FreeCalypso > hg > fc-tourmaline
view src/cs/drivers/drv_app/pwr/pwr_cust.c @ 303:f76436d19a7a default tip
!GPRS config: fix long-standing AT+COPS chance hanging bug
There has been a long-standing bug in FreeCalypso going back years:
sometimes in the AT command bring-up sequence of an ACI-only MS,
the AT+COPS command would produce only a power scan followed by
cessation of protocol stack activity (only L1 ADC traces), instead
of the expected network search sequence. This behaviour was seen
in different FC firmware versions going back to Citrine, and seemed
to follow some law of chance, not reliably repeatable.
This bug has been tracked down and found to be specific to !GPRS
configuration, stemming from our TCS2/TCS3 hybrid and reconstruction
of !GPRS support that was bitrotten in TCS3.2/LoCosto version.
ACI module psa_mms.c, needed only for !GPRS, was missing in the TCS3
version and had to be pulled from TCS2 - but as it turns out,
there is a new field in the MMR_REG_REQ primitive that needs to be
set correctly, and that psa_mms.c module is the place where this
initialization needed to be added.
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 08 Jun 2023 08:23:37 +0000 |
parents | 4e78acac3d88 |
children |
line wrap: on
line source
/******************************************************************************* * * pwr_cust.c * * Purpose: This file contains functions for battery management. * These functions can be modified by the customer. * * Author Candice Bazanegue (c-brille@ti.com) * * * (C) Texas Instruments 2001 * ******************************************************************************/ #include "rv/rv_defined_swe.h" // for RVM_PWR_SWE #ifdef RVM_PWR_SWE #include "abb/abb.h" #include "rvm/rvm_use_id_list.h" #include "pwr/pwr_messages.h" #include "rvf/rvf_api.h" #include "pwr/pwr_cust.h" #include "pwr/pwr_env.h" #include "pwr/pwr_analog_dev.h" #include "spi/spi_env.h" #include "spi/spi_task.h" #include "pwr/pwr_liion_cha.h" #include "pwr/pwr_disch.h" /* Caution: keep ascending order in the temperature arrays !!! */ const INT16 BAT_Celsius_temp_10uA[4]= { -10, -5, 0, 5 }; const UINT16 BAT_MADC_temp_10uA[4]= { 0x13F, 0x103, 0xCB, 0x9C }; const INT16 BAT_Celsius_temp_50uA[13]= { 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }; const UINT16 BAT_MADC_temp_50uA[13]= { 0x351, 0x2AD, 0x22E, 0x1C4, 0x169, 0x128, 0xF9, 0xCB, 0x96, 0x83, 0x68, 0x58, 0x4A }; /* Correpondence between the battery voltage and the remaining capacity in the battery */ /* The voltages have to be expressed in mV units */ /* The capacities are percentages of the total capacity */ /* Caution: keep this order in the array !!!! (in voltage (or capacity) descending order) */ const T_PWR_THRESHOLDS a_pwr_thresholds[NB_THRESHOLDS]= {{4200,100}, {4000,75}, {3970,50}, {3950,25}, {3900,15}, {3870,10}}; /* Global variable */ extern T_SPI_GBL_INFO *SPI_GBL_INFO_PTR; /******************************************************************************* ** Function pwr_adc_to_mvolt ** ** Description Converts the MADC voltage reading into voltage in mVolt ** ** Warning: The offsets are not taken into account !!! ** *******************************************************************************/ UINT16 pwr_adc_to_mvolt(UINT16 voltage_madc) { UINT16 voltage_mvolt; /* Note: /1000 because MADC_VOLTAGE_STEP is expressed in uV */ voltage_mvolt = (voltage_madc * MADC_VOLTAGE_STEP * 4) / 1000; /* return voltage in mVolt */ return (voltage_mvolt); } /******************************************************************************* ** Function pwr_adc_to_mA ** ** Description Converts the MADC current reading into current in mA ** ** Warning: The offsets are not taken into account !!! ** *******************************************************************************/ UINT16 pwr_adc_to_mA(UINT16 current_madc) { UINT16 current_mA; /* Note: /1000 because MADC_VOLTAGE_STEP is expressed in uA */ current_mA = (current_madc * MADC_CURRENT_STEP) / 1000; /* return current in mA */ return (current_mA); } /******************************************************************************* ** Function pwr_bat_temp_within_limits ** ** Description Check if the battery temperature is within limits ** ** Parameter battery_temperature : battery temperature un Celsius degrees ** *******************************************************************************/ UINT8 pwr_bat_temp_within_limits(INT16 battery_temperature) { rvf_send_trace("Battery temperature (Celsius degrees) ", 38, battery_temperature, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); if ((battery_temperature < BAT_TEMPERATURE_MAX) && (battery_temperature > BAT_TEMPERATURE_MIN)) { rvf_send_trace("Battery temperature within limits",33, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_LOW, PWR_USE_ID); return (TRUE); } rvf_send_trace("Battery temperature outside limits",34, NULL_PARAM, RV_TRACE_LEVEL_DEBUG_MEDIUM, PWR_USE_ID); return (FALSE); } /******************************************************************************* ** Function pwr_madc_to_Celius_conv ** ** Description Find the temperature in Celsius degrees corresponding ** to the value given by the MADC ** *******************************************************************************/ UINT8 pwr_madc_to_Celsius_conv(UINT8 bias_current, UINT16 madc_temp, INT16 *celsius_temp) { UINT8 last_index, i; const UINT16 *MADC_temp_array; const INT16 *celsius_temp_array; UINT16 madc_diff; UINT16 madc_inc; UINT16 celsius_inc; /* choose the table */ switch(bias_current) { case THEN_10uA: MADC_temp_array = BAT_MADC_temp_10uA; celsius_temp_array = BAT_Celsius_temp_10uA; /* get last index of the lookup table array(s) */ last_index = sizeof(BAT_MADC_temp_10uA)/sizeof(BAT_MADC_temp_10uA[0]); break; case THEN_50uA: MADC_temp_array = BAT_MADC_temp_50uA; celsius_temp_array = BAT_Celsius_temp_50uA; /* get last index of the lookup table array(s) */ last_index = sizeof(BAT_MADC_temp_50uA)/sizeof(BAT_MADC_temp_50uA[0]); break; default: return (FALSE); } /* check the limits */ if((madc_temp > MADC_temp_array[0]) || (madc_temp < MADC_temp_array[last_index-1])) { return (FALSE); } /* find the two points between which the given point lies */ for(i=0; i<last_index; i++) { if(madc_temp >= MADC_temp_array[i]) { if(i==0) { *celsius_temp = celsius_temp_array[0]; return (TRUE); } /* the value is between MADC_temp_array[i] and MADC_temp_array[i-1] */ /* interpolate to get a more precise value */ madc_inc = MADC_temp_array[i-1] - MADC_temp_array[i]; celsius_inc = celsius_temp_array[1] - celsius_temp_array[0]; /* positive value */ /* difference between the given point and the first madc value below this point */ madc_diff = madc_temp - MADC_temp_array[i]; *celsius_temp = celsius_temp_array[i] - (madc_diff*celsius_inc)/madc_inc; return (TRUE); } /* else, try a smaller value */ } return (FALSE); } /******************************************************************************* ** Function pwr_get_battery_temperature ** ** Description Start MADC temperature reading ** ** Note If the used battery does not allow to make a temperature ** measurement, the body of this function can be replaced ** by just a "return" with a temperature (in Celsius degrees) ** between BAT_TEMPERATURE_MIN and BAT_TEMPERATURE_MAX. *******************************************************************************/ void pwr_get_battery_temperature(void) { /* set the bias current to 50uA */ ABB_Write_Register_on_page(PAGE0, BCICTL1, THEN_50uA); rvf_delay(RVF_MS_TO_TICKS(5)); pwr_env_ctrl_blk->timer0_state = BATTERY_50UA_TEMP_TEST; if (SPI_GBL_INFO_PTR->is_adc_on == FALSE) { /* start ADIN2REG channel conversion by writing in the result register */ ABB_Write_Register_on_page(PAGE0, ADIN2REG, 0x0000); rvf_start_timer (SPI_TIMER0, RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_1), FALSE); } else /* The L1 asks for ADC conversions */ { /* Let time for the L1 to ask for new AD conversions */ rvf_start_timer (SPI_TIMER0, RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_2), FALSE); } } /******************************************************************************* ** Function pwr_bat_50uA_temp_test_timer_process ** ** Description ** ** *******************************************************************************/ void pwr_bat_50uA_temp_test_timer_process(void) { UINT16 bat_madc_temp; rvf_send_trace("TIMER0: Battery 50uA temp test",30, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID); pwr_env_ctrl_blk->bat_celsius_temp = (INT16)(0xFFFF); /* Read ADC result */ bat_madc_temp = ABB_Read_Register_on_page(PAGE0, ADIN2REG); /* MADC value to Celsius degrees conversion */ if (!pwr_madc_to_Celsius_conv(THEN_50uA, bat_madc_temp, &(pwr_env_ctrl_blk->bat_celsius_temp))) { /* outside the 50uA temp range */ /* set the bias current to 10uA */ pwr_env_ctrl_blk->timer0_state = BATTERY_10UA_TEMP_TEST; ABB_Write_Register_on_page(PAGE0, BCICTL1, THEN_10uA); rvf_delay(RVF_MS_TO_TICKS(5)); if (SPI_GBL_INFO_PTR->is_adc_on == FALSE) { /* start ADIN2REG channel conversion by writing in the result register */ ABB_Write_Register_on_page(PAGE0, ADIN2REG, 0x0000); rvf_start_timer (SPI_TIMER0, RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_1), FALSE); } else /* The L1 asks for ADC conversions */ { /* Let time for the L1 to ask for new AD conversions */ rvf_start_timer (SPI_TIMER0, RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_2), FALSE); } } else { /* The battery temp is inside the 50uA temp range */ /* Turn OFF the current source */ ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT); /* Go ahead */ if (pwr_env_ctrl_blk->charging_state == CI_CHARGE_STARTED) { /* temperature measurement during CI charge */ pwr_CI_charge_process(); } else if (pwr_env_ctrl_blk->charging_state == CV_CHARGE_STARTED) { /* temperature measurement during CV charge */ pwr_CV_charge_process(); } else if (pwr_env_ctrl_blk->charging_state == TESTING_BATTERY) { /* temperature measurement before calibration */ pwr_calibration_process(); } else { /* temperature measurement for battery information */ pwr_get_bat_info(); } } } /******************************************************************************* ** Function pwr_bat_10uA_temp_test_timer_process ** ** Description ** ** *******************************************************************************/ void pwr_bat_10uA_temp_test_timer_process(void) { UINT16 bat_madc_temp; rvf_send_trace("TIMER0: Battery 10uA temp test",30, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID); pwr_env_ctrl_blk->bat_celsius_temp = (INT16)(0xFFFF); bat_madc_temp = ABB_Read_Register_on_page(PAGE0, ADIN2REG); /* MADC value to Celsius degrees conversion */ if (!pwr_madc_to_Celsius_conv(THEN_10uA, bat_madc_temp, &(pwr_env_ctrl_blk->bat_celsius_temp))) { /* ERROR: Reading out of limits */ rvf_send_trace("Battery temperature reading out of limits", 41, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID); /* turn OFF the current source */ ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT); pwr_stop_charging(); /* informs the upper layer that the battery temperature is not correct */ pwr_send_charge_not_possible_event(BAT_TEMP_OUTSIDE_LIMITS); if (SPI_GBL_INFO_PTR->is_gsm_on == FALSE) /* GSM OFF */ { #if (ANLG_FAM == 1) ABB_Write_Register_on_page(PAGE0, VRPCCTL2, 0x00EE); #elif (ANLG_FAM == 2) ABB_Write_Register_on_page(PAGE0, VRPCDEV, 0x0001); #endif } else { pwr_handle_discharge(); } } else { /* The battery temperature is inside the 10uA temp range */ /* turn OFF the current source */ ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT); /* Go ahead */ if (pwr_env_ctrl_blk->charging_state == CI_CHARGE_STARTED) { /* temperature measurement during CI charge */ pwr_CI_charge_process(); } else if (pwr_env_ctrl_blk->charging_state == CV_CHARGE_STARTED) { /* temperature measurement during CV charge */ pwr_CV_charge_process(); } else if (pwr_env_ctrl_blk->charging_state == TESTING_BATTERY) { /* temperature measurement before calibration */ pwr_calibration_process(); } else { /* temperature measurement for battery information */ pwr_get_bat_info(); } } } /******************************************************************************* ** Function pwr_get_battery_type ** ** Description Return the type of the battery ** ** Note If the used battery does not allow to make a battery type ** SW detection, the body of this function can be replaced ** by the last 2 lines ** *******************************************************************************/ void pwr_get_battery_type(void) { /* enable bias current for main battery type reading ABB_Write_Register_on_page(PAGE0, BCICTL1, 0x0081); rvf_delay(RVF_MS_TO_TICKS(5)); pwr_env_ctrl_blk->timer0_state = BATTERY_TYPE_TEST; if (SPI_GBL_INFO_PTR->is_adc_on == FALSE) { /* start ADIN1REG channel conversion by writing in the result register ABB_Write_Register_on_page(PAGE0, ADIN1REG, 0x0000); rvf_start_timer (SPI_TIMER0, RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_1), FALSE); } else /* The L1 asks for ADC conversions { /* Let time for the L1 to ask for new AD conversions rvf_start_timer (SPI_TIMER0, RVF_MS_TO_TICKS (SPI_TIMER0_INTERVAL_2), FALSE); } */ /****************************************/ /* If the battery can not be detected, */ /* the code above has to be replaced by */ /* those 2 lines (with the type of the */ /* used battery). */ /****************************************/ pwr_env_ctrl_blk->bat_type = LI_ION; /* Check if the battery is OK */ pwr_battery_qualification(); } /******************************************************************************* ** Function pwr_type_test_timer_process ** ** Description ** ** *******************************************************************************/ void pwr_type_test_timer_process(void) { UINT16 bat_type_voltage; rvf_send_trace("TIMER0: Battery type test",25, NULL_PARAM, RV_TRACE_LEVEL_WARNING, PWR_USE_ID); bat_type_voltage = ABB_Read_Register_on_page(PAGE0, ADIN1REG); /* turn OFF the current source */ ABB_Write_Register_on_page(PAGE0, BCICTL1, MESBAT); if ((bat_type_voltage >= BAT_TYPE_LI_ION_MIN) && (bat_type_voltage <= BAT_TYPE_LI_ION_MAX)) /* Li-ion batteries */ { pwr_env_ctrl_blk->bat_type = LI_ION; /* Check if the battery is OK */ pwr_battery_qualification(); } else /* battery type unknown */ { pwr_env_ctrl_blk->bat_type = UNKNOWN; /* informs the upper layer that the battery type is unknown */ pwr_send_charge_not_possible_event(BAT_TYPE_UNKNOWN); if (SPI_GBL_INFO_PTR->is_gsm_on == FALSE) /* GSM OFF */ { #if (ANLG_FAM == 1) ABB_Write_Register_on_page(PAGE0, VRPCCTL2, 0x00EE); #elif (ANLG_FAM == 2) ABB_Write_Register_on_page(PAGE0, VRPCDEV, 0x0001); #endif } else { pwr_handle_discharge(); } } } /******************************************************************************* ** Function pwr_get_capacity_vs_voltage ** ** Description Compares the battery voltage with the thresholds given in the ** a_pwr_thresholds array and returns the remaining capacity ** corresponding to the threshold above this voltage. ** ** Parameters: UINT16 bat_voltage: battery voltage in mV !!! ** *******************************************************************************/ T_PWR_PERCENT pwr_get_capacity_vs_voltage(UINT16 bat_voltage) { volatile UINT16 i; T_PWR_PERCENT remaining_capacity; for(i=0; i<NB_THRESHOLDS; i++) { if(bat_voltage > a_pwr_thresholds[i].bat_voltage) { if(i==0) { remaining_capacity = a_pwr_thresholds[0].remain_capa; } else { remaining_capacity = a_pwr_thresholds[i-1].remain_capa; } return (remaining_capacity); } /* else, try the next threshold */ } if(i==NB_THRESHOLDS) { /* battery voltage below the last threshold */ remaining_capacity = a_pwr_thresholds[i-1].remain_capa; return (remaining_capacity); } return 0; /* dummy return */ } #endif /* #ifdef RVM_PWR_SWE */