FreeCalypso > hg > freecalypso-citrine
comparison ccd/hl_flag.c @ 0:75a11d740a02
initial import of gsm-fw from freecalypso-sw rev 1033:5ab737ac3ad7
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 09 Jun 2016 00:02:41 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:75a11d740a02 |
---|---|
1 /* | |
2 +----------------------------------------------------------------------------- | |
3 | Project : | |
4 | Modul : hl_flag.c | |
5 +----------------------------------------------------------------------------- | |
6 | Copyright 2002 Texas Instruments Inc. | |
7 | All rights reserved. | |
8 | | |
9 | This file is confidential and a trade secret of Texas | |
10 | Instruments Berlin, AG | |
11 | The receipt of or possession of this file does not convey | |
12 | any rights to reproduce or disclose its contents or to | |
13 | manufacture, use, or sell anything it may describe, in | |
14 | whole, or in part, without the specific written consent of | |
15 | Texas Instruments Berlin, AG. | |
16 +----------------------------------------------------------------------------- | |
17 | Purpose : Definition of encoding and decoding functions for HL_FLAG elements | |
18 +----------------------------------------------------------------------------- | |
19 */ | |
20 | |
21 | |
22 /* | |
23 * standard definitions like GLOBAL, UCHAR, ERROR etc. | |
24 */ | |
25 #include "typedefs.h" | |
26 #include "header.h" | |
27 | |
28 /* | |
29 * Prototypes of ccd (USE_DRIVER EQ undef) for prototypes only | |
30 * look at ccdapi.h | |
31 */ | |
32 #undef USE_DRIVER | |
33 #include "ccdapi.h" | |
34 | |
35 /* | |
36 * Types and functions for bit access and manipulation | |
37 */ | |
38 #include "ccd_globs.h" | |
39 #include "bitfun.h" | |
40 | |
41 /* | |
42 * Prototypes of ccd internal functions | |
43 */ | |
44 #include "ccd.h" | |
45 | |
46 /* | |
47 * Declaration of coder/decoder tables | |
48 */ | |
49 #include "ccdtable.h" | |
50 #include "ccddata.h" | |
51 | |
52 | |
53 #ifndef RUN_INT_RAM | |
54 /* | |
55 +--------------------------------------------------------------------+ | |
56 | PROJECT : CCD (6144) MODULE : CDC_GSM | | |
57 | STATE : code ROUTINE : cdc_hl_flag_decode | | |
58 +--------------------------------------------------------------------+ | |
59 | |
60 PURPOSE : Decoding of the GSM Type HL_FLAG element. This element | |
61 consists of a single bit only. The decoded value will be 0 | |
62 if the encoded value is L respectively 1 if the encoded | |
63 value is H. | |
64 | |
65 */ | |
66 | |
67 SHORT cdc_hl_flag_decode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs) | |
68 { | |
69 ULONG repeat, max_rep; | |
70 BOOL is_variable = FALSE; | |
71 ULONG cix_ref, num_prolog_steps, prolog_step_ref; | |
72 | |
73 #ifdef DEBUG_CCD | |
74 #ifndef CCD_SYMBOLS | |
75 TRACE_CCD (globs, "cdc_hl_flag_decode()"); | |
76 #else | |
77 TRACE_CCD (globs, "cdc_hl_flag_decode() %s", ccddata_get_alias((USHORT) e_ref, 1)); | |
78 #endif | |
79 #endif | |
80 | |
81 globs->SeekTLVExt = FALSE; | |
82 cix_ref = melem[e_ref].calcIdxRef; | |
83 num_prolog_steps = calcidx[cix_ref].numPrologSteps; | |
84 prolog_step_ref = calcidx[cix_ref].prologStepRef; | |
85 repeat = 1; | |
86 | |
87 if (cix_ref != 0) | |
88 { | |
89 /* | |
90 * if this element is conditional, check the condition | |
91 */ | |
92 if (calcidx[cix_ref].numCondCalcs NEQ 0 | |
93 AND ! ccd_conditionOK (e_ref, globs)) | |
94 return 1; | |
95 | |
96 /* | |
97 * if this element have a defined Prolog | |
98 * we have to process it before decoding the bitstream | |
99 */ | |
100 if (num_prolog_steps) | |
101 { | |
102 ccd_performOperations (num_prolog_steps, prolog_step_ref, globs); | |
103 } | |
104 if (melem[e_ref].repType NEQ ' ') | |
105 { | |
106 is_variable = ccd_calculateRep (e_ref, &repeat, &max_rep, globs); | |
107 } | |
108 } | |
109 /* | |
110 * Element is not a SPARE. Setup the struct pointer | |
111 */ | |
112 globs->pstructOffs = melem[e_ref].structOffs; | |
113 | |
114 | |
115 if (melem[e_ref].optional) | |
116 { | |
117 /* | |
118 * for optional elements we must set the valid-flag | |
119 * ??. | |
120 * Therefore we store the address of the valid flag. | |
121 */ | |
122 *(globs->pstruct + globs->pstructOffs++) = TRUE; | |
123 | |
124 } | |
125 | |
126 globs->pstruct[globs->pstructOffs++] = (UBYTE) (bf_readBit(globs) == GET_HL_PREV(1)); | |
127 #ifdef DEBUG_CCD | |
128 #ifdef CCD_SYMBOLS | |
129 TRACE_CCD (globs, "decoding var %s",ccddata_get_alias((USHORT) e_ref, 1)); | |
130 #else | |
131 TRACE_CCD (globs, "decoding var %d", melem[e_ref].elemRef); | |
132 #endif | |
133 #endif | |
134 | |
135 return 1; | |
136 } | |
137 #endif /* !RUN_INT_RAM */ | |
138 | |
139 #ifndef RUN_INT_RAM | |
140 /* | |
141 +--------------------------------------------------------------------+ | |
142 | PROJECT : CCD (6144) MODULE : CDC_GSM | | |
143 | STATE : code ROUTINE : cdc_hl_flag_encode | | |
144 +--------------------------------------------------------------------+ | |
145 | |
146 PURPOSE : Encoding of the GSM Type HL_FLAG element. This element | |
147 consists of a single bit only. If the element is set to 1 | |
148 a H bit will be coded. Otherwise a L bit will be coded if | |
149 the element value to encode is set to 0. | |
150 | |
151 */ | |
152 | |
153 SHORT cdc_hl_flag_encode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs) | |
154 { | |
155 ULONG repeat=1, amount=1; | |
156 USHORT cSize = 0, startOffset; | |
157 ULONG i; | |
158 ULONG cix_ref, num_prolog_steps, prolog_step_ref; | |
159 | |
160 #ifdef DEBUG_CCD | |
161 #ifndef CCD_SYMBOLS | |
162 TRACE_CCD (globs, "cdc_hl_flag_encode()"); | |
163 #else | |
164 TRACE_CCD (globs, "cdc_hl_flag_encode() %s", ccddata_get_alias((USHORT) e_ref, 1)); | |
165 #endif | |
166 #endif | |
167 | |
168 cix_ref = melem[e_ref].calcIdxRef; | |
169 num_prolog_steps = calcidx[cix_ref].numPrologSteps; | |
170 prolog_step_ref = calcidx[cix_ref].prologStepRef; | |
171 | |
172 if (cix_ref != 0) | |
173 { | |
174 /* | |
175 * if this element is conditional, check the condition | |
176 */ | |
177 if (calcidx[cix_ref].numCondCalcs NEQ 0 | |
178 AND ! ccd_conditionOK (e_ref, globs)) | |
179 return 1; | |
180 | |
181 /* | |
182 * if this element have a defined Prolog | |
183 * we have to process it before decoding the bitstream | |
184 */ | |
185 if (num_prolog_steps) | |
186 { | |
187 ccd_performOperations (num_prolog_steps, prolog_step_ref, globs); | |
188 } | |
189 } | |
190 | |
191 if (melem[e_ref].elemType NEQ 'S') | |
192 { | |
193 /* | |
194 * Element is not a SPARE. | |
195 * Setup the offset into the C-structure for this element | |
196 */ | |
197 globs->pstructOffs = melem[e_ref].structOffs; | |
198 | |
199 if (melem[e_ref].optional) | |
200 { | |
201 /* | |
202 * for optional elements check the valid-flag in the C-struct. | |
203 * Spare elements does not have a corresponding valid flag. | |
204 */ | |
205 if (globs->pstruct[globs->pstructOffs++] == FALSE) | |
206 { | |
207 /* | |
208 * element is invalid so we must code a 0 bit | |
209 */ | |
210 bf_writeBit (GET_HL(0), globs); | |
211 | |
212 return 1; | |
213 } | |
214 | |
215 else | |
216 { | |
217 #ifdef DEBUG_CCD | |
218 if (globs->pstruct [melem[e_ref].structOffs] != TRUE) | |
219 { | |
220 TRACE_CCD (globs, "Ambiguous value for valid flag!\n...assumed 1 for ccdID=%d", | |
221 e_ref); | |
222 } | |
223 #endif | |
224 /* | |
225 * element is valid so we must code a 1 bit | |
226 */ | |
227 bf_writeBit (GET_HL(1), globs); | |
228 } | |
229 } | |
230 | |
231 if (melem[e_ref].repType NEQ ' ') | |
232 { | |
233 /* As a default amount =1 due to initialization. */ | |
234 if (melem[e_ref].repType EQ 'i') | |
235 { | |
236 /* | |
237 * for variable repeatable elements read the amount | |
238 * of repeats out of the C-Structure (c_xxx). | |
239 * If the number of repeats given by the C-Structure | |
240 * exceeds the allowed value CCD gives a warning! | |
241 */ | |
242 if (melem[e_ref].maxRepeat > 255) | |
243 { | |
244 ULONG count = (ULONG) (* (USHORT *)(globs->pstruct + globs->pstructOffs++)); | |
245 repeat = MINIMUM (count, (ULONG) melem[e_ref].maxRepeat); | |
246 if (repeat < count) | |
247 ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, | |
248 (USHORT) e_ref, globs->pstruct + globs->pstructOffs); | |
249 } | |
250 else | |
251 { | |
252 repeat = (ULONG) MINIMUM (globs->pstruct[globs->pstructOffs], | |
253 melem[e_ref].maxRepeat); | |
254 if ( repeat < (ULONG)(globs->pstruct[globs->pstructOffs]) ) | |
255 ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, | |
256 (USHORT) e_ref, globs->pstruct + globs->pstructOffs); | |
257 } | |
258 globs->pstructOffs++; | |
259 } | |
260 else | |
261 if (melem[e_ref].repType EQ 'v') | |
262 { | |
263 /* | |
264 * for variable repeatable elements read the amount | |
265 * of repeats out of the C-Structure (c_xxx). | |
266 * If the number of repetitions given by the C-Structure | |
267 * exceeds the allowed value (maxRepeat) CCD gives a warning! | |
268 */ | |
269 if (melem[e_ref].maxRepeat > 255) | |
270 { | |
271 ULONG count = (ULONG) (* (USHORT *)(globs->pstruct + globs->pstructOffs++)); | |
272 amount = MINIMUM (count, (ULONG) melem[e_ref].maxRepeat); | |
273 if (amount < count) | |
274 ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, | |
275 (USHORT) e_ref, globs->pstruct + globs->pstructOffs); | |
276 } | |
277 else | |
278 { | |
279 amount = (ULONG) MINIMUM (globs->pstruct[globs->pstructOffs], | |
280 melem[e_ref].maxRepeat); | |
281 if ( amount < (ULONG) (globs->pstruct[globs->pstructOffs]) ) | |
282 ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, | |
283 (USHORT) e_ref, globs->pstruct + globs->pstructOffs); | |
284 } | |
285 globs->pstructOffs++; | |
286 } | |
287 else | |
288 if (melem[e_ref].repType EQ 'c') | |
289 { | |
290 amount = (ULONG) melem[e_ref].maxRepeat; | |
291 } | |
292 | |
293 if (melem[e_ref].repType EQ 'v' OR melem[e_ref].repType EQ 'i') | |
294 { | |
295 cSize = (USHORT)(((melem[e_ref].elemType EQ 'V') | |
296 ? mvar[melem[e_ref].elemRef].cSize | |
297 : mcomp[melem[e_ref].elemRef].cSize | |
298 )); | |
299 startOffset = (USHORT) globs->pstructOffs; | |
300 } | |
301 } | |
302 | |
303 for (i=0; i < repeat; i++) | |
304 { | |
305 if (cSize) | |
306 { | |
307 /* | |
308 * calculate the offset if it is an array | |
309 */ | |
310 globs->pstructOffs = (USHORT)(startOffset + (i * cSize)); | |
311 } | |
312 /* | |
313 * encode the value | |
314 */ | |
315 if (globs->pstruct[globs->pstructOffs++] EQ FALSE) | |
316 { | |
317 /* | |
318 * element is 0 so we must signalize L | |
319 */ | |
320 bf_writeBit (GET_HL(0), globs); | |
321 } | |
322 else | |
323 { | |
324 /* | |
325 * element is 1 so we must signalize H | |
326 */ | |
327 bf_writeBit (GET_HL(1), globs); | |
328 } | |
329 | |
330 globs->pstructOffs += mvar[melem[e_ref].elemRef].cSize; | |
331 } | |
332 | |
333 if (melem[e_ref].repType EQ 'i') | |
334 { | |
335 /* | |
336 * for variable CNS1 fields we code a 0 flag to mark the end of the | |
337 * arrays | |
338 */ | |
339 bf_writeBit (GET_HL(0), globs); | |
340 } | |
341 } | |
342 | |
343 return 1; | |
344 } | |
345 #endif /* !RUN_INT_RAM */ |