comparison L1/cust0/l1_cust.c @ 0:75a11d740a02

initial import of gsm-fw from freecalypso-sw rev 1033:5ab737ac3ad7
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 09 Jun 2016 00:02:41 +0000
parents
children 12f6c51be7b3
comparison
equal deleted inserted replaced
-1:000000000000 0:75a11d740a02
1 /*
2 * This FreeCalypso version of l1_cust.c is based on the LoCosto version;
3 * see ../cust1/l1_cust.c for the original.
4 */
5
6 #include <string.h>
7 #include "config.h"
8 #include "sys_types.h"
9
10 #include "../../riviera/rv/general.h"
11 #include "../../nucleus/nucleus.h"
12 #include "../../nucleus/tm_defs.h"
13 #include "../../gpf/inc/cust_os.h"
14
15 #include "l1_confg.h"
16 #include "l1_const.h"
17 #include "../../bsp/ulpd.h"
18 #include "l1_types.h"
19 #include "l1_time.h"
20 #include "l1_trace.h"
21 #include "l1_macro.h"
22 #include "../../serial/serialswitch.h"
23 #include "../../bsp/abb+spi/abb.h"
24
25 #if CONFIG_INCLUDE_SIM
26 #include "../../bsp/sim.h"
27 #endif
28
29 #if TESTMODE
30 #include "l1tm_defty.h"
31 #endif
32
33 #if (AUDIO_TASK == 1)
34 #include "l1audio_const.h"
35 #include "l1audio_cust.h"
36 #include "l1audio_defty.h"
37 #endif
38
39 #if (L1_GTT == 1)
40 #include "l1gtt_const.h"
41 #include "l1gtt_defty.h"
42 #endif
43
44 #if (L1_MP3 == 1)
45 #include "l1mp3_defty.h"
46 #endif
47
48 #if (L1_MIDI == 1)
49 #include "l1midi_defty.h"
50 #endif
51
52 #include "l1_defty.h"
53 #include "l1_msgty.h"
54 #include "l1_tabs.h"
55 #include "l1_varex.h"
56 #include "l1_proto.h"
57 #if (VCXO_ALGO == 1)
58 #include "l1_ctl.h"
59 #endif
60
61
62 #if (RF_FAM == 61)
63 #include "drp_drive.h"
64 #include "tpudrv61.h"
65 #include "l1_rf61.h"
66 //#include "l1_rf61.c"
67 #endif
68
69
70 #if (RF_FAM == 60 )
71 #include "drp_drive.h"
72 #include "tpudrv60.h"
73 #include "l1_rf60.h"
74 //#include "l1_rf60.c"
75 //#include "rf60.h"
76 #endif
77
78 #if (RF_FAM == 43)
79 #include "tpudrv43.h"
80 #include "l1_rf43.h"
81 //#include "l1_rf43.c"
82 #endif
83
84 #if (RF_FAM == 35)
85 #include "tpudrv35.h"
86 #include "l1_rf35.h"
87 //#include "l1_rf35.c"
88 #endif
89
90 #if (RF_FAM == 12)
91 #include "tpudrv12.h"
92 #include "l1_rf12.h"
93 //#include "l1_rf12.c"
94 #endif
95
96 #if (RF_FAM == 10)
97 #include "tpudrv10.h"
98 #include "l1_rf10.h"
99 //#include "l1_rf10.c"
100 #endif
101
102 #if (RF_FAM == 8)
103 #include "tpudrv8.h"
104 #include "l1_rf8.h"
105 //#include "l1_rf8.c"
106 #endif
107
108 #if (RF_FAM == 2)
109 #include "l1_rf2.h"
110 //#include "l1_rf2.c"
111 #endif
112
113 #if (DRP_FW_EXT == 1)
114 #include "l1_drp_inc.h"
115 #include "l1_ver.h"
116 #endif
117
118 /*
119 * FreeCalypso change: l1_rf12.c is now a separate compilation unit,
120 * so we need to extern the data objects defined therein.
121 */
122 extern T_RF rf;
123 extern T_RF_BAND rf_band[GSM_BANDS];
124 extern const T_RF_BAND rf_850, rf_900, rf_1800, rf_1900;
125 extern UWORD16 abb[ABB_TABLE_SIZE];
126 extern UWORD16 AGC_TABLE[AGC_TABLE_SIZE];
127 extern T_ADC adc;
128 extern T_ADCCAL adc_cal;
129 extern T_TEMP temperature[TEMP_TABLE_SIZE];
130
131 /* FreeCalypso configuration */
132 #define STD DUALEXT
133
134 // Nucleus functions
135 extern INT TMD_Timer_State;
136 extern UWORD32 TMD_Timer; // for big sleep
137 extern UWORD32 TCD_Priority_Groups;
138 extern VOID *TCD_Current_Thread;
139 extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
140 extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
141 extern TC_PROTECT TCD_System_Protect;
142
143 #define FFS_WORKAROUND 0
144
145 #if 1 // (FFS_WORKAROUND == 1)
146 #include "../../services/ffs/ffs.h"
147 #else
148 /* typedef signed int int32;
149 typedef signed char effs_t;*/
150 typedef signed int filesize_t;
151 effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
152 #if (DRP_FW_EXT == 0)
153 effs_t ffs_fread(const char *name, void *addr, filesize_t size);
154 #endif
155 #endif
156
157 // Import band configuration from Flash module (need to replace by an access function)
158 //extern UWORD8 std;
159 extern T_L1_CONFIG l1_config;
160 extern T_L1S_GLOBAL l1s;
161
162 #if 0 //(OP_L1_STANDALONE == 0)
163 extern SYS_BOOL cama_sleep_status(void);
164 #endif
165
166 #if (CODE_VERSION != SIMULATION)
167 // Import serial switch configuration
168 #if (CHIPSET == 12)
169 extern char ser_cfg_info[3];
170 #else
171 extern char ser_cfg_info[2];
172 #endif
173 #endif
174
175 #if(REL99 && FF_PRF)
176 T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band,
177 UWORD8 number_uplink_timeslot,
178 T_TX_LEVEL *p_tx_level);
179 #endif
180
181
182 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
183 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
184 void config_rf_rw_band(char type, UWORD8 read);
185 void config_rf_read(char type);
186 void config_rf_write(char type);
187
188 #if (RF_FAM == 61)
189 #include "drp_api.h"
190
191 extern T_DRP_SW_DATA drp_sw_data_init;
192 extern T_DRP_SW_DATA drp_sw_data_calib;
193 extern T_DRP_SW_DATA drp_sw_data_calib_saved;
194 #endif
195
196 enum {
197 RF_ID = 0,
198 ADC_ID = 1
199 };
200
201 #if (L1_FF_MULTIBAND == 0) && !defined(RUN_INT_RAM)
202 /*-------------------------------------------------------*/
203 /* Parameters: none */
204 /* Return: none */
205 /* Functionality: Defines the location of rf-struct */
206 /* for each std. */
207 /*-------------------------------------------------------*/
208 //omaps00090550 #83 warinng removal
209 const T_BAND_CONFIG band_config[] =
210 { /*ffs name, default addr, max carrier, min tx pwr */
211 {"",(T_RF_BAND *) 0,0,0},//undefined
212 {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM
213 {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
214 {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
215 {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850
216 #if (RF_FAM == 10)
217 {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
218 #endif
219 {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry
220 };
221
222 /*-------------------------------------------------------*/
223 /* Parameters: none */
224 /* Return: none */
225 /* Functionality: Defines the indices into band_config */
226 /* for each std. */
227 /*-------------------------------------------------------*/
228 const T_STD_CONFIG std_config[] =
229 {
230 /* band1 index, band2 index, txpwr turning point, first arfcn*/
231 { 0, 0, 0, 0 }, // std = 0 not used
232 { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM
233 { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM
234 { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS
235 { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS
236 { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL
237 { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT
238 { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850
239 #if (RF_FAM == 10)
240 { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900
241 #else
242 { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900
243 #endif
244 };
245 #endif //if (L1_FF_MULTIBAND == 0)
246
247 #if (L1_FF_MULTIBAND == 0) && defined(RUN_INT_RAM)
248 extern const T_BAND_CONFIG band_config[];
249 extern const T_STD_CONFIG std_config[];
250 #endif
251
252 /*-------------------------------------------------------*/
253 /* Prototypes of external functions used in this file. */
254 /*-------------------------------------------------------*/
255 void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
256 #if (L1_FF_MULTIBAND == 0)
257 WORD16 Convert_l1_radio_freq (UWORD16 radio_freq);
258 #endif
259
260 #ifndef RUN_FLASH
261 /*-------------------------------------------------------*/
262 /* Cust_recover_Os() */
263 /*-------------------------------------------------------*/
264 /* */
265 /* Description: adjust OS from sleep duration */
266 /* ------------ */
267 /* This function fix the : */
268 /* - system clock */
269 /* - Nucleus timers */
270 /* - xxxxxx (customer dependant) */
271 /*-------------------------------------------------------*/
272
273 UWORD8 Cust_recover_Os(void)
274 {
275 #if (CODE_VERSION != SIMULATION)
276 if (l1_config.pwr_mngt == PWR_MNGT)
277 {
278 UWORD32 current_system_clock;
279
280 /***************************************************/
281 // Fix System clock and Nucleus Timers if any.... */
282 /***************************************************/
283 // Fix System clock ....
284 current_system_clock = NU_Retrieve_Clock();
285 current_system_clock += l1s.pw_mgr.sleep_duration;
286 NU_Set_Clock(current_system_clock);
287
288 // Fix Nucleus timer (if needed) ....
289 if (TMD_Timer_State == TM_ACTIVE)
290 {
291 TMD_Timer -= l1s.pw_mgr.sleep_duration;
292 if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
293 }
294
295 /***************************************************/
296 // Cust dependant part ... */
297 /***************************************************/
298 //.............
299 //.............
300 //..............
301 return(TRUE);
302
303 }
304 #endif
305 return(TRUE); //omaps00090550
306 }
307
308
309
310 /*-------------------------------------------------------*/
311 /* Cust_check_system() */
312 /*-------------------------------------------------------*/
313 /* */
314 /* Description: */
315 /* ------------ */
316 /* GSM 1.5 : */
317 /* - authorize UWIRE clock to be stopped */
318 /* and write value in l1s.pw_mgr.modules_status. */
319 /* - authorize ARMIO clock to be stopped if the light is */
320 /* off and write value in l1s.pw_mgr.modules_status. */
321 /* - check if SIM clock have been stopped */
322 /* before allowing DEEP SLEEP. */
323 /* - check if UARTs are ready to enter deep sleep */
324 /* - choose the sleep mode */
325 /* */
326 /* Return: */
327 /* ------- */
328 /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */
329 /*-------------------------------------------------------*/
330 UWORD8 Cust_check_system(void)
331 {
332
333 #if (CODE_VERSION != SIMULATION)
334 if (l1_config.pwr_mngt == PWR_MNGT)
335 {
336
337 #if (L2_L3_SIMUL == 0)
338 // Forbid deep sleep if the light is on
339 /* FreeCalypso change: this LT_Status() function is defunct */
340 #if 0
341 if(LT_Status())
342 {
343 //cut ARMIO and UWIRE clocks in big sleep
344 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
345 l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
346 return(FRAME_STOP); // BIG sleep
347 }
348 #endif
349
350 #if (OP_L1_STANDALONE == 0)
351 // Forbid deep sleep if the camera is working
352 /* FreeCalypso change: no camera */
353 #if 0
354 if(!cama_sleep_status())
355 {
356 l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA;
357 return(FRAME_STOP); // BIG sleep
358 }
359 #endif
360
361 // Forbid deep sleep if the SIM and UARTs not ready
362 // FC note: this call to SIM_SleepStatus() *is* present in the Leonardo object
363 #if CONFIG_INCLUDE_SIM //(REQUIRED_FOR_ESAMPLE_LOCOSTO)
364 // Forbid deep sleep if the SIM and UARTs not ready
365 if(SIM_SleepStatus())
366 #endif
367 {
368 #endif
369 #endif
370 if(SER_UartSleepStatus())
371 {
372 return(CLOCK_STOP); // DEEP sleep
373 }
374 else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART;
375 #if (L2_L3_SIMUL == 0)
376 #if (OP_L1_STANDALONE == 0)
377 }
378 // Forbid deep sleep if the SIM and UARTs not ready
379 #if CONFIG_INCLUDE_SIM //(REQUIRED_FOR_ESAMPLE_LOCOSTO)
380 else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
381 #endif
382 #endif
383 #endif
384 // cut ARMIO and UWIRE clocks in big sleep
385 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
386 return(FRAME_STOP); // BIG sleep
387 }
388 #else // Simulation part
389 return(CLOCK_STOP); // DEEP sleep
390 #endif
391 return(CLOCK_STOP); // omaps00090550
392 }
393 #endif /* !RUN_FLASH */
394
395 #ifndef RUN_INT_RAM
396 /*-------------------------------------------------------*/
397 /* Parameters: none */
398 /* Return: none */
399 /* Functionality: Read the RF configuration, tables etc. */
400 /* from FFS files. */
401 /*-------------------------------------------------------*/
402 //omaps00090550 #83-d warnimg removal
403 static const T_CONFIG_FILE config_files_common[] =
404 {
405 #if (CODE_VERSION != SIMULATION)
406
407 // The first char is NOT part of the filename. It is used for
408 // categorizing the ffs file contents:
409 // f=rf-cal, F=rf-config,
410 // t=tx-cal, T=tx-config,
411 // r=rx-cal, R=rx-config,
412 // s=sys-cal, S=sys-config,
413 "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
414 "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support),
415 #if (VCXO_ALGO == 1)
416 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
417 #else
418 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
419 #endif
420
421 "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16),
422 "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
423 "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE),
424
425 "s/sys/adccal", &adc_cal, sizeof(adc_cal),
426
427 "S/sys/abb", &abb, sizeof(abb),
428 "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info),
429
430 #if (RF_FAM ==61)
431 "S/sys/drp_wrapper", & drp_wrapper, sizeof(drp_wrapper),
432 #if (DRP_FW_EXT == 0)
433 "S/sys/drp_calibration", & drp_sw_data_calib, sizeof(drp_sw_data_calib),
434 #endif
435 #endif
436
437 #endif
438 NULL, 0, 0 // terminator
439 };
440
441 /*-------------------------------------------------------*/
442 /* Parameters: none */
443 /* Return: none */
444 /* Functionality: Read the RF configurations for */
445 /* each band from FFS files. These files */
446 /* are defined for one band, and and used */
447 /* for all bands. */
448 /*-------------------------------------------------------*/
449 //omaps00090550 #83 warning removal
450 static const T_CONFIG_FILE config_files_band[] =
451 {
452 // The first char is NOT part of the filename. It is used for
453 // categorizing the ffs file contents:
454 // f=rf-cal, F=rf-config,
455 // t=tx-cal, T=tx-config,
456 // r=rx-cal, R=rx-config,
457 // s=sys-cal, S=sys-config,
458
459 // generic for all bands
460 // band[0] is used as template for all bands.
461 "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables),
462 "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels),
463 "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
464 "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp),
465
466 "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands),
467 "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp),
468 "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params),
469 NULL, 0, 0 // terminator
470 };
471
472 #if CONFIG_TARGET_PIRELLI
473 extern int pirelli_cal_fread(const char *name, void *userbuf, T_FFS_SIZE size);
474 #define cal_fread pirelli_cal_fread
475 #else
476 #define cal_fread ffs_file_read
477 #endif
478
479 void config_ffs_read(char type)
480 {
481 config_rf_read(type);
482 config_rf_rw_band(type, 1);
483 }
484
485 void config_ffs_write(char type)
486 {
487 config_rf_write(type);
488 config_rf_rw_band(type, 0);
489 }
490
491 void config_rf_read(char type)
492 {
493 const T_CONFIG_FILE *file = config_files_common;
494
495 while (file->name != NULL)
496 {
497 if (type == '*' || type == file->name[0]) {
498 cal_fread(&file->name[1], file->addr, file->size);
499 }
500 file++;
501 }
502 }
503
504 void config_rf_write(char type)
505 {
506 const T_CONFIG_FILE *file = config_files_common;
507
508 while (file->name != NULL)
509 {
510 if (type == '*' || type == file->name[0]) {
511 ffs_fwrite(&file->name[1], file->addr, file->size);
512 }
513 file++;
514 }
515 }
516
517 void config_rf_rw_band(char type, UWORD8 read)
518 {
519 const T_CONFIG_FILE *f1 = config_files_band;
520 UWORD8 i;
521 WORD32 offset;
522 char name[64];
523 char *p;
524 #if (L1_FF_MULTIBAND == 0)
525 UWORD8 std = l1_config.std.id;
526 #endif
527
528 #if FFS_WORKAROUND == 1
529 struct stat_s stat;
530 UWORD16 time;
531 #endif
532 #if (L1_FF_MULTIBAND == 0)
533 for (i=0; i< GSM_BANDS; i++)
534 {
535 if(std_config[std].band[i] !=0 )
536 {
537 #else
538 for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++)
539 {
540 #endif /*if (L1_FF_MULTIBAND == 0) */
541 f1 = &config_files_band[0];
542 while (f1->name != NULL)
543 {
544 offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
545 p = ((char *) &rf_band[i]) + offset;
546 if (type == '*' || type == f1->name[0])
547 {
548 strcpy(name, &f1->name[1]);
549 strcat(name, ".");
550 #if (L1_FF_MULTIBAND == 0)
551 strcat(name, band_config[std_config[std].band[i]].name);
552 #else
553 strcat(name, multiband_rf[i].name);
554 #endif /*if (L1_FF_MULTIBAND == 0)*/
555
556 if (read == 1)
557 cal_fread(name, p, f1->size);
558 else //write == 0
559 {
560 ffs_fwrite(name, p, f1->size);
561
562 // wait until ffs write has finished
563 #if FFS_WORKAROUND == 1
564 stat.inode = 0;
565 time = 0;
566
567 do {
568 rvf_delay(10); // in milliseconds
569 time += 10;
570 ffs_stat(name, &stat);
571 } while (stat.inode == 0 && time < 500);
572 #endif
573 }
574 }
575 f1++;
576 }
577 }
578 #if (L1_FF_MULTIBAND == 0)
579 }
580 #endif
581 }
582
583
584 /*-------------------------------------------------------*/
585 /* Cust_init_std() */
586 /*-------------------------------------------------------*/
587 /* Parameters : */
588 /* Return : */
589 /* Functionality : Init Standard variable configuration */
590 /*-------------------------------------------------------*/
591 void Cust_init_std(void)
592 #if (L1_FF_MULTIBAND == 0)
593 {
594 UWORD8 std = l1_config.std.id;
595 UWORD8 band1, band2;
596 T_RF_BAND *pt1, *pt2;
597
598 band1 = std_config[std].band[0];
599 band2 = std_config[std].band[1];
600
601 //get these from std
602 pt1 = band_config[band1].addr;
603 pt2 = band_config[band2].addr;
604
605 // copy rf-struct from default flash to ram
606 memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
607
608 if(std_config[std].band[1] != BAND_NONE )
609 memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
610
611 // Read all RF and system configuration from FFS *before* we copy any of
612 // the rf structure variables to other places, like L1.
613
614 config_ffs_read('*');
615
616 l1_config.std.first_radio_freq = std_config[std].first_arfcn;
617
618 if(band2!=0)
619 l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
620 else
621 l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
622
623 // if band2 is not used it is initialised with zeros
624 l1_config.std.nbmax_carrier = band_config[band1].max_carrier;
625 if(band2!=0)
626 l1_config.std.nbmax_carrier += band_config[band2].max_carrier;
627
628 l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr;
629 l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr;
630 l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp;
631 l1_config.std.cal_freq1_band1 = 0;
632 l1_config.std.cal_freq1_band2 = 0;
633
634 l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
635 l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
636 l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
637 l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
638 l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq;
639
640 l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
641 l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
642 l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
643 l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
644 l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq;
645
646 l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1;
647
648 // init variable indicating which radio bands are supported by the chosen RF
649 l1_config.std.radio_band_support = rf.radio_band_support;
650
651 //TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration
652 // on a need basis ?
653 }
654 #else
655 {
656 UWORD8 i;
657
658 for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++)
659 {
660 switch(multiband_rf[i].gsm_band_identifier)
661 {
662 case RF_GSM900:
663 rf_band[i]=rf_900;
664 break;
665 case RF_GSM850:
666 rf_band[i]=rf_850;
667 break;
668 case RF_DCS1800:
669 rf_band[i]=rf_1800;
670 break;
671 case RF_PCS1900:
672 rf_band[i]=rf_1900;
673 break;
674 default:
675 break;
676 }
677 }
678 config_ffs_read('*');
679 }
680 #endif // if (L1_FF_MULTIBAND == 0)
681
682
683 /*-------------------------------------------------------*/
684 /* Cust_init_params() */
685 /*-------------------------------------------------------*/
686 /* Parameters : */
687 /* Return : */
688 /* Functionality : Init RF dependent paramters (AGC, TX) */
689 /*-------------------------------------------------------*/
690 void Cust_init_params(void)
691 {
692
693 #if (CODE_VERSION==SIMULATION)
694 extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
695 extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
696
697 l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME;
698 l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME;
699 #else
700 l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME;
701 l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME;
702 #endif
703
704
705 // Convert SYNTH_SETUP_TIME into SPLIT.
706 // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
707 l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
708 l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
709
710 l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
711 l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
712
713 l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
714 l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
715
716 l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
717 TA_MAX -
718 l1_config.params.tx_synth_setup_time -
719 EPSILON_OFFS;
720
721 // TX duration = ramp up time + burst duration (data + tail bits)
722 l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
723 l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
724
725 l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
726 l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
727
728 // time for the end of RX and TX TPU scenarios
729 l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
730 l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;
731
732 // FB26 anchoring time is computed backward to leave only 6 qbit margin between
733 // FB26 window and next activity (RX time tracking).
734 // This margin is used as follow:
735 // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
736 // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD)
737 // ---------
738 // Total: 3 qbit
739
740 l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
741 #if (CODE_VERSION == SIMULATION)
742 // simulator: end of scenario not included in window (no serialization)
743 1 -
744 #else
745 // RF dependent end of RX TPU scenario
746 l1_config.params.rx_tpu_scenario_ending -
747 #endif
748 EPSILON_SYNC -
749 TPU_SLEEP_LOAD -
750 SERV_OFFS_REST_LOAD -
751 FB26_ACQUIS_DURATION -
752 PROVISION_TIME +
753 TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
754
755 l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time +
756 PROVISION_TIME -
757 l1_config.params.rx_synth_setup_time -
758 EPSILON_OFFS;
759
760 l1_config.params.guard_bits = rf.tx.guard_bits;
761
762 l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
763 l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet
764
765 l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr;
766 l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr;
767 l1_config.params.low_agc = rf.rx.agc.low_agc;
768 l1_config.params.high_agc = rf.rx.agc.high_agc;
769 l1_config.params.il_min = IL_MIN;
770
771 l1_config.params.fixed_txpwr = FIXED_TXPWR;
772 l1_config.params.eeprom_afc = rf.afc.eeprom_afc;
773 l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF;
774 l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation
775
776 l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv;
777 l1_config.params.psi_st = rf.afc.psi_st;
778 l1_config.params.psi_st_32 = rf.afc.psi_st_32;
779 l1_config.params.psi_st_inv = rf.afc.psi_st_inv;
780
781 #if (CODE_VERSION == SIMULATION)
782 #if (VCXO_ALGO == 1)
783 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
784 #endif
785 #else
786 #if (VCXO_ALGO == 1)
787 l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity
788 l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity
789 l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity
790 #if (NEW_SNR_THRESHOLD == 0)
791 l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold
792 #else
793 l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD;
794 #endif /* NEW_SNR_THRESHOLD */
795 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
796 l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value
797 l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm
798 l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
799 #endif
800 #endif
801
802 #if DCO_ALGO
803 #if (RF_FAM == 10)
804 // Enable DCO algorithm for direct conversion RFs
805 l1_config.params.dco_enabled = TRUE;
806 #else
807 l1_config.params.dco_enabled = FALSE;
808 #endif
809 #endif
810
811 #if (ANALOG == 1)
812 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
813 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
814 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
815 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
816 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
817 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
818 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
819 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
820 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
821 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
822 l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
823 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
824 #endif
825 #if (ANALOG == 2)
826 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
827 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
828 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
829 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
830 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
831 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
832 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
833 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
834 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
835 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
836 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
837 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
838 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
839 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
840 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
841 #endif
842 #if (ANALOG == 3)
843 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
844 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
845 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute
846 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB
847 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset
848 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
849 l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled
850 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
851 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
852 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
853 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
854 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0
855 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
856 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset
857 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
858 l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled
859 l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
860 l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset
861 l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR
862 l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset
863 l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset
864 #endif
865
866 #if (RF_FAM == 61)
867 l1_config.params.apcctrl2 = drp_wrapper[DRP_WRAPPER_APCCTRL2];
868 l1_config.params.apcdel1 = drp_wrapper[DRP_WRAPPER_APCDEL1];
869 l1_config.params.apcdel2 = drp_wrapper[DRP_WRAPPER_APCDEL2];
870 #endif
871 #if (ANALOG == 11)
872 l1_config.params.vulgain = abb[ABB_VULGAIN];
873 l1_config.params.vdlgain = abb[ABB_VDLGAIN];
874 l1_config.params.sidetone = abb[ABB_SIDETONE];
875 l1_config.params.ctrl1 = abb[ABB_CTRL1];
876 l1_config.params.ctrl2 = abb[ABB_CTRL2];
877 l1_config.params.ctrl3 = abb[ABB_CTRL3];
878 l1_config.params.ctrl4 = abb[ABB_CTRL4];
879 l1_config.params.ctrl5 = abb[ABB_CTRL5];
880 l1_config.params.ctrl6 = abb[ABB_CTRL6];
881 l1_config.params.popauto = abb[ABB_POPAUTO];
882 l1_config.params.outen1 = abb[ABB_OUTEN1];
883 l1_config.params.outen2 = abb[ABB_OUTEN2];
884 l1_config.params.outen3 = abb[ABB_OUTEN3];
885 l1_config.params.aulga = abb[ABB_AULGA];
886 l1_config.params.aurga = abb[ABB_AURGA];
887 #endif
888 }
889 #endif /* !RUN_INT_RAM */
890
891 #ifndef RUN_FLASH
892 /************************************/
893 /* Automatic Gain Control */
894 /************************************/
895
896 /*-------------------------------------------------------*/
897 /* Cust_get_agc_from_IL() */
898 /*-------------------------------------------------------*/
899 /* Parameters : */
900 /* Return : */
901 /* Functionality : returns agc value */
902 /*-------------------------------------------------------*/
903 WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val)
904 {
905
906 UWORD16 agc_index_temp;
907
908 // radio_freq currently not used
909 // this parameter is passed in order to allow band dependent tables for specific RFs
910 // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
911
912 agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq));
913 agc_index= agc_index_temp>>1;
914 if (agc_index > 120)
915 agc_index = 120; // Clip agc_index
916
917 switch (table_id)
918 {
919 case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]);
920 case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]);
921 case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]);
922 }
923 return (0);//omaps00090550
924 }
925
926 /*-------------------------------------------------------*/
927 /* Cust_get_agc_band */
928 /*-------------------------------------------------------*/
929 /* Parameters : radio_freq */
930 /* Return : band number */
931 /* Functionality : Computes the band for RF calibration */
932 /*-------------------------------------------------------*/
933 /*---------------------------------------------*/
934
935 #if (CODE_VERSION == SIMULATION)
936 UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
937 #else
938 UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
939 #endif
940 {
941 // WORD32 i =0 ; //omaps00090550
942 UWORD8 band_number;
943
944 for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++)
945 {
946 if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound)
947 return(band_number);
948 }
949 // Should never happen!
950 return(0);
951 }
952
953 #if (L1_FF_MULTIBAND == 0)
954 /*-------------------------------------------------------*/
955 /* Cust_is_band_high */
956 /*-------------------------------------------------------*/
957 /* Parameters : arfcn */
958 /* Return : 0 if low band */
959 /* 1 if high band */
960 /* Functionality : Generic function which return 1 if */
961 /* arfcn is in the high band */
962 /*-------------------------------------------------------*/
963
964 UWORD8 Cust_is_band_high(UWORD16 radio_freq)
965 {
966 UWORD16 max_carrier;
967 UWORD8 std = l1_config.std.id;
968
969 max_carrier = band_config[std_config[std].band[0]].max_carrier;
970
971 return(((radio_freq >= l1_config.std.first_radio_freq) &&
972 (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
973 }
974 #endif
975
976 /*-------------------------------------------------------*/
977 /* l1ctl_encode_delta2() */
978 /*-------------------------------------------------------*/
979 /* Parameters : */
980 /* Return : */
981 /* Functionality : */
982 /*-------------------------------------------------------*/
983 WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
984 {
985 WORD8 delta2_freq;
986 UWORD16 i;
987 UWORD16 arfcn;
988 #if (L1_FF_MULTIBAND == 0)
989 UWORD8 band;
990
991 band = Cust_is_band_high(radio_freq);
992 arfcn = Convert_l1_radio_freq(radio_freq);
993 #else
994 WORD8 band;
995 // Corrected for input being rf_freq and not l1_freq
996 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
997 #endif
998
999 i = Cust_get_agc_band(arfcn,band); //
1000 delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
1001
1002 //temperature compensation
1003 for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
1004 {
1005 if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
1006 {
1007 delta2_freq += rf_band[band].rx.temp[i].agc_calib;
1008 break;
1009 }
1010 }
1011
1012 return(delta2_freq);
1013 }
1014
1015 #if (L1_FF_MULTIBAND == 0)
1016 #else
1017 /*-------------------------------------------------------*/
1018 /* l1ctl_get_g_magic() */
1019 /*-------------------------------------------------------*/
1020 /* Parameters : */
1021 /* Return : */
1022 /* Functionality : */
1023 /*-------------------------------------------------------*/
1024 UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq)
1025 {
1026 // Corrected for input being rf_freq and not l1_freq
1027 return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic);
1028 }
1029
1030
1031 /*-------------------------------------------------------*/
1032 /* l1ctl_get_lna_att() */
1033 /*-------------------------------------------------------*/
1034 /* Parameters : */
1035 /* Return : */
1036 /* Functionality : */
1037 /*-------------------------------------------------------*/
1038 UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq)
1039 {
1040 // The function is provided with rf_freq as input so
1041 // convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band
1042 return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att);
1043 // return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att);
1044 }
1045 /*-------------------------------------------------------*/
1046 /* l1ctl_encode_delta1() */
1047 /*-------------------------------------------------------*/
1048 /* Parameters : */
1049 /* Return : */
1050 /* Functionality : */
1051 /*-------------------------------------------------------*/
1052 WORD8 l1ctl_encode_delta1(UWORD16 radio_freq)
1053 {
1054 return 0;
1055 }
1056 /*-------------------------------------------------------*/
1057 /* l1ctl_encode_lna() */
1058 /*-------------------------------------------------------*/
1059 /* Parameters : */
1060 /* Return : */
1061 /* Functionality : */
1062 /*-------------------------------------------------------*/
1063 void l1ctl_encode_lna( UWORD8 input_level,
1064 UWORD8 *lna_state,
1065 UWORD16 radio_freq)
1066 {
1067
1068 /*** LNA Hysteresis is implemented as following :
1069
1070 |
1071 On|---<>----+-------+
1072 | | |
1073 LNA | | |
1074 | ^ v
1075 | | |
1076 | | |
1077 Off| +-------+----<>-----
1078 +--------------------------------
1079 50 40 30 20 input_level /-dBm
1080 THR_HIGH THR_LOW ***/
1081 WORD8 band;
1082 // Corrected for input to be rf_freq and not l1_freq
1083 band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)];
1084 if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high) // < -44dBm ?
1085 {
1086 *lna_state = LNA_ON; // lna_off = FALSE
1087 }
1088 else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low) // > -40dBm ?
1089 {
1090 *lna_state = LNA_OFF; // lna off = TRUE
1091 }
1092 }
1093
1094 UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq)
1095 {
1096 return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq);
1097 }
1098
1099 #endif //if L1_FF_MULTIBAND == 0)
1100
1101 /************************************/
1102 /* TX Management */
1103 /************************************/
1104 /*-------------------------------------------------------*/
1105 /* Cust_get_ramp_tab */
1106 /*-------------------------------------------------------*/
1107 /* Parameters : */
1108 /* Return : */
1109 /* Functionality :
1110 Notes:
1111 Cal+
1112 APCRAM : Dwn(15:11)Up(10:6)Forced(0)
1113 Locosto:
1114 APCRAM: Dwn(15:8)Up(7:0)
1115
1116 */
1117 /*-------------------------------------------------------*/
1118
1119 void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
1120 {
1121 UWORD16 index_up, index_down,j, arfcn;
1122 #if (L1_FF_MULTIBAND == 0)
1123 UWORD8 band;
1124
1125 band = Cust_is_band_high(radio_freq);
1126 arfcn = Convert_l1_radio_freq(radio_freq);
1127 #else
1128 WORD8 band;
1129 // Corrected for input being rf_freq and not l1_freq
1130 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
1131 #endif //if( L1_FF_MULTIBAND == 0)
1132
1133 index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
1134 index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
1135
1136 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
1137 for (j=0; j<16; j++)
1138 {
1139 a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
1140 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) |
1141 0x14;
1142 }
1143 #endif
1144
1145 #if (RF_FAM == 61)
1146 // 20 Coeff each 8 (RampDown) + 8 (RampUp)
1147 for (j=0; j<20; j++)
1148 {
1149 a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) |
1150 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ;
1151 }
1152 #endif
1153 }
1154
1155 /*-------------------------------------------------------*/
1156 /* get_pwr_data */
1157 /*-------------------------------------------------------*/
1158 /* Parameters : */
1159 /* Return : */
1160 /* Functionality : */
1161 /*-------------------------------------------------------*/
1162
1163 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3) || (RF_FAM == 61))
1164 UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq
1165 #if (REL99 && FF_PRF)
1166 , UWORD8 number_uplink_timeslot
1167 #endif
1168 )
1169 {
1170
1171 UWORD16 i,j;
1172 UWORD16 arfcn;
1173
1174 T_TX_LEVEL *a_tx_levels;
1175
1176 #if (APC_VBAT_COMP == 1)
1177 static UWORD16 apc_max_value = APC_MAX_VALUE;
1178 #endif
1179
1180 #if(ORDER2_TX_TEMP_CAL==1)
1181 WORD16 pwr_data;
1182 #else
1183 UWORD16 pwr_data;
1184 #endif
1185
1186 #if (L1_FF_MULTIBAND == 0)
1187 UWORD8 band;
1188 band = Cust_is_band_high(radio_freq);
1189 arfcn = Convert_l1_radio_freq(radio_freq);
1190 #else
1191 WORD8 band;
1192 // Corrected for input being rf_freq and not l1_freq
1193 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
1194 #endif //if( L1_FF_MULTIBAND == 0)
1195
1196 // band = Cust_is_band_high(radio_freq);
1197 // arfcn = Convert_l1_radio_freq(radio_freq);
1198
1199 a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure
1200
1201 #if REL99
1202 #if FF_PRF
1203 // uplink power reduction feature which decrease power level in case of uplink multislot
1204 a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels);
1205 #endif
1206 #endif
1207
1208 // get uncalibrated apc
1209 pwr_data = a_tx_levels->apc;
1210
1211 i = a_tx_levels->chan_cal_index; // get index for channel compensation
1212 j=0;
1213
1214 while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
1215 j++;
1216
1217 // channel calibrate apc
1218 pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;
1219
1220 // temperature compensate apc
1221 {
1222 T_TX_TEMP_CAL *pt;
1223
1224 pt = rf_band[band].tx.temp;
1225 while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1)))
1226 pt++;
1227 #if(ORDER2_TX_TEMP_CAL==1)
1228 pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c
1229 if(pwr_data < 0) pwr_data = 0;
1230 #else
1231 pwr_data += pt->apc_calib;
1232 #endif
1233 }
1234
1235 // Vbat compensate apc
1236 #if (APC_VBAT_COMP == 1)
1237
1238 if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD)
1239 apc_max_value = APC_MAX_VALUE_LOW_BAT;
1240
1241 else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD)
1242 apc_max_value = APC_MAX_VALUE;
1243
1244 // else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and
1245 // VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one
1246
1247 if (pwr_data > apc_max_value)
1248 pwr_data = apc_max_value;
1249 #endif // APC_VBAT_COMP == 1
1250
1251 return(pwr_data);
1252 }
1253 #endif
1254
1255
1256 #if(REL99 && FF_PRF)
1257
1258 /*-------------------------------------------------------*/
1259 /* Cust_get_uplink_apc_power_reduction */
1260 /*-------------------------------------------------------*/
1261 /* Parameters : */
1262 /* - frenquency band */
1263 /* - modulation type */
1264 /* - number of uplink timeslot */
1265 /* - pointer to radio power control structure */
1266 /* Return : */
1267 /* - pointer to radio power control structure */
1268 /* */
1269 /* Functionality : This function returns a pointer to */
1270 /* the radio power control structure after power */
1271 /* reduction processing. */
1272 /* Depending of the number of uplink timeslot, the */
1273 /* analogue power control (apc) value can be reduced */
1274 /* in order to limit effect of terminal heat */
1275 /* dissipation due to power amplifier. */
1276 /*-------------------------------------------------------*/
1277
1278 T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band,
1279 UWORD8 number_uplink_timeslot,
1280 T_TX_LEVEL *p_tx_level)
1281 {
1282 T_TX_LEVEL *p_power_reduction_tx_level;
1283
1284 #if TESTMODE
1285 if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE))
1286 return p_tx_level ; // return without any power reduction
1287 #endif
1288
1289 if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <= MAX_UPLINK_TIME_SLOT))
1290 {
1291 number_uplink_timeslot--; // index start from 0
1292 }
1293 else
1294 {
1295 return p_tx_level; // abnormal case we do not apply any power reduction
1296 }
1297
1298 p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]);
1299
1300 // We select the lowest power level in order to apply power reduction
1301 #if (CODE_VERSION != SIMULATION)
1302 if (p_tx_level->apc > p_power_reduction_tx_level->apc) // higher apc value means higher transmit power
1303 #else
1304 if (p_tx_level->apc < p_power_reduction_tx_level->apc) // ! for simulation rf apc tables are inverted so comparaison is the reverse
1305 #endif
1306 return p_power_reduction_tx_level;
1307 else
1308 return p_tx_level;
1309 }
1310
1311 #endif
1312 #endif /* !RUN_FLASH */
1313
1314 #ifndef RUN_INT_RAM
1315 /*-------------------------------------------------------*/
1316 /* Cust_Init_Layer1 */
1317 /*-------------------------------------------------------*/
1318 /* Parameters : */
1319 /* Return : */
1320 /* Functionality : Load and boot the DSP */
1321 /* Initialize shared memory and L1 data structures */
1322 /*-------------------------------------------------------*/
1323
1324 void Cust_Init_Layer1(void)
1325 {
1326 T_MMI_L1_CONFIG cfg;
1327
1328 // Get the current band configuration from the flash
1329 #if (OP_WCP==1) && (OP_L1_STANDALONE!=1)
1330 extern unsigned char ffs_GetBand();
1331 cfg.std = ffs_GetBand();
1332 #else // NO OP_WCP
1333 // cfg.std = std;
1334 cfg.std = STD;
1335 #endif // OP_WCP
1336
1337 cfg.tx_pwr_code = 1;
1338
1339 // sleep management configuration
1340
1341 #if(L1_POWER_MGT == 0)
1342 cfg.pwr_mngt = 0;
1343 cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
1344 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
1345 #endif
1346 #if(L1_POWER_MGT == 1)
1347 cfg.pwr_mngt = 1;
1348 cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode
1349 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
1350 #endif
1351
1352 #if (CODE_VERSION != SIMULATION)
1353 cfg.dwnld = DWNLD; //external define from makefile
1354 #endif
1355
1356 l1_initialize(&cfg);
1357
1358 /*
1359 * The following conditioned-out line appears in the LoCosto version,
1360 * but not in the Leonardo binary object. Investigation has revealed
1361 * that the change is malicious: it disables ALL useful L1 traces.
1362 */
1363 #if 0
1364 //add below line for CSR 174476
1365 trace_info.current_config->l1_dyn_trace = 0; //disable L1 trace after L1 init
1366 #endif
1367
1368 get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
1369 get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
1370
1371 }
1372 #endif /* !RUN_INT_RAM */
1373
1374 /*****************************************************************************************/
1375 /*************************** TESTMODE functions **********************************/
1376 /*****************************************************************************************/
1377
1378
1379 #ifndef RUN_FLASH
1380 /*------------------------------------------------------*/
1381 /* madc_hex_2_physical */
1382 /*------------------------------------------------------*/
1383 /* Parameters : */
1384 /* Return : */
1385 /* Functionality : Function to convert MAD hexadecimal */
1386 /* values into physical values */
1387 /*------------------------------------------------------*/
1388
1389 void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
1390 {
1391 WORD16 i;
1392 UWORD16 y;
1393 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
1394 WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */
1395
1396 //store raw ADC values
1397 memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));
1398
1399 // Convert Vbat [mV] : direct equation with slope and offset compensation
1400 for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
1401 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
1402
1403 /*Convert RF Temperature [Celsius]: binsearch into a table*/
1404 y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/
1405 while((Smax-Smin) > 1 )
1406 {
1407 if(y < temperature[index].adc)
1408 Smax=index;
1409 else
1410 Smin=index;
1411
1412 index = (Smax+Smin)/2;
1413 }
1414 adc.converted[ADC_RFTEMP] = temperature[index].temp;
1415
1416 for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
1417 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
1418
1419 //store converted ADC values
1420 memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
1421 }
1422 #endif /* !RUN_FLASH */
1423
1424 #ifndef RUN_INT_RAM
1425 /*------------------------------------------------------*/
1426 /* get_cal_from_nvmem */
1427 /*------------------------------------------------------*/
1428 /* Parameters : */
1429 /* Return : */
1430 /* Functionality : Copy calibrated parameter to */
1431 /* calibration structure in RAM */
1432 /*------------------------------------------------------*/
1433
1434 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
1435 {
1436
1437 }
1438
1439 /*------------------------------------------------------*/
1440 /* save_cal_from_nvmem */
1441 /*------------------------------------------------------*/
1442 /* Parameters : */
1443 /* Return : */
1444 /* Functionality : Copy calibrated structure from RAM */
1445 /* into NV memory */
1446 /*------------------------------------------------------*/
1447
1448 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
1449 {
1450 return (0);
1451 }
1452 #endif /* !RUN_INT_RAM */
1453
1454 #if (TRACE_TYPE == 4) && !defined(RUN_FLASH)
1455
1456 /*------------------------------------------------------*/
1457 /* l1_cst_l1_parameters */
1458 /*------------------------------------------------------*/
1459 /* Parameters : s: pointer on configuration string */
1460 /* Return : nothing: global var are set */
1461 /* Functionality : Set global L1 vars for dynamic trace */
1462 /* and configuration */
1463 /* */
1464 /* This function is called when a CST message is sent */
1465 /* from the Condat Panel. */
1466 /*------------------------------------------------------*/
1467 void l1_cst_l1_parameters(char *s)
1468 {
1469 /*
1470 a sample command string can be:
1471 L1_PARAMS=<1,2,3,4,5> or
1472 L1_PARAMS=<1,23,3E32,4,5>
1473 with n parameters (here: 5 params); n>=1
1474 parameters are decoded as hexadecimal unsigned integers (UWORD16)
1475 */
1476
1477 UWORD8 uNParams = 0; /* Number of parameters */
1478 UWORD32 aParam[10]; /* Parameters array */
1479 UWORD8 uIndex = 0;
1480
1481 /* *** retrieve all parameters *** */
1482 while (s[uIndex] != '<') uIndex++;
1483 uIndex++;
1484 aParam[0] = 0;
1485
1486 /* uIndex points on 1st parameter */
1487
1488 while (s[uIndex] != '>')
1489 {
1490 if (s[uIndex] == ',')
1491 {
1492 uNParams++;
1493 aParam[uNParams] = 0;
1494 }
1495 else
1496 {
1497 /* uIndex points on a parameter char */
1498 UWORD8 uChar = s[uIndex];
1499 aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
1500 if ((uChar>='0') && (uChar<='9'))
1501 aParam[uNParams] += (uChar - '0'); /* retrieve value */
1502 else if ((uChar>='A') && (uChar<='F'))
1503 aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */
1504 else if ((uChar>='a') && (uChar<='f'))
1505 aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */
1506 }
1507
1508 uIndex++; /* go to next char */
1509 }
1510
1511 /* increment number of params */
1512 uNParams++;
1513
1514 /* *** handle parameters *** */
1515 /*
1516 1st param: command type
1517 2nd param: argument for command type
1518 */
1519 switch (aParam[0])
1520 {
1521 case 0: /* Trace setting */
1522 /* The 2nd parameter contains the trace bitmap*/
1523 if (uNParams >=2)
1524 trace_info.current_config->l1_dyn_trace = aParam[1];
1525 else
1526 trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
1527 Trace_dyn_trace_change();
1528 break;
1529 default: /* ignore it */
1530 break;
1531 } // switch
1532 }
1533
1534 #endif
1535
1536 #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
1537 (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
1538 (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
1539 (CHIPSET == 11) || (CHIPSET == 12))
1540 #ifndef RUN_FLASH
1541 /*-------------------------------------------------------*/
1542 /* power_down_config() : temporary implementation !!! */
1543 /*-------------------------------------------------------*/
1544 /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
1545 /* clocks to be cut in BIG sleep */
1546 /* Return : */
1547 /* Functionality : set the l1s variables */
1548 /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */
1549 /* according to the desired mode. */
1550 /*-------------------------------------------------------*/
1551 void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
1552 {
1553 #if (OP_L1_STANDALONE == 1)
1554 if(sleep_mode != NO_SLEEP)
1555 #endif
1556 {
1557 l1_config.pwr_mngt = PWR_MNGT;
1558 l1s.pw_mgr.mode_authorized = sleep_mode;
1559 l1s.pw_mgr.clocks = clocks;
1560 }
1561
1562 #if (OP_L1_STANDALONE == 0)
1563 l1s.pw_mgr.enough_gaug = FALSE;
1564 #endif
1565 }
1566 #endif
1567 #endif