurrentVolt = SIM_3V; } else { if (CurrentVolt == SIM_1_8V) abbmask = MODE_INIT_SYREN_1_8V; else abbmask = MODE_INIT_SYREN_3V; } ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); while(count++ < 5) { if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) return(SIM_OK); ind_os_sleep(1); } // SYREN failure activation return(SIM_ERR_HARDWARE_FAIL); #endif #endif // ANLG_FAM == 1, 2, 3 } SYS_UWORD8 SIM_Memcpy(SYS_UWORD8 *Buff_target, SYS_UWORD8 Buff_source[], SYS_UWORD16 len) { SYS_UWORD16 i; //unsigned short type counter chosen for copy of 256 bytes for (i = 0; i < len; i++) { if (i == RSIMBUFSIZE) { return (SIM_ERR_BUFF_OVERFL); } else { (*(Buff_target+i)) = Buff_source[i]; } } return (0); } /* * SIM_SleepStatus * * Return SIM status for sleep manager * */ SYS_BOOL SIM_SleepStatus(void) { if ((SIM_sleep_status == SIM_SLEEP_ACT) || (SIM_sleep_status == SIM_SLEEP_NONE)) return(1); // SIM is ready for deep sleep else return(0); } /* * Special lock function to force SIM entity to use adequat SIM Driver */ void SIM_lock_cr17689(void) { } #ifdef SIM_DEBUG_TRACE void SIM_dbg_write_trace(SYS_UWORD8 *ptr, SYS_UWORD16 len) { SYS_UWORD16 i; for(i=0;i<len;i++) { if (SIM_dbg_cmd_cmpt == SIM_DBG_CMD) SIM_dbg_cmd_cmpt = 0; SIM_dbg_cmd[SIM_dbg_cmd_cmpt++] = ptr[i]; } } #endif