FreeCalypso > hg > ffs-editor
comparison src/cs/layer1/cust0/l1_rf12.h @ 0:92470e5d0b9e
src: partial import from FC Selenite
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Fri, 15 May 2020 01:28:16 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:92470e5d0b9e |
---|---|
1 /************* Revision Controle System Header ************* | |
2 * GSM Layer 1 software | |
3 * | |
4 * Filename l1_rf12.h | |
5 * Copyright 2003 (C) Texas Instruments | |
6 * | |
7 ************* Revision Controle System Header *************/ | |
8 | |
9 #ifndef __L1_RF_H__ | |
10 #define __L1_RF_H__ | |
11 | |
12 #include "fc-target.h" | |
13 | |
14 #define RF_RITA_10 0x2030 // Check with TIDK | |
15 | |
16 //#define RF_HW_BAND_EGSM | |
17 //#define RF_HW_BAND_DCS | |
18 #define RF_HW_BAND_PCS 0x4 | |
19 #define RF_HW_BAND_DUAL_US 0x80 | |
20 #define RF_HW_BAND_DUAL_EXT 0x20 | |
21 | |
22 //#define RF_HW_BAND_SUPPORT (0x0020 | RF_HW_BAND_PCS) // radio_band_support E-GSM/DCS + PCS | |
23 // radio_band_support E-GSM/DCS + GSM850/PCS | |
24 #define RF_HW_BAND_SUPPORT (RF_HW_BAND_DUAL_EXT | RF_HW_BAND_DUAL_US) | |
25 | |
26 // L1 RF SW Multiband configuration | |
27 //-------------------------- | |
28 | |
29 // RF_SW_MULTIBAND_SUPPORT values | |
30 #define SINGLE_BAND_900 1 | |
31 #define SINGLE_BAND_1800 2 | |
32 #define SINGLE_BAND_850 3 | |
33 #define SINGLE_BAND_1900 4 | |
34 #define DUAL_BAND_900_1800 5 | |
35 #define DUAL_BAND_850_1900 6 | |
36 #define TRI_BAND_900_1800_1900 7 | |
37 #define TRI_BAND_850_1900_1800 8 | |
38 #define QUAD_BAND 9 | |
39 | |
40 //IMPORTANT !: To change RF_SW_MULTIBAND_SUPPORT value, it must be synchronized with other multiband settings in the software | |
41 // To match the protocol stack settings( e.g EF_RFCAP ) in order to make sure that the value of STD sent in MPHC_INIT_L1_REQ is supported by L1 | |
42 // And also match the RF HW support: RF_HW_BAND_SUPPORT | |
43 #define RF_SW_MULTIBAND_SUPPORT QUAD_BAND | |
44 | |
45 // Generate band dependancy options | |
46 #define RF_SW_BAND900 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_900)||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_900_1800) \ | |
47 ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_900_1800_1900) ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND) ) | |
48 | |
49 #define RF_SW_BAND1800 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_1800) ||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_900_1800) \ | |
50 ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_900_1800_1900) ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_850_1900_1800) \ | |
51 ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND)) | |
52 | |
53 #define RF_SW_BAND850 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_850)||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_850_1900) \ | |
54 ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_850_1900_1800) ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND)) | |
55 | |
56 #define RF_SW_BAND1900 ((RF_SW_MULTIBAND_SUPPORT == SINGLE_BAND_1900)||(RF_SW_MULTIBAND_SUPPORT == DUAL_BAND_850_1900) \ | |
57 ||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_900_1800_1900)||(RF_SW_MULTIBAND_SUPPORT == TRI_BAND_850_1900_1800) \ | |
58 ||(RF_SW_MULTIBAND_SUPPORT == QUAD_BAND)) | |
59 | |
60 /************************************/ | |
61 /* SYNTHESIZER setup time... */ | |
62 /************************************/ | |
63 #define RX_SYNTH_SETUP_TIME (PROVISION_TIME - TRF_R1)//RX Synthesizer setup time in qbit. | |
64 #define TX_SYNTH_SETUP_TIME (- TRF_T1) //TX Synthesizer setup time in qbit. | |
65 | |
66 /************************************/ | |
67 /* time for TPU scenario ending... */ | |
68 /************************************/ | |
69 // | |
70 // The following values are used to take into account any TPU activity AFTER | |
71 // BDLON (or BDLENA) down (for RX) and BULON down (for TX) | |
72 // - If there are no TPU commands after BDLON (or BDLENA) down and BULON down, | |
73 // these defines must be ZERO | |
74 // - If there IS some TPU command after BDLON (or BDLENA) and BULON down, | |
75 // these defines must be equal to the time difference (in qbits) between | |
76 // the BDLON (or BDLENA) or BULON time and the last TPU command on | |
77 // the TPU scenario | |
78 #define RX_TPU_SCENARIO_ENDING 0 // execution time of AFTER BDLENA down | |
79 #define TX_TPU_SCENARIO_ENDING 0 // execution time of AFTER BULON down | |
80 | |
81 | |
82 /******************************************************/ | |
83 /* TXPWR configuration... */ | |
84 /* Fixed TXPWR value when GSM management is disabled. */ | |
85 /******************************************************/ | |
86 | |
87 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) | |
88 // #define FIXED_TXPWR ((0xFC<<6) | AUXAPC | FALSE) // TXPWR=10, value=252 | |
89 //#define FIXED_TXPWR ((0x65<<6) | AUXAPC | FALSE) | |
90 #define FIXED_TXPWR ((0x74<<6) | AUXAPC | FALSE) // TXPWR=15 | |
91 #endif | |
92 | |
93 | |
94 /************************************/ | |
95 /* ANALOG delay (in qbits) */ | |
96 /************************************/ | |
97 #define DL_DELAY_RF 1 // time spent in the Downlink global RF chain by the modulated signal | |
98 #define UL_DELAY_1RF 7 // time spent in the first uplink RF block | |
99 #define UL_DELAY_2RF 0 // time spent in the second uplink RF block | |
100 #if (ANLG_FAM == 1) | |
101 #define UL_ABB_DELAY 3 // modulator input to output delay | |
102 #endif | |
103 #if ((ANLG_FAM == 2) || (ANLG_FAM == 3)) | |
104 #define UL_ABB_DELAY 3 // modulator input to output delay | |
105 #endif | |
106 | |
107 /************************************/ | |
108 /* TX Propagation delay... */ | |
109 /************************************/ | |
110 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) | |
111 #define PRG_TX (DL_DELAY_RF + UL_DELAY_2RF + (GUARD_BITS*4) + UL_DELAY_1RF + UL_ABB_DELAY) // = 40 | |
112 #endif | |
113 | |
114 /************************************/ | |
115 /* Initial value for APC DELAY */ | |
116 /************************************/ | |
117 #if (ANLG_FAM == 1) | |
118 //#define APCDEL_DOWN (32 - GUARD_BITS*4) // minimum value: 2 | |
119 #define APCDEL_DOWN 2 // minimum value: 2 | |
120 #define APCDEL_UP (6+5) // minimum value: 6 | |
121 #endif | |
122 | |
123 #if (ANLG_FAM == 2) || (ANLG_FAM == 3) | |
124 //#define APCDEL_DOWN (32 - GUARD_BITS*4) // minimum value: 2 | |
125 #define APCDEL_DOWN (2+0) // minimum value: 2 | |
126 #define APCDEL_UP (6+3+1) // minimum value: 6 | |
127 // REMOVE // Jerome Modif for ARF7: (6+3) instead of (6+8) | |
128 #endif | |
129 | |
130 #define GUARD_BITS 7 | |
131 | |
132 /************************************/ | |
133 /* Initial value for AFC... */ | |
134 /************************************/ | |
135 #define EEPROM_AFC ((150)*8) // F13.3 required!!!!! (default : -952*8, initial deviation of -2400 forced) | |
136 | |
137 #define SETUP_AFC_AND_RF 6 // AFC converges in 2 frames and RF BAND GAP stable after 4 frames | |
138 // Rita (RF=12) LDO wakeup requires 6 frames | |
139 | |
140 /************************************/ | |
141 /* Baseband registers */ | |
142 /************************************/ | |
143 #if (ANLG_FAM == 1) | |
144 // Omega registers values will be programmed at 1st DSP communication interrupt | |
145 #define C_DEBUG1 0x0001 // Enable f_tx delay of 400000 cyc DEBUG | |
146 #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE) // Value at reset | |
147 #define C_VBUCTRL ((0x106 << 6) | VBUCTRL | TRUE) // Uplink gain amp 0dB, Sidetone gain to mute | |
148 #define C_VBDCTRL ((0x026 << 6) | VBDCTRL | TRUE) // Downlink gain amp 0dB, Volume control 0 dB | |
149 // RITA does not need an APCOFFSET because the PACTRL is internal: | |
150 // REMOVE //#define C_APCOFF 0x1016 | (0x3c << 6) | TRUE // value at reset-Changed from 0x0016- CR 27.12 | |
151 #define C_APCOFF ((0x040 << 6) | APCOFF | TRUE) | |
152 #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE) // value at reset | |
153 #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE) // value at reset | |
154 #define C_DAI_ON_OFF (0x000) // value at reset | |
155 #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE) // value at reset | |
156 #define C_VBCTRL ((0x00B << 6) | VBCTRL | TRUE) // VULSWITCH=1, VDLAUX=1, VDLEAR=1 | |
157 // BULRUDEL will be initialized on rach only .... | |
158 #define C_APCDEL1 (((APCDEL_DOWN-2) << 11) | ((APCDEL_UP-6) << 6) | APCDEL1) | |
159 #define C_BBCTRL ((0x181 << 6) | BBCTRL | TRUE) // OUTLEV1=OUTLEV1=SELVMID1=SELVMID0=1 for B-sample 'modified' | |
160 #endif | |
161 | |
162 #if (ANLG_FAM == 2) | |
163 | |
164 // IOTA registers values will be programmed at 1st DSP communication interrupt | |
165 | |
166 #define C_DEBUG1 0x0001 // Enable f_tx delay of 400000 cyc DEBUG | |
167 #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE) // Value at reset | |
168 #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE) // Uplink gain amp 3 dB, Sidetone gain to -17dB | |
169 #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE) // Downlink gain amp 0dB, Volume control -12 dB | |
170 // RITA does not need an APCOFFSET because the PACTRL is internal: | |
171 // REMOVE //#define C_APCOFF 0x1016 | (0x3c << 6) | TRUE // x2 slope 128 | |
172 #if (RF_PA == 0 || RF_PA == 3) || defined(CONFIG_TARGET_PIRELLI) | |
173 #define C_APCOFF ((0x040 << 6) | APCOFF | TRUE) // x2 slope 128 | |
174 #elif defined(CONFIG_TARGET_C1XX) | |
175 #define C_APCOFF ((0x060 << 6) | APCOFF | TRUE) // x2 slope 128 | |
176 #elif defined(CONFIG_TARGET_J100) | |
177 #define C_APCOFF ((0x074 << 6) | APCOFF | TRUE) // x2 slope 128 | |
178 #elif (RF_PA == 1 || RF_PA == 2 || RF_PA == 4) | |
179 #define C_APCOFF ((0x070 << 6) | APCOFF | TRUE) // x2 slope 128 | |
180 #endif | |
181 #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE) // value at reset | |
182 #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE) // value at reset | |
183 #define C_DAI_ON_OFF ((0x000 << 6) | APCOFF | TRUE) // value at reset | |
184 #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE) // value at reset | |
185 | |
186 | |
187 // audio patch for H2-sample: | |
188 #if (RAZ_VULSWITCH_REGAUDIO == 1) | |
189 #define C_VBCTRL1 ((0x003 << 6) | VBCTRL1 | TRUE) // VBDFAUXG = 1, VULSWITCH=0, VDLAUX=1, VDLEAR=1 // jkb h2sample change | |
190 #else | |
191 #define C_VBCTRL1 ((0x00B << 6) | VBCTRL1 | TRUE) // VULSWITCH=1, VDLAUX=1, VDLEAR=1 | |
192 #endif | |
193 | |
194 | |
195 #define C_VBCTRL2 ((0x000 << 6) | VBCTRL2 | TRUE) // MICBIASEL=0, VDLHSO=0, MICAUX=0 | |
196 // BULRUDEL will be initialized on rach only .... | |
197 #define C_APCDEL1 (((APCDEL_DOWN-2) << 11) | ((APCDEL_UP-6) << 6) | APCDEL1) | |
198 #define C_APCDEL2 ((0x000 << 6) | APCDEL2 | TRUE) // | |
199 #define C_BBCTRL ((0x2C1 << 6) | BBCTRL | TRUE) // Internal autocalibration, Output common mode=1.35V | |
200 // Monoslot, Vpp=8/15*Vref | |
201 #define C_BULGCAL ((0x000 << 6) | BULGCAL | TRUE) // IAG=0 dB, QAG=0 dB | |
202 #endif | |
203 | |
204 #if (ANLG_FAM == 3) | |
205 | |
206 // SYREN registers values will be programmed at 1st DSP communication interrupt | |
207 | |
208 #define C_DEBUG1 0x0001 // Enable f_tx delay of 400000 cyc DEBUG | |
209 #define C_AFCCTLADD ((0x000 << 6) | AFCCTLADD | TRUE) // Value at reset | |
210 #define C_VBUCTRL ((0x0C9 << 6) | VBUCTRL | TRUE) // Uplink gain amp 3dB, Sidetone gain to -17 dB | |
211 #define C_VBDCTRL ((0x006 << 6) | VBDCTRL | TRUE) // Downlink gain amp 0dB, Volume control -12 dB | |
212 #if (RF_PA == 0 || RF_PA == 3) | |
213 #define C_APCOFF ((0x040 << 6) | APCOFF | TRUE) // x2 slope 128 | |
214 #elif (RF_PA == 1 || RF_PA == 2 || RF_PA == 4) | |
215 #define C_APCOFF ((0x070 << 6) | APCOFF | TRUE) // x2 slope 128 | |
216 #endif | |
217 #define C_BULIOFF ((0x0FF << 6) | BULIOFF | TRUE) // value at reset | |
218 #define C_BULQOFF ((0x0FF << 6) | BULQOFF | TRUE) // value at reset | |
219 #define C_DAI_ON_OFF ((0x000 << 6) | APCOFF | TRUE) // value at reset | |
220 #define C_AUXDAC ((0x000 << 6) | AUXDAC | TRUE) // value at reset | |
221 #define C_VBCTRL1 ((0x108 << 6) | VBCTRL1 | TRUE) // VULSWITCH=1 AUXI 28,2 dB | |
222 #define C_VBCTRL2 ((0x001 << 6) | VBCTRL2 | TRUE) // HSMIC on, SPKG gain @ 2,5dB | |
223 | |
224 // BULRUDEL will be initialized on rach only .... | |
225 #define C_APCDEL1 (((APCDEL_DOWN-2) << 11) | ((APCDEL_UP-6)<<6) | APCDEL1) | |
226 #define C_APCDEL2 ((0x000 << 6) | APCDEL2 | TRUE) // | |
227 #define C_BBCTRL ((0x2C1 << 6) | BBCTRL | TRUE) // Internal autocalibration, Output common mode=1.35V | |
228 // Monoslot, Vpp=8/15*Vref | |
229 #define C_BULGCAL ((0x000 << 6) | BULGCAL | TRUE) // IAG=0 dB, QAG=0 dB | |
230 | |
231 #define C_VBPOP ((0x004 << 6) | VBPOP | TRUE) // HSOAUTO enabled only | |
232 #define C_VAUDINITD 2 // vaud_init_delay init 2 frames | |
233 #define C_VAUDCTRL ((0x000 << 6) | VAUDCTRL | TRUE) // Init to zero | |
234 #define C_VAUOCTRL ((0x155 << 6) | VAUOCTRL | TRUE) // Speech on all outputs | |
235 #define C_VAUSCTRL ((0x000 << 6) | VAUSCTRL | TRUE) // Init to zero | |
236 #define C_VAUDPLL ((0x000 << 6) | VAUDPLL | TRUE) // Init to zero | |
237 | |
238 // SYREN registers values programmed by L1 directly through SPI (ABB_on) | |
239 | |
240 #define C_BBCFG (0x44) // Syren Like BDLF Filter - DC OFFSET removal OFF | |
241 | |
242 #endif | |
243 | |
244 | |
245 /************************************/ | |
246 /* Automatic frequency compensation */ | |
247 /************************************/ | |
248 /********************* C_Psi_sta definition *****************************/ | |
249 /* C_Psi_sta = (2*pi*Fr) / (N * Fb) */ | |
250 /* (1) = (2*pi*V*ppm*0.9) / (N*V*Fb) */ | |
251 /* regarding Vega V/N = 2.4/4096 */ | |
252 /* regarding VCO ppm/V = 16 / 1 (average slope of the VCO) */ | |
253 /* (1) = (2*pi*2.4*16*0.9) / (4096*1*270.83) */ | |
254 /* = 0.000195748 */ | |
255 /* C_Psi_sta_inv = 1/C_Psi_sta = 5108 */ | |
256 /************************************************************************/ | |
257 | |
258 #ifdef CONFIG_TARGET_PIRELLI | |
259 | |
260 /* matching Pirelli's fw as read out via rftr 9 */ | |
261 #define C_Psi_sta_inv 6974L // (1/C_Psi_sta) | |
262 #define C_Psi_st 8L // C_Psi_sta * 0.8 F0.16 | |
263 #define C_Psi_st_32 492713L // F0.32 | |
264 #define C_Psi_st_inv 8717L // (1/C_Psi_st) | |
265 | |
266 #elif defined(CONFIG_TARGET_GTAMODEM) || defined(CONFIG_TARGET_FCFAM) | |
267 | |
268 /* | |
269 * We calibrate our VCXO per unit following OM's precedent, | |
270 * thus the compiled-in AFC params don't really matter on FC/OM targets, | |
271 * but let's put in some numbers that are representative of our VCXO, | |
272 * as opposed to the totally wrong numbers corresponding to the | |
273 * significantly different VCXO on the original Leonardo. | |
274 */ | |
275 | |
276 #define C_Psi_sta_inv 3462L // (1/C_Psi_sta) | |
277 #define C_Psi_st 15L // C_Psi_sta * 0.8 F0.16 | |
278 #define C_Psi_st_32 992326L // F0.32 | |
279 #define C_Psi_st_inv 4328L // (1/C_Psi_st) | |
280 | |
281 #else | |
282 | |
283 /* original TCS211 values */ | |
284 #define C_Psi_sta_inv 5419L // (1/C_Psi_sta) | |
285 #define C_Psi_st 10L // C_Psi_sta * 0.8 F0.16 | |
286 #define C_Psi_st_32 634112L // F0.32 | |
287 #define C_Psi_st_inv 6773L // (1/C_Psi_st) | |
288 | |
289 #endif | |
290 | |
291 #if (VCXO_ALGO == 1) | |
292 // Linearity parameters | |
293 | |
294 #ifdef CONFIG_TARGET_COMPAL | |
295 /* matching Compal's fw as read out via rftr 9 */ | |
296 #define C_AFC_DAC_CENTER ((1000)*8) | |
297 #define C_AFC_DAC_MIN ((-500)*8) | |
298 #define C_AFC_DAC_MAX ((2500)*8) | |
299 #else | |
300 /* original TCS211 values */ | |
301 #define C_AFC_DAC_CENTER ((111)*8) | |
302 #define C_AFC_DAC_MIN ((-1196)*8) | |
303 #define C_AFC_DAC_MAX ((1419)*8) | |
304 #endif | |
305 | |
306 #define C_AFC_SNR_THR 2560 // 1/0.4 * 2**10 | |
307 #endif | |
308 | |
309 typedef struct | |
310 { | |
311 WORD16 eeprom_afc; | |
312 UWORD32 psi_sta_inv; | |
313 UWORD32 psi_st; | |
314 UWORD32 psi_st_32; | |
315 UWORD32 psi_st_inv; | |
316 | |
317 #if (VCXO_ALGO) | |
318 // VCXO adjustment parameters | |
319 // Parameters used when assuming linearity | |
320 WORD16 dac_center; | |
321 WORD16 dac_min; | |
322 WORD16 dac_max; | |
323 WORD16 snr_thr; | |
324 #endif | |
325 } | |
326 T_AFC_PARAMS; | |
327 | |
328 /************************************/ | |
329 /* Swap IQ definitions... */ | |
330 /************************************/ | |
331 /* 0=No Swap, 1=Swap RX only, 2=Swap TX only, 3=Swap RX and TX */ | |
332 #if (RF_PG == R_PG_10) | |
333 // PG 1.0 -> 1 (Swap RX only) | |
334 // GSM 850 => TX is ALWAYS swapped compared to GSM 900 | |
335 #define SWAP_IQ_GSM 1 | |
336 #define SWAP_IQ_DCS 1 | |
337 #define SWAP_IQ_PCS 1 | |
338 #define SWAP_IQ_GSM850 3 // Swap TX compared to GSM 900 | |
339 #else | |
340 // All PG versions ABOVE 1.0 -> 0 (No Swap) | |
341 // GSM 850 => TX is ALWAYS swapped compared to GSM 900 | |
342 #define SWAP_IQ_GSM 0 | |
343 #define SWAP_IQ_DCS 0 | |
344 #define SWAP_IQ_PCS 0 | |
345 #define SWAP_IQ_GSM850 2 // Swap TX compared to GSM 900 | |
346 #endif | |
347 | |
348 /************************************/ | |
349 /************************************/ | |
350 // typedef | |
351 /************************************/ | |
352 /************************************/ | |
353 | |
354 /*************************************************************/ | |
355 /* Define structure for apc of TX Power ******/ | |
356 /*************************************************************/ | |
357 typedef struct | |
358 { // pcm-file "rf/tx/level.gsm|dcs" | |
359 UWORD16 apc; // 0..31 | |
360 UWORD8 ramp_index; // 0..RF_TX_RAMP_SIZE | |
361 UWORD8 chan_cal_index; // 0..RF_TX_CHAN_CAL_TABLE_SIZE | |
362 } | |
363 T_TX_LEVEL; | |
364 | |
365 /************************************/ | |
366 /* Automatic Gain Control */ | |
367 /************************************/ | |
368 /* Define structure for sub-band definition of TX Power ******/ | |
369 typedef struct | |
370 { | |
371 UWORD16 upper_bound; //highest physical arfcn of the sub-band | |
372 WORD16 agc_calib; // AGC for each TXPWR | |
373 }T_RF_AGC_BAND; | |
374 | |
375 /************************************/ | |
376 /* Ramp definitions */ | |
377 /************************************/ | |
378 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3)) | |
379 typedef struct | |
380 { | |
381 UWORD8 ramp_up [16]; // Ramp-up profile | |
382 UWORD8 ramp_down [16]; // Ramp-down profile | |
383 } | |
384 T_TX_RAMP; | |
385 #endif | |
386 | |
387 | |
388 // RF structure definition | |
389 //======================== | |
390 | |
391 // Number of bands supported | |
392 #define GSM_BANDS 2 | |
393 | |
394 #define MULTI_BAND1 0 | |
395 #define MULTI_BAND2 1 | |
396 // RF table sizes | |
397 #define RF_RX_CAL_CHAN_SIZE 10 // number of AGC sub-bands | |
398 #define RF_RX_CAL_TEMP_SIZE 11 // number of temperature ranges | |
399 | |
400 #define RF_TX_CHAN_CAL_TABLE_SIZE 4 // channel calibration table size | |
401 #define RF_TX_NUM_SUB_BANDS 8 // number of sub-bands in channel calibration table | |
402 #define RF_TX_LEVELS_TABLE_SIZE 32 // level table size | |
403 #define RF_TX_RAMP_SIZE 16 // number of ramp definitions | |
404 #define RF_TX_CAL_TEMP_SIZE 5 // number of temperature ranges | |
405 | |
406 #define AGC_TABLE_SIZE 20 | |
407 #define MIN_AGC_INDEX 6 | |
408 | |
409 #define TEMP_TABLE_SIZE 131 // number of elements in ADC->temp conversion table | |
410 | |
411 | |
412 // RX parameters and tables | |
413 //------------------------- | |
414 | |
415 // AGC parameters and tables | |
416 typedef struct | |
417 { | |
418 UWORD16 low_agc_noise_thr; | |
419 UWORD16 high_agc_sat_thr; | |
420 UWORD16 low_agc; | |
421 UWORD16 high_agc; | |
422 UWORD8 il2agc_pwr[121]; | |
423 UWORD8 il2agc_max[121]; | |
424 UWORD8 il2agc_av[121]; | |
425 } | |
426 T_AGC; | |
427 | |
428 // Calibration parameters | |
429 typedef struct | |
430 { | |
431 UWORD16 g_magic; | |
432 UWORD16 lna_att; | |
433 UWORD16 lna_switch_thr_low; | |
434 UWORD16 lna_switch_thr_high; | |
435 } | |
436 T_RX_CAL_PARAMS; | |
437 | |
438 // RX temperature compensation | |
439 typedef struct | |
440 { | |
441 WORD16 temperature; | |
442 WORD16 agc_calib; | |
443 } | |
444 T_RX_TEMP_COMP; | |
445 | |
446 // RF RX structure | |
447 typedef struct | |
448 { | |
449 T_AGC agc; | |
450 } | |
451 T_RF_RX; //common | |
452 | |
453 // RF RX structure | |
454 typedef struct | |
455 { | |
456 T_RX_CAL_PARAMS rx_cal_params; | |
457 T_RF_AGC_BAND agc_bands[RF_RX_CAL_CHAN_SIZE]; | |
458 T_RX_TEMP_COMP temp[RF_RX_CAL_TEMP_SIZE]; | |
459 } | |
460 T_RF_RX_BAND; | |
461 | |
462 | |
463 // TX parameters and tables | |
464 //------------------------- | |
465 | |
466 // TX temperature compensation | |
467 typedef struct | |
468 { | |
469 WORD16 temperature; | |
470 #if (ORDER2_TX_TEMP_CAL==1) | |
471 WORD16 a; | |
472 WORD16 b; | |
473 WORD16 c; | |
474 #else | |
475 WORD16 apc_calib; | |
476 #endif | |
477 } | |
478 T_TX_TEMP_CAL; | |
479 | |
480 // Ramp up and ramp down delay | |
481 typedef struct | |
482 { | |
483 UWORD16 up; | |
484 UWORD16 down; | |
485 } | |
486 T_RAMP_DELAY; | |
487 | |
488 typedef struct | |
489 { | |
490 UWORD16 arfcn_limit; | |
491 WORD16 chan_cal; | |
492 } | |
493 T_TX_CHAN_CAL; | |
494 | |
495 // RF TX structure | |
496 typedef struct | |
497 { | |
498 T_RAMP_DELAY ramp_delay; | |
499 UWORD8 guard_bits; // number of guard bits needed for ramp up | |
500 UWORD8 prg_tx; | |
501 } | |
502 T_RF_TX; //common | |
503 | |
504 // RF TX structure | |
505 typedef struct | |
506 { | |
507 T_TX_LEVEL levels[RF_TX_LEVELS_TABLE_SIZE]; | |
508 T_TX_CHAN_CAL chan_cal_table[RF_TX_CHAN_CAL_TABLE_SIZE][RF_TX_NUM_SUB_BANDS]; | |
509 T_TX_RAMP ramp_tables[RF_TX_RAMP_SIZE]; | |
510 T_TX_TEMP_CAL temp[RF_TX_CAL_TEMP_SIZE]; | |
511 } | |
512 T_RF_TX_BAND; | |
513 | |
514 // band structure | |
515 typedef struct | |
516 { | |
517 T_RF_RX_BAND rx; | |
518 T_RF_TX_BAND tx; | |
519 UWORD8 swap_iq; | |
520 } | |
521 T_RF_BAND; | |
522 | |
523 // RF structure | |
524 typedef struct | |
525 { | |
526 // common for all bands | |
527 UWORD16 rf_revision; | |
528 UWORD16 radio_band_support; | |
529 T_RF_RX rx; | |
530 T_RF_TX tx; | |
531 T_AFC_PARAMS afc; | |
532 } | |
533 T_RF; | |
534 | |
535 /************************************/ | |
536 /* MADC definitions */ | |
537 /************************************/ | |
538 // Omega: 5 external channels if touch screen not used, 3 otherwise | |
539 enum ADC_INDEX { | |
540 ADC_VBAT, | |
541 ADC_VCHARG, | |
542 ADC_ICHARG, | |
543 ADC_VBACKUP, | |
544 ADC_BATTYP, | |
545 ADC_BATTEMP, | |
546 ADC_ADC3, // name of this ?? | |
547 ADC_RFTEMP, | |
548 ADC_ADC4, | |
549 ADC_INDEX_END // ADC_INDEX_END must be the end of the enums | |
550 }; | |
551 | |
552 typedef struct | |
553 { | |
554 WORD16 converted[ADC_INDEX_END]; // converted | |
555 UWORD16 raw[ADC_INDEX_END]; // raw from ADC | |
556 } | |
557 T_ADC; | |
558 | |
559 /************************************/ | |
560 /* MADC calibration */ | |
561 /************************************/ | |
562 typedef struct | |
563 { | |
564 UWORD16 a[ADC_INDEX_END]; | |
565 WORD16 b[ADC_INDEX_END]; | |
566 } | |
567 T_ADCCAL; | |
568 | |
569 // Conversion table: ADC value -> temperature | |
570 typedef struct | |
571 { | |
572 UWORD16 adc; // ADC reading is 10 bits | |
573 WORD16 temp; // temp is in approx. range -30..+80 | |
574 } | |
575 T_TEMP; | |
576 | |
577 typedef struct | |
578 { | |
579 char *name; | |
580 void *addr; | |
581 int size; | |
582 } | |
583 T_CONFIG_FILE; | |
584 | |
585 typedef struct | |
586 { | |
587 char *name; // name of ffs file suffix | |
588 T_RF_BAND *addr; // address to default flash structure | |
589 UWORD16 max_carrier; // max carrier | |
590 UWORD16 max_txpwr; // max tx power | |
591 } | |
592 T_BAND_CONFIG; | |
593 | |
594 typedef struct | |
595 { | |
596 UWORD8 band[GSM_BANDS]; // index to band address | |
597 UWORD8 txpwr_tp; // tx power turning point | |
598 UWORD16 first_arfcn; // first index | |
599 } | |
600 T_STD_CONFIG; | |
601 enum GSMBAND_DEF | |
602 { | |
603 BAND_NONE, | |
604 BAND_EGSM900, | |
605 BAND_DCS1800, | |
606 BAND_PCS1900, | |
607 BAND_GSM850, | |
608 // put new bands here | |
609 BAND_GSM900 //last entry | |
610 }; | |
611 | |
612 /************************************/ | |
613 /* ABB (Omega) Initialization */ | |
614 /************************************/ | |
615 | |
616 #if ((ANLG_FAM == 1) || (ANLG_FAM == 2)) | |
617 #define ABB_TABLE_SIZE 16 | |
618 #elif (ANLG_FAM == 3) | |
619 #define ABB_TABLE_SIZE 22 | |
620 #endif | |
621 | |
622 // Note that this translation is probably not needed at all. But until L1 is | |
623 // (maybe) changed to simply initialize the ABB from a table of words, we | |
624 // use this to make things more easy-readable. | |
625 | |
626 #if (ANLG_FAM == 1) | |
627 enum ABB_REGISTERS { | |
628 ABB_AFCCTLADD = 0, | |
629 ABB_VBUCTRL, | |
630 ABB_VBDCTRL, | |
631 ABB_BBCTRL, | |
632 ABB_APCOFF, | |
633 ABB_BULIOFF, | |
634 ABB_BULQOFF, | |
635 ABB_DAI_ON_OFF, | |
636 ABB_AUXDAC, | |
637 ABB_VBCTRL, | |
638 ABB_APCDEL1 | |
639 }; | |
640 #elif (ANLG_FAM == 2) | |
641 enum ABB_REGISTERS { | |
642 ABB_AFCCTLADD = 0, | |
643 ABB_VBUCTRL, | |
644 ABB_VBDCTRL, | |
645 ABB_BBCTRL, | |
646 ABB_BULGCAL, | |
647 ABB_APCOFF, | |
648 ABB_BULIOFF, | |
649 ABB_BULQOFF, | |
650 ABB_DAI_ON_OFF, | |
651 ABB_AUXDAC, | |
652 ABB_VBCTRL1, | |
653 ABB_VBCTRL2, | |
654 ABB_APCDEL1, | |
655 ABB_APCDEL2 | |
656 }; | |
657 #elif (ANLG_FAM == 3) | |
658 enum ABB_REGISTERS { | |
659 ABB_AFCCTLADD = 0, | |
660 ABB_VBUCTRL, | |
661 ABB_VBDCTRL, | |
662 ABB_BBCTRL, | |
663 ABB_BULGCAL, | |
664 ABB_APCOFF, | |
665 ABB_BULIOFF, | |
666 ABB_BULQOFF, | |
667 ABB_DAI_ON_OFF, | |
668 ABB_AUXDAC, | |
669 ABB_VBCTRL1, | |
670 ABB_VBCTRL2, | |
671 ABB_APCDEL1, | |
672 ABB_APCDEL2, | |
673 ABB_VBPOP, | |
674 ABB_VAUDINITD, | |
675 ABB_VAUDCTRL, | |
676 ABB_VAUOCTRL, | |
677 ABB_VAUSCTRL, | |
678 ABB_VAUDPLL | |
679 }; | |
680 #endif | |
681 #endif |