FreeCalypso > hg > freecalypso-citrine
comparison serial/debug-chases/uartfax.c @ 0:75a11d740a02
initial import of gsm-fw from freecalypso-sw rev 1033:5ab737ac3ad7
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 09 Jun 2016 00:02:41 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:75a11d740a02 |
---|---|
1 /******************************************************************************* | |
2 * | |
3 * UARTFAX.C | |
4 * | |
5 * This driver allows to control the UARTs of chipset 1.5 for fax and data | |
6 * services. It performs flow control: RTS/CTS, XON/XOFF. | |
7 * | |
8 * On C & D-Sample, DCD and DTR signals are supported on UART modem only with 2 | |
9 * I/Os. | |
10 * | |
11 * On E-Sample, DCD and DTR signals are directly handled by Calypso+. | |
12 * | |
13 * On Calypso, RTS and CTS are supported on both UARTs. | |
14 * | |
15 * On Calypso+, RTS and CTS are supported on UART Modem1 & IrDA. UART Modem2 is | |
16 * not available through DB9 connector on E-Sample. | |
17 * | |
18 * (C) Texas Instruments 1999 - 2003 | |
19 * | |
20 ******************************************************************************/ | |
21 | |
22 /* | |
23 * E-Sample | |
24 * | |
25 * UART Modem1 UART Irda | |
26 * | |
27 * DB9 Calypso+ DB9 Calypso+ | |
28 * | |
29 * 1 DCD DCD output 1 1, 6 and 4 are connected together on DB9 | |
30 * 2 RX TX output 2 RX TX2 output | |
31 * 3 TX RX input 3 TX RX2 input | |
32 * 4 DTR DSR input 4 | |
33 * 5 GND 5 GND | |
34 * 6 NC 6 | |
35 * 7 RTS CTS input 7 RTS CTS2 input | |
36 * 8 CTS RTS output 8 CTS RTS2 output | |
37 * 9 NC 9 NC | |
38 * | |
39 */ | |
40 | |
41 /* | |
42 * C & D-Sample | |
43 * | |
44 * UART Modem UART Irda | |
45 * | |
46 * DB9 Calypso DB9 Calypso | |
47 * | |
48 * 1 DCD I/O 2 output 1 1, 6 and 4 are connected together on DB9 | |
49 * 2 RX TX output 2 RX TX2 output | |
50 * 3 TX RX input 3 TX RX2 input | |
51 * 4 DTR I/O 3 input 4 | |
52 * 5 GND 5 GND | |
53 * 6 NC 6 | |
54 * 7 RTS CTS input 7 RTS CTS2 input | |
55 * 8 CTS RTS output 8 CTS RTS2 output | |
56 * 9 NC 9 NC | |
57 * | |
58 */ | |
59 | |
60 /* | |
61 * B-Sample | |
62 * | |
63 * UART Modem UART Irda | |
64 * | |
65 * DB9 Ulysse DB9 Ulysse | |
66 * | |
67 * 1 1, 6 and 4 are connected together on DB9 (Modem and Irda) | |
68 * 2 RX TX 2 RX TX | |
69 * 3 TX RX 3 TX RX | |
70 * 4 4 | |
71 * 5 GND 5 GND | |
72 * 6 6 | |
73 * 7 RTS CTS 7 7 and 8 are connected together on DB9 | |
74 * 8 CTS RTS 8 | |
75 * 9 NC 9 NC | |
76 * | |
77 */ | |
78 | |
79 #include "../include/config.h" | |
80 | |
81 #include <string.h> | |
82 | |
83 /* | |
84 * rv_general.h is needed for macros Min & Min3. | |
85 */ | |
86 #include "../riviera/rv/rv_general.h" | |
87 #include "../nucleus/nucleus.h" | |
88 | |
89 #include "../include/sys_types.h" | |
90 #include "faxdata.h" | |
91 #include "uartfax.h" | |
92 | |
93 /* | |
94 * Needed to reset and restart the sleep timer in case of incoming characters. | |
95 */ | |
96 | |
97 #include "serialswitch.h" | |
98 extern SYS_BOOL uart_sleep_timer_enabled; | |
99 | |
100 #include "../bsp/mem.h" | |
101 | |
102 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
103 #include "../bsp/armio.h" | |
104 #endif | |
105 | |
106 #define HighGPIO AI_SetBit | |
107 #define LowGPIO AI_ResetBit | |
108 | |
109 /* | |
110 * Maximal value for an unsigned 32 bits. | |
111 */ | |
112 | |
113 #define MAX_UNSIGNED_32 (4294967295) | |
114 | |
115 #define FIFO_SIZE (64) /* In bytes. */ | |
116 | |
117 | |
118 /* | |
119 * TLR is used to program the RX FIFO trigger levels. FCR[7:4] are not used. | |
120 * No trigger level used for TX FIFO. THR_IT generated on TX FIFO empty. | |
121 */ | |
122 | |
123 #define RX_FIFO_TRIGGER_LEVEL (12 << 4) | |
124 | |
125 | |
126 /* | |
127 * 16750 addresses. Registers accessed when LCR[7] = 0. | |
128 */ | |
129 | |
130 #define RHR (0x00) /* Rx buffer register - Read access */ | |
131 #define THR (0x00) /* Tx holding register - Write access */ | |
132 #define IER (0x01) /* Interrupt enable register */ | |
133 | |
134 /* | |
135 * 16750 addresses. Registers accessed when LCR[7] = 1. | |
136 */ | |
137 | |
138 #define DLL (0x00) /* Divisor latch (LSB) */ | |
139 #define DLM (0x01) /* Divisor latch (MSB) */ | |
140 | |
141 | |
142 /* | |
143 * EFR is accessed when LCR[7:0] = 0xBF. | |
144 */ | |
145 | |
146 #define EFR (0x02) /* Enhanced feature register */ | |
147 | |
148 | |
149 /* | |
150 * 16750 addresses. Bit 5 of the FCR register is accessed when LCR[7] = 1. | |
151 */ | |
152 | |
153 #define IIR (0x02) /* Interrupt ident. register - Read only */ | |
154 #define FCR (0x02) /* FIFO control register - Write only */ | |
155 #define LCR (0x03) /* Line control register */ | |
156 #define MCR (0x04) /* Modem control register */ | |
157 #define LSR (0x05) /* Line status register */ | |
158 #define MSR (0x06) /* Modem status register */ | |
159 #define TCR (0x06) /* Transmission control register */ | |
160 #define TLR (0x07) /* Trigger level register */ | |
161 #define MDR1 (0x08) /* Mode definition register 1 */ | |
162 #define SCR (0x10) /* Supplementary Control register */ | |
163 #define SSR (0x11) /* Supplementary Status register */ | |
164 #define UASR (0x0E) /* Autobauding Status register */ | |
165 | |
166 /* | |
167 * Supplementary control register. | |
168 */ | |
169 | |
170 #define TX_EMPTY_CTL_IT (0x08) | |
171 #define RX_CTS_WAKE_UP_ENABLE_BIT (4) /* Use RESET_BIT and SET_BIT macros. */ | |
172 #define DSR_IT_BIT (5) /* Use RESET_BIT and SET_BIT macros. */ | |
173 | |
174 /* | |
175 * Enhanced feature register. | |
176 */ | |
177 | |
178 #define ENHANCED_FEATURE_BIT (4) /* Use RESET_BIT and SET_BIT macros. */ | |
179 #define AUTO_CTS_BIT (7) /* Transmission is halted when the CTS pin is high (inactive). */ | |
180 | |
181 /* | |
182 * Mode definition register 1. | |
183 */ | |
184 | |
185 #define UART_MODE (0x00) | |
186 #define SIR_MODE (0x01) | |
187 #define UART_MODE_AUTOBAUDING (0x02) /* Reserved in UART/IrDA. */ | |
188 #define RESET_DEFAULT_STATE (0x07) | |
189 #define IR_SLEEP_DISABLED (0x00) | |
190 #define IR_SLEEP_ENABLED (0x08) | |
191 #define SIR_TX_WITHOUT_ACREG2 (0x00) /* Reserved in UART/modem. */ | |
192 #define SIR_TX_WITH_ACREG2 (0x20) /* Reserved in UART/modem. */ | |
193 #define FRAME_LENGTH_METHOD (0x00) /* Reserved in UART/modem. */ | |
194 #define EOT_BIT_METHOD (0x80) /* Reserved in UART/modem. */ | |
195 | |
196 /* | |
197 * Supplementary Status Register | |
198 */ | |
199 | |
200 #define TX_FIFO_FULL (0x01) | |
201 | |
202 | |
203 /* | |
204 * Interrupt enable register. | |
205 */ | |
206 | |
207 #define ERBI (0x01) /* Enable received data available interrupt */ | |
208 #define ETBEI (0x02) /* Enable transmitter holding register empty interrupt */ | |
209 #define ELSI (0x04) /* Enable receiver line status interrupt */ | |
210 #define EDSSI (0x08) /* Enable modem status interrupt */ | |
211 #define IER_SLEEP (0x10) /* Enable sleep mode */ | |
212 | |
213 /* | |
214 * Modem control register. | |
215 */ | |
216 | |
217 #define MDCD (0x01) /* Data Carrier Detect. */ | |
218 #define MRTS (0x02) /* Request To Send. */ | |
219 #define TCR_TLR_BIT (6) | |
220 | |
221 /* | |
222 * Line status register. | |
223 */ | |
224 | |
225 #define DR (0x01) /* Data ready */ | |
226 #define OE (0x02) /* Overrun error */ | |
227 #define PE (0x04) /* Parity error */ | |
228 #define FE (0x08) /* Framing error */ | |
229 #define BI (0x10) /* Break interrupt */ | |
230 #define THRE (0x20) /* Transmitter holding register (FIFO empty) */ | |
231 #define TEMT (0x40) /* Transmitter empty (FIFO and TSR both empty) */ | |
232 | |
233 #define BYTE_ERROR (OE | PE | FE | BI) | |
234 | |
235 /* | |
236 * Interrupt identification register. | |
237 * Bit 0 is set to 0 if an IT is pending. | |
238 * Bits 1 and 2 are used to identify the IT. | |
239 */ | |
240 | |
241 #define IIR_BITS_USED (0x07) | |
242 #define IT_PENDING (0x01) | |
243 #define RX_DATA (0x04) | |
244 #define TX_EMPTY (0x02) | |
245 #define MODEM_STATUS (0x00) | |
246 | |
247 /* | |
248 * Modem status register. | |
249 */ | |
250 | |
251 #define DELTA_CTS (0x01) | |
252 #define DELTA_DSR (0x02) | |
253 #define MCTS (0x10) /* Clear to send */ | |
254 #define MDSR (0x20) /* Data set ready */ | |
255 | |
256 /* | |
257 * Line control register. | |
258 */ | |
259 | |
260 #define WLS_5 (0x00) /* Word length: 5 bits */ | |
261 #define WLS_6 (0x01) /* Word length: 6 bits */ | |
262 #define WLS_7 (0x02) /* Word length: 7 bits */ | |
263 #define WLS_8 (0x03) /* Word length: 8 bits */ | |
264 #define STB (0x04) /* Number of stop bits: 0: 1, 1: 1,5 or 2 */ | |
265 #define PEN (0x08) /* Parity enable */ | |
266 #define EPS (0x10) /* Even parity select */ | |
267 #define BREAK_CONTROL (0x40) /* Enable a break condition */ | |
268 #define DLAB (0x80) /* Divisor latch access bit */ | |
269 | |
270 /* | |
271 * FIFO control register. | |
272 */ | |
273 | |
274 #define FIFO_ENABLE (0x01) | |
275 #define RX_FIFO_RESET (0x02) | |
276 #define TX_FIFO_RESET (0x04) | |
277 | |
278 /* | |
279 * These constants define the states of the escape sequence detection. | |
280 */ | |
281 | |
282 #define INITIALIZATION (0) | |
283 #define NO_ESCAPE_SEQUENCE (1) | |
284 #define ONE_CHAR_DETECTED (2) | |
285 #define TWO_CHARS_DETECTED (3) | |
286 #define THREE_CHARS_DETECTED (4) | |
287 | |
288 #define CHARACTERS_IN_ESC_SEQ (3) | |
289 #define DEFAULT_ESC_SEQ_CHARACTER '+' | |
290 #define DEFAULT_GUARD_PERIOD (1000) /* 1 second. */ | |
291 | |
292 /* | |
293 * 3 HISR are used to avoid to execute operations from the LISR. | |
294 */ | |
295 | |
296 #define RX_HISR_PRIORITY (2) | |
297 | |
298 | |
299 | |
300 | |
301 // NGENGE increase hisr stack otherwise overflows with multiple callbacks | |
302 //#define RX_HISR_STACK_SIZE (512) /* Bytes. */ | |
303 #define RX_HISR_STACK_SIZE (768) /* Bytes. */ | |
304 | |
305 | |
306 | |
307 | |
308 #define TX_HISR_PRIORITY (2) | |
309 | |
310 | |
311 | |
312 // NGENGE increase hisr stack otherwise overflows with multiple callbacks | |
313 //#define TX_HISR_STACK_SIZE (512) /* Bytes. */ | |
314 #define TX_HISR_STACK_SIZE (768) /* Bytes. */ | |
315 | |
316 | |
317 | |
318 | |
319 #define V24_HISR_PRIORITY (2) | |
320 #define V24_HISR_STACK_SIZE (512) /* Bytes. */ | |
321 | |
322 /* | |
323 * When the break interrupt indicator (BI) is set in the line status register | |
324 * (LSR), it indicates that the received data input was held in the low state | |
325 * for longer than a full-word transmission time. In the FIFO mode, when a break | |
326 * occurs, only one 0 character is loaded into the FIFO. The next character | |
327 * transfer is enabled after SIN goes to the marking state for at least two RCLK | |
328 * samples and then receives the next valid start bit. | |
329 * This constant defined a defined break length returned by the US_GetLineState | |
330 * function. | |
331 */ | |
332 | |
333 #define MINIMAL_BREAK_LENGTH (2) | |
334 | |
335 #define BREAK_HISR_PRIORITY (2) | |
336 #define BREAK_HISR_STACK_SIZE (512) /* Bytes. */ | |
337 | |
338 /* | |
339 * These macros allow to read and write a UART register. | |
340 */ | |
341 | |
342 #define READ_UART_REGISTER(UART,REG) \ | |
343 *((volatile SYS_UWORD8 *) ((UART)->base_address + (REG))) | |
344 | |
345 #define WRITE_UART_REGISTER(UART,REG,VALUE) \ | |
346 *((volatile SYS_UWORD8 *) ((UART)->base_address + (REG))) = (VALUE) | |
347 | |
348 #define RESET_BIT(UART,REG,BIT) \ | |
349 (WRITE_UART_REGISTER ( \ | |
350 UART, REG, READ_UART_REGISTER (UART, REG) & ~(1 << (BIT)))) | |
351 | |
352 #define SET_BIT(UART,REG,BIT) \ | |
353 (WRITE_UART_REGISTER ( \ | |
354 UART, REG, READ_UART_REGISTER (UART, REG) | (1 << (BIT)))) | |
355 | |
356 | |
357 /* | |
358 * These macros allow to enable or disable the wake-up interrupt. | |
359 */ | |
360 | |
361 #define ENABLE_WAKEUP_INTERRUPT(UART) \ | |
362 SET_BIT(UART, SCR, RX_CTS_WAKE_UP_ENABLE_BIT); | |
363 | |
364 #define DISABLE_WAKEUP_INTERRUPT(UART) \ | |
365 RESET_BIT(UART, SCR, RX_CTS_WAKE_UP_ENABLE_BIT); | |
366 | |
367 | |
368 /* | |
369 * These macros allow to enable or disable the DSR interrupt. | |
370 */ | |
371 | |
372 #define ENABLE_DSR_INTERRUPT(UART) \ | |
373 SET_BIT(UART, SCR, DSR_IT_BIT); | |
374 | |
375 #define DISABLE_DSR_INTERRUPT(UART) \ | |
376 RESET_BIT(UART, SCR, DSR_IT_BIT); | |
377 | |
378 | |
379 /* | |
380 * The transmitter is disabled only when the application disables the driver. | |
381 * To disable the driver, the receiver and the transmitter are disabled by the | |
382 * application. The transmitter is disabled first to test if the driver is | |
383 * disabled. | |
384 */ | |
385 | |
386 #define DRIVER_DISABLED(UART) ((UART)->tx_stopped_by_application) | |
387 | |
388 #define DISABLE_DRIVER(UART) \ | |
389 { \ | |
390 (UART)->tx_stopped_by_application = 1; \ | |
391 (UART)->rx_stopped_by_application = 1; \ | |
392 } | |
393 | |
394 #define ENABLE_DRIVER(UART) \ | |
395 { \ | |
396 (UART)->rx_stopped_by_application = 0; \ | |
397 (UART)->tx_stopped_by_application = 0; \ | |
398 } | |
399 | |
400 /* | |
401 * Low and high watermarks for the RX buffer. If it is enabled, the flow | |
402 * control is activated or deactivated according to these values. | |
403 * The high watermark value allows to copy an array filled with the RX FIFO | |
404 * into the RX buffer. | |
405 */ | |
406 | |
407 #define RX_LOW_WATERMARK(RX_BUFFER_SIZE) (FIFO_SIZE) | |
408 #define RX_HIGH_WATERMARK(RX_BUFFER_SIZE) ((RX_BUFFER_SIZE) - 2 * FIFO_SIZE) | |
409 | |
410 /* | |
411 * This macro allows to know if the RX buffer is full. It must be called only | |
412 * from the RX HISR. If it is called from the application, the rx_in and | |
413 * rx_fifo_in pointers may be updated if a RX interrupt occurs or if the | |
414 * RX HISR is activated. | |
415 */ | |
416 | |
417 #define RX_BUFFER_FULL(UART) \ | |
418 (((UART)->rx_in == (UART)->rx_out - 1) || \ | |
419 ((UART)->rx_in == (UART)->rx_out + (UART)->buffer_size)) | |
420 | |
421 /* | |
422 * This macro allows to know if the TX buffer is empty. | |
423 */ | |
424 | |
425 #define TX_BUFFER_EMPTY(UART) \ | |
426 ((UART)->tx_in == (UART)->tx_out) | |
427 | |
428 /* | |
429 * This macro is used to convert a time (unit: ms) into a number of TDMA. | |
430 * 1 TDMA = 4.6 ms (23/5). | |
431 */ | |
432 | |
433 #define CONVERT_TIME_IN_TDMA(TIME) (((TIME) * 5) / 23) | |
434 | |
435 /* | |
436 * This structure describes an UART compatible with the UART 16750 and | |
437 * contains some fields to manage this UART. | |
438 */ | |
439 | |
440 typedef struct s_uart { | |
441 | |
442 SYS_UWORD32 base_address; | |
443 | |
444 /* | |
445 * HISR executed from the RX/TX interrupt handler. | |
446 */ | |
447 | |
448 NU_HISR rx_hisr_ctrl_block; | |
449 NU_HISR tx_hisr_ctrl_block; | |
450 NU_HISR v24_hisr_ctrl_block; | |
451 | |
452 char rx_hisr_stack[RX_HISR_STACK_SIZE]; | |
453 char tx_hisr_stack[TX_HISR_STACK_SIZE]; | |
454 char v24_hisr_stack[V24_HISR_STACK_SIZE]; | |
455 | |
456 /* | |
457 * 2 arrays are used to store bytes read in RX FIFO. A UART RX interrupt | |
458 * may occur while executing RX operations in RX HISR. To avoid overwriting | |
459 * the array in which received bytes are stored, a second array is used. | |
460 */ | |
461 | |
462 SYS_UWORD8 *rx_buffer_used_by_rx_lisr; | |
463 SYS_UWORD8 *rx_buffer_used_by_rx_hisr; | |
464 SYS_UWORD8 rx_fifo_byte_1[FIFO_SIZE]; | |
465 SYS_UWORD8 rx_fifo_byte_2[FIFO_SIZE]; | |
466 SYS_UWORD16 bytes_in_rx_buffer_1; | |
467 SYS_UWORD16 bytes_in_rx_buffer_2; | |
468 | |
469 /* | |
470 * RX and TX buffers. | |
471 * One character is not used in each buffer to allow to know if the buffer | |
472 * is empty or not (See macro RX_BUFFER_FULL). If buffers are empty, | |
473 * rx_in = rx_out and tx_in = tx_out. It is impossible to use fields to | |
474 * count the number of bytes in each buffer because these fields may be | |
475 * updated from the application and from the interrupt handlers. That avoids | |
476 * to have conflicts. | |
477 */ | |
478 | |
479 SYS_UWORD16 buffer_size; | |
480 SYS_UWORD16 rx_threshold_level; | |
481 SYS_UWORD16 tx_threshold_level; | |
482 SYS_UWORD8 rx_buffer[FD_MAX_BUFFER_SIZE + 1]; | |
483 SYS_UWORD8 tx_buffer[FD_MAX_BUFFER_SIZE + 1]; | |
484 SYS_UWORD8 *rx_in; | |
485 SYS_UWORD8 *rx_out; | |
486 SYS_UWORD8 *tx_in; | |
487 SYS_UWORD8 *tx_out; | |
488 | |
489 /* | |
490 * Escape sequence. | |
491 * the field esc_seq_modified may have 2 values: | |
492 * - 0: No modification. | |
493 * - 1: Parameters are in the process of modification: The detection | |
494 * is stopped. | |
495 */ | |
496 | |
497 NU_TIMER guard_period_timer_ctrl_block; | |
498 SYS_UWORD8 esc_seq_modified; | |
499 SYS_UWORD8 esc_seq_detection_state; | |
500 SYS_UWORD8 esc_seq_character; | |
501 UNSIGNED guard_period; | |
502 UNSIGNED current_time; | |
503 UNSIGNED previous_time; | |
504 | |
505 /* | |
506 * Flow control. | |
507 */ | |
508 | |
509 T_flowCtrlMode flow_control_mode; | |
510 SYS_BOOL send_xon_xoff; | |
511 SYS_UWORD8 xon_xoff_to_send; | |
512 SYS_UWORD8 xon_character; | |
513 SYS_UWORD8 xoff_character; | |
514 SYS_BOOL rx_stopped_by_application; | |
515 SYS_BOOL rx_stopped_by_driver; | |
516 SYS_BOOL rx_stopped_by_lisr; | |
517 SYS_BOOL tx_stopped_by_application; | |
518 SYS_BOOL tx_stopped_by_driver; | |
519 /* SYS_BOOL tx_stopped_by_lisr;*/ | |
520 | |
521 /* | |
522 * Break. | |
523 */ | |
524 | |
525 SYS_BOOL break_received; | |
526 SYS_BOOL break_to_send; | |
527 SYS_BOOL break_in_progress; | |
528 NU_HISR break_hisr_ctrl_block; | |
529 char break_hisr_stack[BREAK_HISR_STACK_SIZE]; | |
530 NU_TIMER break_timer_ctrl_block; | |
531 UNSIGNED baudrate; | |
532 UNSIGNED autobauding; | |
533 UNSIGNED bits_per_char; /* Including start, stop and parity bits. */ | |
534 UNSIGNED break_length; /* In bytes. */ | |
535 UNSIGNED time_without_character; | |
536 | |
537 /* | |
538 * Callback (UAF_ReadData and UAF_WriteData). | |
539 * rd: read, wr: write. | |
540 */ | |
541 | |
542 SYS_BOOL esc_seq_received; | |
543 SYS_UWORD8 rts_level; /* RTS on RS232 side, CTS on chipset side. | |
544 1: The RS232 line is deactivated (low). */ | |
545 | |
546 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
547 SYS_UWORD8 dtr_level; /* Controlled with an I/O on C & D-Sample and | |
548 handled by Calypso+ on E-Sample. | |
549 1: The RS232 line is deactivated (low). */ | |
550 /* | |
551 * When the DTR interrupt is detected the user's Rx callback function must | |
552 * be called but if the Rx FIFO is not empty the Rx HISR must be activated | |
553 * to read the bytes received in the Rx FIFO and to put them into the Rx | |
554 * buffer before to call the user's Rx callback function. | |
555 * If the Rx HISR is activated due to a Rx interrupt the user's Rx callback | |
556 * function will be called if conditions to call it are fulfilled. If it is | |
557 * activated due to the DTR interrupt the user's Rx callback function must | |
558 * be called without any conditions. | |
559 * Because the Rx HISR may have been activated but not executed before the | |
560 * DTR interrupt we must be sure that the user's Rx callback function will | |
561 * be called for each Rx HISR activation. Call is done for Rx HISR activated | |
562 * on Rx interrupt if conditions are fulfilled. | |
563 * A circular buffer of 2 elements is used to memorize the source of | |
564 * interrupt. Before the activation of the Rx HISR, the source of interrupt | |
565 * is memorized into this array. When the code of the Rx HISR is executed | |
566 * the user's Rx callback function is called if the source of interrupt was | |
567 * the DTR interrupt regardless of the other conditions. | |
568 * The level of DTR is saved to provide the level detected on Rx interrupt | |
569 * or DTR interrupt in the 'state' parameter of the user's Rx callback | |
570 * function. | |
571 */ | |
572 | |
573 SYS_BOOL dtr_change_detected[2]; | |
574 SYS_UWORD8 dtr_level_saved[2]; | |
575 SYS_UWORD8 index_it; | |
576 SYS_UWORD8 index_hisr; | |
577 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
578 | |
579 SYS_BOOL reading_suspended; | |
580 SYS_BOOL writing_suspended; | |
581 SYS_BOOL rd_call_from_hisr_in_progress; | |
582 SYS_BOOL wr_call_from_hisr_in_progress; | |
583 T_reInstMode rd_call_setup; | |
584 T_reInstMode wr_call_setup; | |
585 SYS_UWORD8 *rd_address[2]; | |
586 SYS_UWORD8 *wr_address[2]; | |
587 SYS_UWORD16 rd_size_before_call[2]; | |
588 SYS_UWORD16 rd_size_after_call[2]; | |
589 SYS_UWORD16 wr_size_before_call[2]; | |
590 SYS_UWORD16 wr_size_after_call[2]; | |
591 | |
592 void (*readOutFunc) (SYS_BOOL cldFromIrq, | |
593 T_reInstMode *reInstall, | |
594 SYS_UWORD8 nsource, | |
595 SYS_UWORD8 *source[], | |
596 SYS_UWORD16 size[], | |
597 SYS_UWORD32 state); | |
598 | |
599 void (*writeInFunc) (SYS_BOOL cldFromIrq, | |
600 T_reInstMode *reInstall, | |
601 SYS_UWORD8 ndest, | |
602 SYS_UWORD8 *dest[], | |
603 SYS_UWORD16 size[]); | |
604 | |
605 /* | |
606 * These fields are used to store the state defined in UAF_GetLineState.The | |
607 * first field is used when UAF_GetLineState and UAF_ReadData are not called. | |
608 * When one of these functions is called the second field is used. That | |
609 * avoids to lose events when UAF_GetLineState or UAF_ReadData resets the | |
610 * first field. | |
611 */ | |
612 | |
613 SYS_UWORD32 state_1; | |
614 SYS_UWORD32 state_2; | |
615 SYS_UWORD32 *state; | |
616 | |
617 /* | |
618 * Errors counters. | |
619 */ | |
620 | |
621 SYS_UWORD32 framing_error; | |
622 SYS_UWORD32 parity_error; | |
623 SYS_UWORD32 overrun_error; | |
624 SYS_UWORD32 spurious_interrupts; | |
625 | |
626 SYS_UWORD16 max_rx_fifo_level; | |
627 | |
628 } t_uart; | |
629 | |
630 | |
631 static t_uart uart_parameters; | |
632 | |
633 | |
634 static const SYS_UWORD32 base_address[NUMBER_OF_FD_UART] = | |
635 { | |
636 MEM_UART_IRDA, | |
637 MEM_UART_MODEM | |
638 #if (CHIPSET == 12) | |
639 , MEM_UART_MODEM2 | |
640 #endif | |
641 }; | |
642 | |
643 | |
644 /* | |
645 * DLL (LSB) and DLH (MSB) registers values using the 13 MHz clock. | |
646 */ | |
647 | |
648 static const SYS_UWORD8 dll[] = | |
649 { | |
650 0, /* Auto baud: */ | |
651 81, /* 75 baud. */ | |
652 40, /* 150 baud. */ | |
653 148, /* 300 baud. */ | |
654 74, /* 600 baud. */ | |
655 165, /* 1200 baud. */ | |
656 83, /* 2400 baud. */ | |
657 169, /* 4800 baud. */ | |
658 113, /* 7200 baud. */ | |
659 84, /* 9600 baud. */ | |
660 56, /* 14400 baud. */ | |
661 42, /* 19200 baud. */ | |
662 28, /* 28800 baud. */ | |
663 24, /* 33900 baud: not supported. */ | |
664 21, /* 38400 baud. */ | |
665 14, /* 57600 baud. */ | |
666 7, /* 115200 baud. */ | |
667 0, /* 203125 baud: not supported. */ | |
668 0, /* 406250 baud: not supported. */ | |
669 0 /* 812500 baud: not supported. */ | |
670 }; | |
671 | |
672 static const SYS_UWORD8 dlh[] = | |
673 { | |
674 0, /* Auto baud: */ | |
675 42, /* 75 baud. */ | |
676 21, /* 150 baud. */ | |
677 10, /* 300 baud. */ | |
678 5, /* 600 baud. */ | |
679 2, /* 1200 baud. */ | |
680 1, /* 2400 baud. */ | |
681 0, /* 4800 baud. */ | |
682 0, /* 7200 baud. */ | |
683 0, /* 9600 baud. */ | |
684 0, /* 14400 baud. */ | |
685 0, /* 19200 baud. */ | |
686 0, /* 28800 baud. */ | |
687 0, /* 33900 baud: not supported. */ | |
688 0, /* 38400 baud. */ | |
689 0, /* 57600 baud. */ | |
690 0, /* 115200 baud. */ | |
691 0, /* 203125 baud: not supported. */ | |
692 0, /* 406250 baud: not supported. */ | |
693 0 /* 812500 baud: not supported. */ | |
694 }; | |
695 | |
696 static const UNSIGNED baudrate_value[] = | |
697 { | |
698 1, | |
699 75, | |
700 150, | |
701 300, | |
702 600, | |
703 1200, | |
704 2400, | |
705 4800, | |
706 7200, | |
707 9600, | |
708 14400, | |
709 19200, | |
710 28800, | |
711 0, /* Not supported. */ | |
712 38400, | |
713 57600, | |
714 115200, | |
715 0, /* Not supported. */ | |
716 0, /* Not supported. */ | |
717 0 /* Not supported. */ | |
718 }; | |
719 | |
720 | |
721 | |
722 | |
723 /******************************************************************************* | |
724 * | |
725 * get_bytes_in_rx_buffer | |
726 * | |
727 * Purpose : Gets the number of bytes in the RX buffer. | |
728 * | |
729 * Arguments: In : uart: Pointer on the UART structure. | |
730 * Out: none | |
731 * | |
732 * Returns : The number of bytes in the RX buffer. | |
733 * | |
734 ******************************************************************************/ | |
735 | |
736 static SYS_UWORD16 | |
737 get_bytes_in_rx_buffer (t_uart *uart) | |
738 { | |
739 SYS_UWORD16 bytes_in_rx_buffer; | |
740 volatile SYS_UWORD8 *rx_in; | |
741 | |
742 rx_in = uart->rx_in; | |
743 | |
744 if (uart->rx_out <= rx_in) | |
745 bytes_in_rx_buffer = (SYS_UWORD16) (rx_in - uart->rx_out); | |
746 else | |
747 bytes_in_rx_buffer = | |
748 (SYS_UWORD16) (rx_in - uart->rx_out + uart->buffer_size + 1); | |
749 | |
750 return (bytes_in_rx_buffer); | |
751 } | |
752 | |
753 /******************************************************************************* | |
754 * | |
755 * get_bytes_in_tx_buffer | |
756 * | |
757 * Purpose : Gets the number of bytes in the TX buffer. | |
758 * | |
759 * Arguments: In : uart: Pointer on the UART structure. | |
760 * Out: none | |
761 * | |
762 * Returns : The number of bytes in the TX buffer. | |
763 * | |
764 ******************************************************************************/ | |
765 | |
766 static SYS_UWORD16 | |
767 get_bytes_in_tx_buffer (t_uart *uart) | |
768 { | |
769 SYS_UWORD16 bytes_in_tx_buffer; | |
770 volatile SYS_UWORD8 *tx_out; | |
771 | |
772 tx_out = uart->tx_out; | |
773 | |
774 if (tx_out <= uart->tx_in) | |
775 bytes_in_tx_buffer = (SYS_UWORD16) (uart->tx_in - tx_out); | |
776 else | |
777 bytes_in_tx_buffer = | |
778 (SYS_UWORD16) (uart->tx_in - tx_out + uart->buffer_size + 1); | |
779 | |
780 return (bytes_in_tx_buffer); | |
781 } | |
782 | |
783 /******************************************************************************* | |
784 * | |
785 * compute_break_time | |
786 * | |
787 * Purpose : Computes a number of TDMA from 3 parameters: | |
788 * - baudrate, | |
789 * - bits per character including start bit, stop bits and parity, | |
790 * - number of characters. | |
791 * Due to the TDMA value (4.6 ms), a minimal value is sent: 2 TDMA. | |
792 * | |
793 * Arguments: In : baudrate | |
794 * bits_per_char | |
795 * number_of_chars | |
796 * Out: none | |
797 * | |
798 * Returns : The number of TDMA. | |
799 * | |
800 ******************************************************************************/ | |
801 | |
802 static UNSIGNED | |
803 compute_break_time (UNSIGNED baudrate, | |
804 UNSIGNED bits_per_char, | |
805 UNSIGNED number_of_chars) | |
806 { | |
807 UNSIGNED number_of_tdma; | |
808 | |
809 number_of_tdma = CONVERT_TIME_IN_TDMA ( | |
810 1000 * bits_per_char * number_of_chars / baudrate); | |
811 | |
812 if (number_of_tdma == 0) | |
813 number_of_tdma = 1; | |
814 | |
815 number_of_tdma++; | |
816 | |
817 return (number_of_tdma); | |
818 } | |
819 | |
820 /******************************************************************************* | |
821 * | |
822 * update_reading_callback | |
823 * | |
824 * Purpose : Updates the sizes array and the addresses array and get and builds | |
825 * the state parameter defined in UAF_GetLineState to call the | |
826 * readOutFunc function. | |
827 * | |
828 * Arguments: In : uart : Pointer on the UART structure. | |
829 * call_source: 0: application, 1: HISR (Rx or V24), 3: Rx HISR | |
830 * Out: none | |
831 * | |
832 * Returns : none | |
833 * | |
834 ******************************************************************************/ | |
835 | |
836 static void | |
837 update_reading_callback (t_uart *uart, | |
838 SYS_BOOL call_source) | |
839 { | |
840 SYS_UWORD32 state; | |
841 SYS_UWORD8 dtr_level; | |
842 SYS_UWORD8 fragments_number; | |
843 SYS_UWORD16 bytes_in_rx_buffer; | |
844 volatile SYS_UWORD8 *rx_in; | |
845 | |
846 /* | |
847 * Update the sizes array and the addresses array. | |
848 * A copy of rx_in is used because it may be updated by the interrupt | |
849 * handler if this function is called from the application. | |
850 */ | |
851 | |
852 rx_in = uart->rx_in; | |
853 | |
854 if (uart->rx_out < rx_in) { | |
855 | |
856 fragments_number = 1; | |
857 | |
858 uart->rd_address[0] = uart->rx_out; | |
859 uart->rd_size_before_call[0] = (SYS_UWORD16) (rx_in - uart->rx_out); | |
860 uart->rd_size_after_call[0] = uart->rd_size_before_call[0]; | |
861 | |
862 uart->rd_size_before_call[1] = 0; | |
863 uart->rd_size_after_call[1] = 0; | |
864 | |
865 bytes_in_rx_buffer = uart->rd_size_before_call[0]; | |
866 | |
867 } else if (rx_in == uart->rx_out) { /* RX buffer empty. */ | |
868 | |
869 fragments_number = 1; | |
870 | |
871 uart->rd_address[0] = uart->rx_out; | |
872 uart->rd_size_before_call[0] = 0; | |
873 uart->rd_size_after_call[0] = 0; | |
874 | |
875 uart->rd_size_before_call[1] = 0; | |
876 uart->rd_size_after_call[1] = 0; | |
877 | |
878 bytes_in_rx_buffer = 0; | |
879 | |
880 } else { | |
881 | |
882 fragments_number = 2; | |
883 | |
884 uart->rd_address[0] = uart->rx_out; | |
885 uart->rd_size_before_call[0] = | |
886 uart->buffer_size + 1 - (SYS_UWORD16) (uart->rx_out - | |
887 &(uart->rx_buffer[0])); | |
888 uart->rd_size_after_call[0] = uart->rd_size_before_call[0]; | |
889 | |
890 uart->rd_address[1] = &(uart->rx_buffer[0]); | |
891 uart->rd_size_before_call[1] = (SYS_UWORD16) (rx_in - | |
892 &(uart->rx_buffer[0])); | |
893 uart->rd_size_after_call[1] = uart->rd_size_before_call[1]; | |
894 | |
895 bytes_in_rx_buffer = | |
896 uart->rd_size_before_call[0] + uart->rd_size_before_call[1]; | |
897 | |
898 if (!uart->rd_size_before_call[1]) | |
899 fragments_number = 1; | |
900 } | |
901 | |
902 /* | |
903 * Build the state parameter defined in UAF_GetLineState. | |
904 * The field state_2 is used when state_1 is set to 0 to avoid to | |
905 * lose events detected in the RX interrupt handler. | |
906 */ | |
907 | |
908 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
909 if (call_source == 3) /* Call from Rx HISR */ | |
910 dtr_level = uart->dtr_level_saved[uart->index_hisr]; | |
911 else | |
912 dtr_level = uart->dtr_level; | |
913 #endif | |
914 | |
915 state = uart->state_2; | |
916 uart->state_2 = 0; | |
917 uart->state = &(uart->state_2); | |
918 | |
919 state |= uart->state_1; | |
920 uart->state_1 = 0; | |
921 uart->state = &(uart->state_1); | |
922 | |
923 state |= ((((SYS_UWORD32) uart->rts_level) << RTS) | | |
924 | |
925 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
926 (((SYS_UWORD32) dtr_level) << DTR) | | |
927 #endif | |
928 | |
929 (((SYS_UWORD32) (uart->tx_stopped_by_application | | |
930 uart->tx_stopped_by_driver)) << TXSTP) | | |
931 | |
932 (((SYS_UWORD32) (uart->rx_stopped_by_application | | |
933 uart->rx_stopped_by_driver)) << RXSTP) | | |
934 | |
935 (((SYS_UWORD32) (uart->buffer_size - bytes_in_rx_buffer)) << RXBLEV)); | |
936 | |
937 /* | |
938 * Fields SA, SB and X are set according to the flow control: | |
939 * | |
940 * None RTS/CTS XON/XOFF | |
941 * SA DTR DTR DTR | |
942 * SB RTS 0 RTS | |
943 * X 0 RTS XON:0 XOFF:1 (transmitter) | |
944 * | |
945 * DTR is supported on C, D & E-Sample. | |
946 */ | |
947 | |
948 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
949 state |= (((SYS_UWORD32) uart->dtr_level) << SA); | |
950 #endif | |
951 | |
952 if (uart->flow_control_mode != fc_rts) | |
953 state |= (((SYS_UWORD32) uart->rts_level) << SB); | |
954 | |
955 if (uart->flow_control_mode == fc_rts) | |
956 state |= (((SYS_UWORD32) uart->rts_level) << X); | |
957 | |
958 else if ((uart->flow_control_mode == fc_xoff) && | |
959 (uart->tx_stopped_by_application || | |
960 uart->tx_stopped_by_driver)) | |
961 state |= (1 << X); | |
962 | |
963 /* | |
964 * Call the readOutFunc function with these parameters. | |
965 */ | |
966 | |
967 uart->rd_call_setup = rm_notDefined; | |
968 | |
969 (*(uart->readOutFunc)) (call_source & 0x01, /* From HISR or application */ | |
970 &(uart->rd_call_setup), | |
971 fragments_number, | |
972 &(uart->rd_address[0]), | |
973 &(uart->rd_size_after_call[0]), | |
974 state); | |
975 } | |
976 | |
977 /******************************************************************************* | |
978 * | |
979 * update_writing_callback | |
980 * | |
981 * Purpose : Updates the sizes array and the addresses array to call the | |
982 * writeInFunc function. | |
983 * | |
984 * Arguments: In : uart : Pointer on the UART structure. | |
985 * call_source: 0: application, 1: HISR | |
986 * Out: none | |
987 * | |
988 * Returns : none | |
989 * | |
990 ******************************************************************************/ | |
991 | |
992 static void | |
993 update_writing_callback (t_uart *uart, | |
994 SYS_BOOL call_source) | |
995 { | |
996 SYS_UWORD8 fragments_number; | |
997 volatile SYS_UWORD8 *tx_out; | |
998 | |
999 /* | |
1000 * Update the array of sizes and the array of addresses. | |
1001 * A copy of tx_out is used because it may be updated by the interrupt | |
1002 * handler if this function is called from the application. | |
1003 */ | |
1004 | |
1005 tx_out = uart->tx_out; | |
1006 | |
1007 if (uart->tx_in < tx_out) { | |
1008 | |
1009 fragments_number = 1; | |
1010 | |
1011 uart->wr_address[0] = uart->tx_in; | |
1012 uart->wr_size_before_call[0] = | |
1013 (SYS_UWORD16) (tx_out - uart->tx_in - 1); | |
1014 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1015 | |
1016 uart->wr_size_before_call[1] = 0; | |
1017 uart->wr_size_after_call[1] = 0; | |
1018 | |
1019 } else if (tx_out == &(uart->tx_buffer[0])) { | |
1020 | |
1021 fragments_number = 1; | |
1022 | |
1023 uart->wr_address[0] = uart->tx_in; | |
1024 uart->wr_size_before_call[0] = | |
1025 uart->buffer_size - | |
1026 (SYS_UWORD16) (uart->tx_in - &(uart->tx_buffer[0])); | |
1027 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1028 | |
1029 uart->wr_size_before_call[1] = 0; | |
1030 uart->wr_size_after_call[1] = 0; | |
1031 | |
1032 } else { | |
1033 | |
1034 fragments_number = 2; | |
1035 | |
1036 uart->wr_address[0] = uart->tx_in; | |
1037 uart->wr_size_before_call[0] = | |
1038 uart->buffer_size + 1 - | |
1039 (SYS_UWORD16) (uart->tx_in - &(uart->tx_buffer[0])); | |
1040 uart->wr_size_after_call[0] = uart->wr_size_before_call[0]; | |
1041 | |
1042 uart->wr_address[1] = &(uart->tx_buffer[0]); | |
1043 uart->wr_size_before_call[1] = | |
1044 (SYS_UWORD16) (tx_out - &(uart->tx_buffer[0]) - 1); | |
1045 uart->wr_size_after_call[1] = uart->wr_size_before_call[1]; | |
1046 | |
1047 if (!uart->wr_size_before_call[1]) | |
1048 fragments_number = 1; | |
1049 } | |
1050 | |
1051 /* | |
1052 * Call the writeInFunc function with these parameters; | |
1053 */ | |
1054 | |
1055 uart->wr_call_setup = rm_notDefined; | |
1056 | |
1057 (*(uart->writeInFunc)) (call_source, | |
1058 &(uart->wr_call_setup), | |
1059 fragments_number, | |
1060 &(uart->wr_address[0]), | |
1061 &(uart->wr_size_after_call[0])); | |
1062 } | |
1063 | |
1064 /******************************************************************************* | |
1065 * | |
1066 * stop_break | |
1067 * | |
1068 * Purpose : The timer is activated to expire when a time corresponding to the | |
1069 * sending time of 2 characters at least has elapsed. After a break, | |
1070 * no character may be sent during this period. | |
1071 * | |
1072 * Arguments: In : id: parameter not used. | |
1073 * Out: none | |
1074 * | |
1075 * Returns : none | |
1076 * | |
1077 ******************************************************************************/ | |
1078 | |
1079 static VOID | |
1080 stop_break (UNSIGNED id) | |
1081 { | |
1082 t_uart *uart; | |
1083 | |
1084 uart = &uart_parameters; | |
1085 | |
1086 uart->break_to_send = 0; | |
1087 uart->break_in_progress = 0; | |
1088 | |
1089 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1090 /* | |
1091 * Disable sleep mode. | |
1092 */ | |
1093 | |
1094 WRITE_UART_REGISTER ( | |
1095 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1096 #endif | |
1097 | |
1098 /* | |
1099 * Unmask Tx interrupt. | |
1100 */ | |
1101 | |
1102 WRITE_UART_REGISTER ( | |
1103 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1104 } | |
1105 | |
1106 /******************************************************************************* | |
1107 * | |
1108 * hisr_start_break | |
1109 * | |
1110 * Purpose : Enables the timer used to control the time without character. | |
1111 * | |
1112 * Arguments: In : none | |
1113 * Out: none | |
1114 * | |
1115 * Returns : none | |
1116 * | |
1117 ******************************************************************************/ | |
1118 | |
1119 static VOID | |
1120 hisr_start_break (VOID) | |
1121 { | |
1122 t_uart *uart; | |
1123 | |
1124 uart = &uart_parameters; | |
1125 | |
1126 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
1127 NU_DISABLE_TIMER); | |
1128 | |
1129 (void) NU_Reset_Timer (&(uart->break_timer_ctrl_block), | |
1130 stop_break, | |
1131 uart->time_without_character, | |
1132 0, /* The timer expires once. */ | |
1133 NU_DISABLE_TIMER); | |
1134 | |
1135 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
1136 NU_ENABLE_TIMER); | |
1137 } | |
1138 | |
1139 /******************************************************************************* | |
1140 * | |
1141 * stop_receiver | |
1142 * | |
1143 * Purpose : Activates DTR or RTS or sends XOFF. | |
1144 * | |
1145 * Arguments: In : uart: Pointer on the UART structure. | |
1146 * Out: none | |
1147 * | |
1148 * Returns : none | |
1149 * | |
1150 ******************************************************************************/ | |
1151 | |
1152 static void | |
1153 stop_receiver (t_uart *uart) | |
1154 { | |
1155 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1156 /* | |
1157 * Disable sleep mode. | |
1158 */ | |
1159 | |
1160 WRITE_UART_REGISTER ( | |
1161 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1162 #endif | |
1163 | |
1164 switch (uart->flow_control_mode) { | |
1165 | |
1166 case fc_rts: | |
1167 | |
1168 /* | |
1169 * CTS (RTS on UART side) is deactivated (high). | |
1170 */ | |
1171 | |
1172 WRITE_UART_REGISTER ( | |
1173 uart, MCR, READ_UART_REGISTER (uart, MCR) & ~MRTS); | |
1174 break; | |
1175 | |
1176 case fc_xoff: | |
1177 | |
1178 uart->xon_xoff_to_send = uart->xoff_character; | |
1179 uart->send_xon_xoff = 1; | |
1180 | |
1181 /* | |
1182 * Unmask Tx interrupt. | |
1183 */ | |
1184 | |
1185 WRITE_UART_REGISTER ( | |
1186 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1187 break; | |
1188 } | |
1189 } | |
1190 | |
1191 /******************************************************************************* | |
1192 * | |
1193 * start_receiver | |
1194 * | |
1195 * Purpose : Deactivates DTR or RTS or sends XON. | |
1196 * | |
1197 * Arguments: In : uart: Pointer on the UART structure. | |
1198 * Out: none | |
1199 * | |
1200 * Returns : none | |
1201 * | |
1202 ******************************************************************************/ | |
1203 | |
1204 static void | |
1205 start_receiver (t_uart *uart) | |
1206 { | |
1207 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1208 /* | |
1209 * Disable sleep mode. | |
1210 */ | |
1211 | |
1212 WRITE_UART_REGISTER ( | |
1213 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1214 #endif | |
1215 | |
1216 switch (uart->flow_control_mode) { | |
1217 | |
1218 case fc_rts: | |
1219 | |
1220 /* | |
1221 * CTS (RTS on UART side) is activated (low). | |
1222 */ | |
1223 | |
1224 WRITE_UART_REGISTER ( | |
1225 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
1226 break; | |
1227 | |
1228 case fc_xoff: | |
1229 | |
1230 uart->xon_xoff_to_send = uart->xon_character; | |
1231 uart->send_xon_xoff = 1; | |
1232 | |
1233 /* | |
1234 * Unmask Tx interrupt. | |
1235 */ | |
1236 | |
1237 WRITE_UART_REGISTER ( | |
1238 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
1239 break; | |
1240 } | |
1241 } | |
1242 | |
1243 /******************************************************************************* | |
1244 * | |
1245 * add_esc_seq_char_in_rx_buffer | |
1246 * | |
1247 * Purpose : Writes one escape sequence character in the RX buffer. | |
1248 * | |
1249 * Arguments: In : uart: Pointer on the UART structure. | |
1250 * Out: none | |
1251 * | |
1252 * Returns : none | |
1253 * | |
1254 ******************************************************************************/ | |
1255 | |
1256 static void | |
1257 add_esc_seq_char_in_rx_buffer (t_uart *uart) | |
1258 { | |
1259 /* | |
1260 * IF the RX buffer is not full, write an escape sequence character in the | |
1261 * RX buffer and check wrap-around. | |
1262 */ | |
1263 | |
1264 if (!RX_BUFFER_FULL (uart)) { | |
1265 | |
1266 *(uart->rx_in++) = uart->esc_seq_character; | |
1267 | |
1268 if (uart->rx_in == &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
1269 uart->rx_in = &(uart->rx_buffer[0]); | |
1270 } | |
1271 } | |
1272 | |
1273 /******************************************************************************* | |
1274 * | |
1275 * analyze_guard_period_timer_expiration | |
1276 * | |
1277 * Purpose : According to the state of the escape sequence detection, 1 or 2 | |
1278 * escape sequence characters may be written into the TX buffer or | |
1279 * the escape sequence is declared as detected. | |
1280 * If 1 or 2 escape sequence characters have been detected the | |
1281 * guard period must not expire. | |
1282 * If 3 characters have been detected the escape sequence must | |
1283 * expire. | |
1284 * | |
1285 * Arguments: In : id: parameter not used. | |
1286 * Out: none | |
1287 * | |
1288 * Returns : none | |
1289 * | |
1290 ******************************************************************************/ | |
1291 | |
1292 static VOID | |
1293 analyze_guard_period_timer_expiration (UNSIGNED id) | |
1294 { | |
1295 t_uart *uart; | |
1296 SYS_UWORD16 bytes_in_rx_buffer; | |
1297 | |
1298 uart = &uart_parameters; | |
1299 | |
1300 switch (uart->esc_seq_detection_state) { | |
1301 | |
1302 case ONE_CHAR_DETECTED: | |
1303 | |
1304 /* | |
1305 * 1 escape sequence character has been detected. The guard period has | |
1306 * ellapsed. This character is written into the TX buffer. | |
1307 */ | |
1308 | |
1309 add_esc_seq_char_in_rx_buffer (uart); | |
1310 break; | |
1311 | |
1312 case TWO_CHARS_DETECTED: | |
1313 | |
1314 /* | |
1315 * 2 escape sequence characters have been detected. The guard period has | |
1316 * ellapsed. These characters are written into the TX buffer. | |
1317 */ | |
1318 | |
1319 add_esc_seq_char_in_rx_buffer (uart); | |
1320 add_esc_seq_char_in_rx_buffer (uart); | |
1321 | |
1322 break; | |
1323 | |
1324 case THREE_CHARS_DETECTED: | |
1325 | |
1326 /* | |
1327 * 3 escape sequence characters have been detected and the guard period | |
1328 * has ellapsed. The escape sequence is detected. | |
1329 */ | |
1330 | |
1331 uart->esc_seq_received = 1; | |
1332 *(uart->state) |= (1 << ESC); | |
1333 | |
1334 break; | |
1335 } | |
1336 | |
1337 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1338 | |
1339 /* | |
1340 * If the high watermark is reached, RTS is activated or XOFF is sent | |
1341 * according to the flow control mode. | |
1342 */ | |
1343 | |
1344 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
1345 | |
1346 if ((uart->flow_control_mode != fc_none) && | |
1347 (bytes_in_rx_buffer >= RX_HIGH_WATERMARK (uart->buffer_size))) { | |
1348 | |
1349 /* | |
1350 * Check if receipt must be stopped. | |
1351 */ | |
1352 | |
1353 if (!uart->rx_stopped_by_driver) { | |
1354 | |
1355 uart->rx_stopped_by_driver = 1; | |
1356 if (!uart->rx_stopped_by_application) | |
1357 stop_receiver (uart); | |
1358 } | |
1359 } | |
1360 | |
1361 /* | |
1362 * If a reading was suspended or if the callback function is installed, | |
1363 * it is called if one of these conditions is fulfiled: | |
1364 * - the RX threshold level is reached, | |
1365 * - a break has been detected, | |
1366 * - an escape sequence has been detected, | |
1367 */ | |
1368 | |
1369 if ((!uart->rd_call_from_hisr_in_progress) && | |
1370 (uart->reading_suspended || | |
1371 (uart->rd_call_setup == rm_reInstall))) { | |
1372 | |
1373 if ((bytes_in_rx_buffer >= uart->rx_threshold_level) || | |
1374 uart->break_received || | |
1375 uart->esc_seq_received) { | |
1376 | |
1377 uart->rd_call_from_hisr_in_progress = 1; | |
1378 update_reading_callback (uart, 1); /* 1: call from HISR. */ | |
1379 | |
1380 uart->reading_suspended = 0; | |
1381 uart->break_received = 0; | |
1382 uart->esc_seq_received = 0; | |
1383 } | |
1384 } | |
1385 } | |
1386 | |
1387 /******************************************************************************* | |
1388 * | |
1389 * stop_guard_period_timer | |
1390 * | |
1391 * Purpose : Stops the timer used to detect the guard period expiration. | |
1392 * | |
1393 * Arguments: In : uart: Pointer on the UART structure. | |
1394 * Out: none | |
1395 * | |
1396 * Returns : none | |
1397 * | |
1398 ******************************************************************************/ | |
1399 | |
1400 static void | |
1401 stop_guard_period_timer (t_uart *uart) | |
1402 { | |
1403 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1404 NU_DISABLE_TIMER); | |
1405 } | |
1406 | |
1407 /******************************************************************************* | |
1408 * | |
1409 * start_guard_period_timer | |
1410 * | |
1411 * Purpose : Starts a timer which expires if the guard period has ellapsed. | |
1412 * | |
1413 * Arguments: In : uart: Pointer on the UART structure. | |
1414 * Out: none | |
1415 * | |
1416 * Returns : none | |
1417 * | |
1418 ******************************************************************************/ | |
1419 | |
1420 static void | |
1421 start_guard_period_timer (t_uart *uart) | |
1422 { | |
1423 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1424 NU_DISABLE_TIMER); | |
1425 | |
1426 (void) NU_Reset_Timer (&(uart->guard_period_timer_ctrl_block), | |
1427 analyze_guard_period_timer_expiration, | |
1428 uart->guard_period, | |
1429 0, /* The timer expires once. */ | |
1430 NU_DISABLE_TIMER); | |
1431 | |
1432 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
1433 NU_ENABLE_TIMER); | |
1434 } | |
1435 | |
1436 /******************************************************************************* | |
1437 * | |
1438 * detect_escape_sequence | |
1439 * | |
1440 * Purpose : The state machine used to detect an escape sequence is updated | |
1441 * according to the array of bytes to analyse. If the state machine | |
1442 * goes to the initial state due to a break in the sequence | |
1443 * detection, the previous characters are put into the RX buffer. | |
1444 * | |
1445 * Arguments: In : uart: Pointer on the UART structure. | |
1446 * Out: none | |
1447 * | |
1448 * Returns : 0: Break in detection or a sequence has been detected. | |
1449 * 1: A sequence may be detected. | |
1450 * | |
1451 ******************************************************************************/ | |
1452 | |
1453 static int | |
1454 detect_escape_sequence (t_uart *uart) | |
1455 { | |
1456 int detection_result; | |
1457 SYS_UWORD8 *rx_fifo_byte; | |
1458 SYS_UWORD16 bytes_in_rx_buffer; | |
1459 UNSIGNED elapsed_time; | |
1460 | |
1461 detection_result = 0; | |
1462 | |
1463 rx_fifo_byte = uart->rx_buffer_used_by_rx_hisr; | |
1464 if (rx_fifo_byte == &(uart->rx_fifo_byte_1[0])) | |
1465 bytes_in_rx_buffer = uart->bytes_in_rx_buffer_1; | |
1466 else | |
1467 bytes_in_rx_buffer = uart->bytes_in_rx_buffer_2; | |
1468 | |
1469 if (uart->current_time > uart->previous_time) | |
1470 elapsed_time = uart->current_time - uart->previous_time; | |
1471 else | |
1472 elapsed_time = | |
1473 MAX_UNSIGNED_32 - uart->previous_time + uart->current_time; | |
1474 | |
1475 switch (uart->esc_seq_detection_state) { | |
1476 | |
1477 case INITIALIZATION: | |
1478 | |
1479 /* | |
1480 * It is the first character received. It may be the first character | |
1481 * of an escape sequence. The elapsed_time variable is set to the | |
1482 * guard period value to consider this character as the first character | |
1483 * of an escape sequence. | |
1484 */ | |
1485 | |
1486 if (!uart->esc_seq_modified) { | |
1487 | |
1488 elapsed_time = uart->guard_period; | |
1489 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1490 } | |
1491 | |
1492 /* No break! */ | |
1493 | |
1494 case NO_ESCAPE_SEQUENCE: | |
1495 | |
1496 /* | |
1497 * To go to the next state (one, two or three characters detected): | |
1498 * - a guard period must have elapsed since the last receipt, | |
1499 * - the characters must belong to the escape sequence. | |
1500 */ | |
1501 | |
1502 if ((elapsed_time >= uart->guard_period) && | |
1503 (!uart->esc_seq_modified)) { | |
1504 | |
1505 switch (bytes_in_rx_buffer) { | |
1506 | |
1507 case 1: | |
1508 | |
1509 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1510 | |
1511 uart->esc_seq_detection_state = ONE_CHAR_DETECTED; | |
1512 start_guard_period_timer (uart); | |
1513 detection_result = 1; | |
1514 } | |
1515 | |
1516 break; | |
1517 | |
1518 case 2: | |
1519 | |
1520 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1521 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1522 | |
1523 uart->esc_seq_detection_state = TWO_CHARS_DETECTED; | |
1524 start_guard_period_timer (uart); | |
1525 detection_result = 1; | |
1526 } | |
1527 | |
1528 break; | |
1529 | |
1530 case 3: | |
1531 | |
1532 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1533 (*rx_fifo_byte++ == uart->esc_seq_character) && | |
1534 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1535 | |
1536 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1537 start_guard_period_timer (uart); | |
1538 detection_result = 1; | |
1539 } | |
1540 | |
1541 break; | |
1542 | |
1543 default: | |
1544 | |
1545 /* | |
1546 * No action. | |
1547 */ | |
1548 | |
1549 break; | |
1550 } | |
1551 } | |
1552 | |
1553 uart->previous_time = uart->current_time; | |
1554 | |
1555 break; | |
1556 | |
1557 case ONE_CHAR_DETECTED: | |
1558 | |
1559 /* | |
1560 * To go to the next state (two or three characters detected): | |
1561 * - the difference between the current time and the previous time | |
1562 * must be less than the guard period, | |
1563 * - the characters must belong to the escape sequence. | |
1564 * Otherwise, an escape sequence character is written in the RX buffer. | |
1565 */ | |
1566 | |
1567 if (!uart->esc_seq_modified) { | |
1568 | |
1569 switch (bytes_in_rx_buffer) { | |
1570 | |
1571 case 1: | |
1572 | |
1573 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1574 | |
1575 uart->esc_seq_detection_state = TWO_CHARS_DETECTED; | |
1576 detection_result = 1; | |
1577 } | |
1578 | |
1579 break; | |
1580 | |
1581 case 2: | |
1582 | |
1583 if ((*rx_fifo_byte++ == uart->esc_seq_character) && | |
1584 (*rx_fifo_byte++ == uart->esc_seq_character)) { | |
1585 | |
1586 start_guard_period_timer (uart); /* Reset the timer. */ | |
1587 | |
1588 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1589 detection_result = 1; | |
1590 } | |
1591 | |
1592 break; | |
1593 | |
1594 default: | |
1595 | |
1596 /* | |
1597 * No action. | |
1598 */ | |
1599 | |
1600 break; | |
1601 } | |
1602 } | |
1603 | |
1604 if (!detection_result) { | |
1605 | |
1606 add_esc_seq_char_in_rx_buffer (uart); | |
1607 | |
1608 uart->previous_time = uart->current_time; | |
1609 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1610 } | |
1611 | |
1612 break; | |
1613 | |
1614 case TWO_CHARS_DETECTED: | |
1615 | |
1616 /* | |
1617 * To go to the next state (three chars detected): | |
1618 * - the difference between the current time and the previous time | |
1619 * must be less than the guard period, | |
1620 * - the character must belong to the escape sequence. | |
1621 * Otherwise, 2 escape sequence characters are written in the RX buffer. | |
1622 */ | |
1623 | |
1624 if (!uart->esc_seq_modified) { | |
1625 | |
1626 switch (bytes_in_rx_buffer) { | |
1627 | |
1628 case 1: | |
1629 | |
1630 if (*rx_fifo_byte++ == uart->esc_seq_character) { | |
1631 | |
1632 start_guard_period_timer (uart); /* Reset the timer. */ | |
1633 | |
1634 uart->esc_seq_detection_state = THREE_CHARS_DETECTED; | |
1635 detection_result = 1; | |
1636 } | |
1637 | |
1638 break; | |
1639 | |
1640 default: | |
1641 | |
1642 /* | |
1643 * No action. | |
1644 */ | |
1645 | |
1646 break; | |
1647 } | |
1648 } | |
1649 | |
1650 if (!detection_result) { | |
1651 | |
1652 add_esc_seq_char_in_rx_buffer (uart); | |
1653 add_esc_seq_char_in_rx_buffer (uart); | |
1654 | |
1655 uart->previous_time = uart->current_time; | |
1656 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1657 } | |
1658 | |
1659 break; | |
1660 | |
1661 case THREE_CHARS_DETECTED: | |
1662 | |
1663 /* | |
1664 * An escape sequence is detected if a guard period has elapsed since | |
1665 * the last receipt. Otherwise, 3 escape sequence characters are | |
1666 * written in the RX buffer. | |
1667 */ | |
1668 | |
1669 stop_guard_period_timer (uart); | |
1670 | |
1671 add_esc_seq_char_in_rx_buffer (uart); | |
1672 add_esc_seq_char_in_rx_buffer (uart); | |
1673 add_esc_seq_char_in_rx_buffer (uart); | |
1674 | |
1675 uart->previous_time = uart->current_time; | |
1676 uart->esc_seq_detection_state = NO_ESCAPE_SEQUENCE; | |
1677 | |
1678 break; | |
1679 } | |
1680 | |
1681 return (detection_result); | |
1682 } | |
1683 | |
1684 /******************************************************************************* | |
1685 * | |
1686 * send_break | |
1687 * | |
1688 * Purpose : This function may only called if the TX FIFO is empty. | |
1689 * Null characters are written in the TX FIFO. The number of bytes to | |
1690 * write has been defined with UAF_SetLineState. Enables the break | |
1691 * condition. | |
1692 * | |
1693 * Arguments: In : uart: Pointer on the UART structure. | |
1694 * Out: none | |
1695 * | |
1696 * Returns : Number of bytes sent. | |
1697 * | |
1698 ******************************************************************************/ | |
1699 | |
1700 static SYS_UWORD16 | |
1701 send_break (t_uart *uart) | |
1702 { | |
1703 SYS_UWORD16 bytes_in_tx_fifo; | |
1704 | |
1705 bytes_in_tx_fifo = 0; | |
1706 uart->break_in_progress = 1; | |
1707 | |
1708 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1709 /* | |
1710 * Disable sleep mode. | |
1711 */ | |
1712 | |
1713 WRITE_UART_REGISTER ( | |
1714 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
1715 #endif | |
1716 | |
1717 WRITE_UART_REGISTER ( | |
1718 uart, LCR, READ_UART_REGISTER (uart, LCR) | BREAK_CONTROL); | |
1719 | |
1720 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
1721 /* | |
1722 * Re-enable sleep mode. | |
1723 */ | |
1724 | |
1725 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
1726 /* | |
1727 WRITE_UART_REGISTER ( | |
1728 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
1729 | |
1730 */ | |
1731 #endif | |
1732 | |
1733 while (uart->break_length) { | |
1734 | |
1735 WRITE_UART_REGISTER (uart, THR, 0x00); | |
1736 uart->break_length--; | |
1737 bytes_in_tx_fifo++; | |
1738 } | |
1739 | |
1740 return (bytes_in_tx_fifo); | |
1741 } | |
1742 | |
1743 /******************************************************************************* | |
1744 * | |
1745 * build_rx_fifo_array | |
1746 * | |
1747 * Purpose : Reads the RX FIFO to build an array with bytes read. | |
1748 * A byte is written in this array if no error is detected. | |
1749 * | |
1750 * Arguments: In : uart: Pointer on the UART structure. | |
1751 * Out: none | |
1752 * | |
1753 * Returns : The number of bytes in RX FIFO. | |
1754 * | |
1755 ******************************************************************************/ | |
1756 | |
1757 static SYS_UWORD16 | |
1758 build_rx_fifo_array (t_uart *uart) | |
1759 { | |
1760 SYS_UWORD8 status; | |
1761 SYS_UWORD8 *first_byte; | |
1762 SYS_UWORD8 *current_byte; | |
1763 SYS_UWORD16 *bytes_in_rx_buffer; | |
1764 SYS_UWORD16 bytes_received; | |
1765 SYS_UWORD8 cbyte; | |
1766 | |
1767 volatile int x; | |
1768 | |
1769 x = 1; | |
1770 | |
1771 bytes_received = 0; | |
1772 | |
1773 | |
1774 /* | |
1775 * Switch to the other buffer. | |
1776 */ | |
1777 | |
1778 first_byte = uart->rx_buffer_used_by_rx_lisr; | |
1779 if (first_byte == &(uart->rx_fifo_byte_1[0])) { | |
1780 | |
1781 first_byte = &(uart->rx_fifo_byte_2[0]); | |
1782 bytes_in_rx_buffer = &(uart->bytes_in_rx_buffer_2); | |
1783 | |
1784 } else { | |
1785 | |
1786 first_byte = &(uart->rx_fifo_byte_1[0]); | |
1787 bytes_in_rx_buffer = &(uart->bytes_in_rx_buffer_1); | |
1788 } | |
1789 | |
1790 current_byte = first_byte; | |
1791 | |
1792 if (*bytes_in_rx_buffer) { | |
1793 | |
1794 | |
1795 /* The Rx buffer is not empty and is being used by HISR ! */ | |
1796 /* Hence stop the flow control */ | |
1797 stop_receiver (uart); | |
1798 | |
1799 /* | |
1800 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
1801 */ | |
1802 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
1803 | |
1804 /* Mask The Rx and interrupt */ | |
1805 | |
1806 WRITE_UART_REGISTER ( | |
1807 uart, IER, READ_UART_REGISTER (uart, IER) & | |
1808 ~(ERBI | EDSSI)); | |
1809 | |
1810 uart->rx_stopped_by_lisr = 1; | |
1811 return (bytes_received); | |
1812 | |
1813 } | |
1814 | |
1815 uart->rx_buffer_used_by_rx_lisr = first_byte; | |
1816 | |
1817 status = READ_UART_REGISTER (uart, LSR); | |
1818 | |
1819 /* | |
1820 * Build an array with the bytes contained in the RX FIFO. | |
1821 */ | |
1822 | |
1823 while (status & DR) { /* While RX FIFO is not empty... */ | |
1824 | |
1825 *current_byte = READ_UART_REGISTER (uart, RHR); | |
1826 | |
1827 /* | |
1828 * Check if a parity error or a framing error is associated with the | |
1829 * received data. If there is an error the byte is not copied into the | |
1830 * bytes array. | |
1831 */ | |
1832 | |
1833 if (status & BYTE_ERROR) { | |
1834 | |
1835 if (status & OE) | |
1836 uart->overrun_error++; | |
1837 | |
1838 if (status & PE) | |
1839 uart->parity_error++; | |
1840 | |
1841 if (status & FE) | |
1842 uart->framing_error++; | |
1843 | |
1844 /* | |
1845 * Check break detection. | |
1846 */ | |
1847 | |
1848 if (status & BI) { | |
1849 | |
1850 uart->break_received = 1; | |
1851 *(uart->state) |= | |
1852 ((1 << BRK) | (MINIMAL_BREAK_LENGTH << BRKLEN)); | |
1853 } | |
1854 | |
1855 } else /* No error */ | |
1856 current_byte++; | |
1857 | |
1858 status = READ_UART_REGISTER (uart, LSR); | |
1859 } | |
1860 | |
1861 bytes_received = (SYS_UWORD16) (current_byte - first_byte); | |
1862 *bytes_in_rx_buffer = bytes_received; | |
1863 | |
1864 /* | |
1865 * Re-switch to the other buffer if no valid character has been received. | |
1866 */ | |
1867 | |
1868 if (!bytes_received) { | |
1869 | |
1870 if (uart->rx_buffer_used_by_rx_lisr == &(uart->rx_fifo_byte_1[0])) | |
1871 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_2[0]); | |
1872 | |
1873 else | |
1874 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_1[0]); | |
1875 } | |
1876 | |
1877 if (bytes_received > uart->max_rx_fifo_level) | |
1878 uart->max_rx_fifo_level = bytes_received; | |
1879 | |
1880 return (bytes_received); | |
1881 } | |
1882 | |
1883 /******************************************************************************* | |
1884 * | |
1885 * empty_rx_fifo | |
1886 * | |
1887 * Purpose : Read the RX FIFO. | |
1888 * | |
1889 * Arguments: In : uart: Pointer on the UART structure. | |
1890 * Out: none | |
1891 * | |
1892 * Returns : none | |
1893 * | |
1894 ******************************************************************************/ | |
1895 | |
1896 static void | |
1897 empty_rx_fifo (t_uart *uart) | |
1898 { | |
1899 SYS_UWORD16 bytes_in_rx_fifo; | |
1900 volatile SYS_UWORD8 dummy_byte; | |
1901 | |
1902 bytes_in_rx_fifo = 0; | |
1903 | |
1904 while (READ_UART_REGISTER (uart, LSR) & DR) { | |
1905 | |
1906 dummy_byte = READ_UART_REGISTER (uart, RHR); | |
1907 bytes_in_rx_fifo++; | |
1908 } | |
1909 | |
1910 if (bytes_in_rx_fifo > uart->max_rx_fifo_level) | |
1911 uart->max_rx_fifo_level = bytes_in_rx_fifo; | |
1912 } | |
1913 | |
1914 /******************************************************************************* | |
1915 * | |
1916 * hisr_execute_rx_operations | |
1917 * | |
1918 * Purpose : If an escape sequence is detected or if a break in the detection | |
1919 * has occured RX FIFO bytes are written in the RX buffer. | |
1920 * If the software flow control is used bytes are analyzed to know | |
1921 * if a XON or a XOFF character is received to stop or start the | |
1922 * transmitter. | |
1923 * If a flow control is used and if the high watermark of the RX | |
1924 * buffer is reached the receiver is stopped. | |
1925 * If the RX threshold level is reached the callback mechanism is | |
1926 * activated. | |
1927 * | |
1928 * Arguments: In : none | |
1929 * Out: none | |
1930 * | |
1931 * Returns : none | |
1932 * | |
1933 ******************************************************************************/ | |
1934 | |
1935 static VOID | |
1936 hisr_execute_rx_operations (VOID) | |
1937 { | |
1938 SYS_UWORD16 bytes_free_in_rx_buffer; | |
1939 SYS_UWORD16 wrap_around_counter; | |
1940 SYS_UWORD16 bytes_in_rx_buffer; | |
1941 SYS_UWORD16 bytes_read; | |
1942 SYS_UWORD16 bytes_to_copy; | |
1943 SYS_UWORD8 *current_byte; | |
1944 SYS_UWORD8 xon_xoff_detected; | |
1945 t_uart *uart; | |
1946 | |
1947 uart = &uart_parameters; | |
1948 | |
1949 /* | |
1950 * Since new characters have been received, the sleep timer is reset then | |
1951 * restarted preventing the system to enter deep-sleep for a new period of | |
1952 * time. | |
1953 */ | |
1954 | |
1955 SER_restart_uart_sleep_timer (); | |
1956 uart_sleep_timer_enabled = 1; | |
1957 | |
1958 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
1959 uart->index_hisr = (uart->index_hisr + 1) & 0x01; /* 0 or 1 */ | |
1960 #endif | |
1961 | |
1962 xon_xoff_detected = 0; | |
1963 | |
1964 /* | |
1965 * Switch to the other buffer. | |
1966 */ | |
1967 | |
1968 current_byte = uart->rx_buffer_used_by_rx_hisr; | |
1969 if (current_byte == &(uart->rx_fifo_byte_1[0])) { | |
1970 | |
1971 current_byte = &(uart->rx_fifo_byte_2[0]); | |
1972 bytes_read = uart->bytes_in_rx_buffer_2; | |
1973 | |
1974 } else { | |
1975 | |
1976 current_byte = &(uart->rx_fifo_byte_1[0]); | |
1977 bytes_read = uart->bytes_in_rx_buffer_1; | |
1978 } | |
1979 | |
1980 uart->rx_buffer_used_by_rx_hisr = current_byte; | |
1981 | |
1982 /* | |
1983 * All bytes are copied into the RX buffer only if an escape sequence has | |
1984 * been detected or a break in the detection has occured. | |
1985 */ | |
1986 | |
1987 if (!detect_escape_sequence (uart)) { | |
1988 | |
1989 if (uart->rx_out > uart->rx_in) | |
1990 bytes_free_in_rx_buffer = (SYS_UWORD16) (uart->rx_out - uart->rx_in - 1); | |
1991 else | |
1992 bytes_free_in_rx_buffer = | |
1993 (SYS_UWORD16) (uart->buffer_size + uart->rx_out - uart->rx_in); | |
1994 | |
1995 wrap_around_counter = uart->buffer_size + 1 - | |
1996 (SYS_UWORD16) (uart->rx_in - &(uart->rx_buffer[0])); | |
1997 | |
1998 if (uart->flow_control_mode == fc_xoff) { | |
1999 | |
2000 /* | |
2001 * For SW Flow Control, need to further investigate the processing | |
2002 * in order to improve the performance of the driver, and in order | |
2003 * to avoid managing the wrap around of the circular buffer each | |
2004 * time a character is copied. | |
2005 */ | |
2006 | |
2007 while (bytes_read && bytes_free_in_rx_buffer) { | |
2008 | |
2009 /* | |
2010 * If the data received is XON or XOFF, the transmitter is | |
2011 * enabled (XON) or disabled (XOFF). | |
2012 */ | |
2013 | |
2014 if (*current_byte == uart->xoff_character) { | |
2015 | |
2016 uart->tx_stopped_by_driver = 1; | |
2017 xon_xoff_detected = 1; | |
2018 | |
2019 } else if (*current_byte == uart->xon_character) { | |
2020 | |
2021 uart->tx_stopped_by_driver = 0; | |
2022 xon_xoff_detected = 1; | |
2023 | |
2024 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2025 /* | |
2026 * Disable sleep mode. | |
2027 */ | |
2028 | |
2029 WRITE_UART_REGISTER ( | |
2030 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2031 #endif | |
2032 | |
2033 /* | |
2034 * Unmask Tx interrupt. | |
2035 */ | |
2036 | |
2037 WRITE_UART_REGISTER ( | |
2038 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2039 | |
2040 } else { | |
2041 | |
2042 *(uart->rx_in++) = *current_byte; | |
2043 | |
2044 wrap_around_counter--; | |
2045 if (!wrap_around_counter) { | |
2046 | |
2047 uart->rx_in = &(uart->rx_buffer[0]); | |
2048 wrap_around_counter = uart->buffer_size + 1; | |
2049 } | |
2050 | |
2051 bytes_free_in_rx_buffer--; | |
2052 } | |
2053 | |
2054 current_byte++; | |
2055 bytes_read--; | |
2056 } | |
2057 } else { /* No Flow Control or HW Flow Control */ | |
2058 | |
2059 /* | |
2060 * Figure out the most restricting condition. | |
2061 */ | |
2062 | |
2063 bytes_to_copy = | |
2064 Min3 (bytes_free_in_rx_buffer, wrap_around_counter, bytes_read); | |
2065 | |
2066 /* | |
2067 * Copy characters into the circular Rx buffer. | |
2068 */ | |
2069 | |
2070 memcpy (uart->rx_in, current_byte, bytes_to_copy); | |
2071 | |
2072 /* | |
2073 * Update first the variables associated to blocking conditions: | |
2074 * if (bytes_read = 0) OR | |
2075 * (bytes_free_in_rx_buffer = 0) => No more characters to copy. | |
2076 */ | |
2077 | |
2078 bytes_free_in_rx_buffer -= bytes_to_copy; | |
2079 bytes_read -= bytes_to_copy; | |
2080 | |
2081 wrap_around_counter -= bytes_to_copy; | |
2082 if (!wrap_around_counter) | |
2083 uart->rx_in = &(uart->rx_buffer[0]); | |
2084 else | |
2085 uart->rx_in += bytes_to_copy; | |
2086 | |
2087 /* | |
2088 * Check if there are still some characters to copy. | |
2089 */ | |
2090 | |
2091 if (bytes_read && bytes_free_in_rx_buffer) { | |
2092 | |
2093 /* | |
2094 * Update the remaining variables and figure out again the | |
2095 * most restricting condition. Since (bytes_read = 0) and | |
2096 * (bytes_free_in_rx_buffer = 0) are blocking conditions, if | |
2097 * we reach that point it means that the wrap around condition | |
2098 * has just occurred and it is not needed to manage it again. | |
2099 */ | |
2100 | |
2101 current_byte += bytes_to_copy; | |
2102 bytes_to_copy = Min (bytes_read, bytes_free_in_rx_buffer); | |
2103 | |
2104 /* | |
2105 * Copy characters into the circular Rx buffer and update | |
2106 * current pointer. | |
2107 */ | |
2108 | |
2109 memcpy (uart->rx_in, current_byte, bytes_to_copy); | |
2110 | |
2111 uart->rx_in += bytes_to_copy; | |
2112 | |
2113 /* | |
2114 * bytes_free_in_rx_buffer not updated since not used anymore. | |
2115 */ | |
2116 bytes_read -= bytes_to_copy; | |
2117 | |
2118 } | |
2119 else { | |
2120 bytes_read = 0; | |
2121 } | |
2122 } /* end if (uart->flow_control_mode == fc_xoff) */ | |
2123 | |
2124 | |
2125 /* | |
2126 * If the high watermark is reached, RTS is activated or XOFF is | |
2127 * sent according to the flow control mode. | |
2128 */ | |
2129 | |
2130 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
2131 | |
2132 if ((uart->flow_control_mode != fc_none) && | |
2133 (bytes_in_rx_buffer >= RX_HIGH_WATERMARK (uart->buffer_size))) { | |
2134 | |
2135 /* | |
2136 * Check if receipt must be stopped. | |
2137 */ | |
2138 | |
2139 if (!uart->rx_stopped_by_driver) { | |
2140 | |
2141 uart->rx_stopped_by_driver = 1; | |
2142 if (!uart->rx_stopped_by_application) | |
2143 stop_receiver (uart); | |
2144 } | |
2145 } | |
2146 | |
2147 /* | |
2148 * If a reading was suspended or if the callback function is installed, | |
2149 * it is called if one of these conditions is fulfiled: | |
2150 * - the RX threshold level is reached, | |
2151 * - a break has been detected, | |
2152 */ | |
2153 | |
2154 if ((!uart->rd_call_from_hisr_in_progress) && | |
2155 (uart->reading_suspended || | |
2156 (uart->rd_call_setup == rm_reInstall))) { | |
2157 | |
2158 if ((bytes_in_rx_buffer >= uart->rx_threshold_level) || | |
2159 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
2160 uart->dtr_change_detected[uart->index_hisr] || | |
2161 #endif | |
2162 uart->break_received || | |
2163 xon_xoff_detected) { | |
2164 | |
2165 | |
2166 uart->rd_call_from_hisr_in_progress = 1; | |
2167 update_reading_callback (uart, 3); /* 3: call from Rx HISR. */ | |
2168 | |
2169 uart->reading_suspended = 0; | |
2170 uart->break_received = 0; | |
2171 uart->esc_seq_received = 0; | |
2172 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
2173 uart->dtr_change_detected[uart->index_hisr] = 0; | |
2174 #endif | |
2175 } | |
2176 } | |
2177 | |
2178 } | |
2179 | |
2180 | |
2181 | |
2182 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2183 | |
2184 /* Mask The Rx and Modem status interrupt */ | |
2185 WRITE_UART_REGISTER ( | |
2186 uart, IER, READ_UART_REGISTER (uart, IER) & | |
2187 ~(ERBI | EDSSI)); | |
2188 | |
2189 if ((uart->rx_buffer_used_by_rx_hisr) == &(uart->rx_fifo_byte_1[0])) { | |
2190 | |
2191 uart->bytes_in_rx_buffer_1 = 0; | |
2192 | |
2193 } else { | |
2194 | |
2195 uart->bytes_in_rx_buffer_2 = 0; | |
2196 } | |
2197 | |
2198 | |
2199 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2200 | |
2201 /* Unmask The Rx and Modem status interrupt*/ | |
2202 WRITE_UART_REGISTER ( | |
2203 uart, IER, READ_UART_REGISTER (uart, IER) | | |
2204 (ERBI | EDSSI)); | |
2205 | |
2206 if(uart->rx_stopped_by_lisr ) { | |
2207 if (!uart->rx_stopped_by_driver) { | |
2208 | |
2209 | |
2210 uart->rx_stopped_by_lisr = 0; | |
2211 | |
2212 /* | |
2213 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
2214 */ | |
2215 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2216 | |
2217 | |
2218 /* UnMask The Rx interrupt */ | |
2219 WRITE_UART_REGISTER ( | |
2220 uart, IER, READ_UART_REGISTER (uart, IER) | | |
2221 (ERBI | EDSSI)); | |
2222 | |
2223 start_receiver (uart); | |
2224 | |
2225 } | |
2226 } | |
2227 | |
2228 } | |
2229 | |
2230 /******************************************************************************* | |
2231 * | |
2232 * hisr_execute_v24_operations | |
2233 * | |
2234 * Purpose : The user's function is called if all conditions to call it are | |
2235 * fulfiled. | |
2236 * | |
2237 * Arguments: In : none | |
2238 * Out: none | |
2239 * | |
2240 * Returns : none | |
2241 * | |
2242 ******************************************************************************/ | |
2243 | |
2244 static VOID | |
2245 hisr_execute_v24_operations (VOID) | |
2246 { | |
2247 t_uart *uart; | |
2248 | |
2249 uart = &uart_parameters; | |
2250 | |
2251 /* | |
2252 * If a reading was suspended or if the callback function is installed, | |
2253 * it is called. | |
2254 */ | |
2255 | |
2256 if ((!DRIVER_DISABLED (uart)) && | |
2257 (!uart->rd_call_from_hisr_in_progress) && | |
2258 (uart->reading_suspended || (uart->rd_call_setup == rm_reInstall))) { | |
2259 | |
2260 uart->rd_call_from_hisr_in_progress = 1; | |
2261 update_reading_callback (uart, 1); /* 1: call from HISR. */ | |
2262 uart->reading_suspended = 0; | |
2263 uart->break_received = 0; | |
2264 uart->esc_seq_received = 0; | |
2265 } | |
2266 | |
2267 } | |
2268 | |
2269 /******************************************************************************* | |
2270 * | |
2271 * hisr_execute_tx_operations | |
2272 * | |
2273 * Purpose : Writes bytes from the TX buffer to the TX FIFO. | |
2274 * The user's function is called if all conditions to call it are | |
2275 * fulfiled. | |
2276 * | |
2277 * Arguments: In : none | |
2278 * Out: none | |
2279 * | |
2280 * Returns : none | |
2281 * | |
2282 ******************************************************************************/ | |
2283 | |
2284 static VOID | |
2285 hisr_execute_tx_operations (VOID) | |
2286 { | |
2287 SYS_UWORD16 bytes_in_tx_buffer; | |
2288 SYS_UWORD16 bytes_in_tx_fifo; | |
2289 SYS_UWORD16 wrap_around_counter; | |
2290 SYS_UWORD16 bytes_to_write; | |
2291 t_uart *uart; | |
2292 int counter; | |
2293 | |
2294 | |
2295 uart = &uart_parameters; | |
2296 | |
2297 /* | |
2298 * A TX interrupt may have occured during the previous TX HISR. This case | |
2299 * may appear when a HISR having a higher priority has been activated when | |
2300 * the TX HISR was activated. When the next TX HISR is activated, the TX | |
2301 * FIFO may not be empty. Nothing is done until a TX interrupt will occur. | |
2302 * The RX HISR will be activated again and the TX FIFO will be empty. | |
2303 */ | |
2304 | |
2305 if (READ_UART_REGISTER (uart, LSR) & THRE) { | |
2306 | |
2307 bytes_in_tx_fifo = 0; | |
2308 | |
2309 /* | |
2310 * A request to send a XON/XOFF character may have been done by the | |
2311 * RX interrupt handler. The byte can be written because we are sure | |
2312 * that the TX FIFO is not full. | |
2313 */ | |
2314 | |
2315 if (uart->send_xon_xoff) { | |
2316 | |
2317 WRITE_UART_REGISTER (uart, THR, uart->xon_xoff_to_send); | |
2318 uart->send_xon_xoff = 0; | |
2319 bytes_in_tx_fifo++; | |
2320 } | |
2321 | |
2322 if ((!uart->tx_stopped_by_application) && | |
2323 (!uart->tx_stopped_by_driver)) { | |
2324 | |
2325 bytes_in_tx_buffer = get_bytes_in_tx_buffer (uart); | |
2326 wrap_around_counter = | |
2327 uart->buffer_size + 1 - (SYS_UWORD16) (uart->tx_out - | |
2328 &(uart->tx_buffer[0])); | |
2329 | |
2330 /* | |
2331 * Figure out the most restricting condition. | |
2332 */ | |
2333 | |
2334 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2335 /* | |
2336 * Loading of only (FIFO_SIZE - 1) characters in the Tx FIFO to | |
2337 * avoid the generation of a spurious Tx FIFO almost empty | |
2338 * interrupt (Ulysse bug report #35). | |
2339 */ | |
2340 | |
2341 bytes_to_write = | |
2342 Min3 (bytes_in_tx_buffer, wrap_around_counter, | |
2343 (FIFO_SIZE - 1 - bytes_in_tx_fifo)); | |
2344 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2345 /* | |
2346 * Bug corrected on Calypso rev. A, rev. B, C035, Ulysse C035, | |
2347 * Calypso Lite & Calypso+. | |
2348 */ | |
2349 | |
2350 bytes_to_write = | |
2351 Min3 (bytes_in_tx_buffer, wrap_around_counter, | |
2352 (FIFO_SIZE - bytes_in_tx_fifo)); | |
2353 #endif | |
2354 | |
2355 /* | |
2356 * Write characters into the Tx FIFO. | |
2357 */ | |
2358 | |
2359 for (counter = 0; counter < bytes_to_write; counter++) | |
2360 WRITE_UART_REGISTER (uart, THR, *(uart->tx_out++)); | |
2361 | |
2362 /* | |
2363 * Update the variables associated to blocking conditions: | |
2364 * if (bytes_in_tx_buffer = 0) OR | |
2365 * (bytes_in_tx_fifo = FIFO_SIZE) => No more characters to copy. | |
2366 */ | |
2367 | |
2368 bytes_in_tx_buffer -= bytes_to_write; | |
2369 bytes_in_tx_fifo += bytes_to_write; | |
2370 | |
2371 wrap_around_counter -= bytes_to_write; | |
2372 if (!wrap_around_counter) | |
2373 uart->tx_out = &(uart->tx_buffer[0]); | |
2374 | |
2375 /* | |
2376 * Check if there are still some characters to write. | |
2377 */ | |
2378 | |
2379 if (bytes_in_tx_buffer && | |
2380 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2381 (bytes_in_tx_fifo < (FIFO_SIZE - 1))) { | |
2382 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2383 (bytes_in_tx_fifo < FIFO_SIZE)) { | |
2384 #endif | |
2385 | |
2386 /* | |
2387 * Figure out again the most restricting condition. Since | |
2388 * (bytes_in_tx_buffer = 0) and (bytes_in_tx_fifo = FIFO_SIZE) | |
2389 * are blocking conditions, if we reach that point it means | |
2390 * that the wrap around condition has just occurred and it is | |
2391 * not needed to manage it again. | |
2392 */ | |
2393 | |
2394 #if ((CHIPSET == 3) || (CHIPSET == 4) || (CHIPSET == 5) || (CHIPSET == 6)) | |
2395 bytes_to_write = | |
2396 Min (bytes_in_tx_buffer, | |
2397 (FIFO_SIZE - 1 - bytes_in_tx_fifo)); | |
2398 #elif ((CHIPSET == 7) || (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || (CHIPSET == 11) || (CHIPSET == 12)) | |
2399 bytes_to_write = | |
2400 Min (bytes_in_tx_buffer, | |
2401 (FIFO_SIZE - bytes_in_tx_fifo)); | |
2402 #endif | |
2403 | |
2404 /* | |
2405 * Write characters into the Tx FIFO and update associated | |
2406 * variables. | |
2407 */ | |
2408 | |
2409 for (counter = 0; counter < bytes_to_write; counter++) | |
2410 WRITE_UART_REGISTER (uart, THR, *(uart->tx_out++)); | |
2411 | |
2412 bytes_in_tx_buffer += bytes_to_write; | |
2413 bytes_in_tx_fifo += bytes_to_write; | |
2414 } | |
2415 | |
2416 /* | |
2417 * If a writing was suspended or if the callback function is | |
2418 * installed, it is called if the TX threshold level is reached. | |
2419 */ | |
2420 | |
2421 if ((!DRIVER_DISABLED (uart)) && | |
2422 (!uart->wr_call_from_hisr_in_progress) && | |
2423 (bytes_in_tx_buffer <= uart->tx_threshold_level) && | |
2424 ((uart->wr_call_setup == rm_reInstall) || | |
2425 uart->writing_suspended)) { | |
2426 | |
2427 uart->writing_suspended = 0; | |
2428 | |
2429 uart->wr_call_from_hisr_in_progress = 1; | |
2430 update_writing_callback (uart, 1); /* 1: call from HISR. */ | |
2431 } | |
2432 } /* end if ((!uart->tx_stopped_by_application) && */ | |
2433 /* (!uart->tx_stopped_by_driver)) */ | |
2434 | |
2435 if (bytes_in_tx_fifo) | |
2436 | |
2437 /* | |
2438 * Unmask Tx interrupt. | |
2439 */ | |
2440 | |
2441 WRITE_UART_REGISTER ( | |
2442 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2443 | |
2444 else { | |
2445 | |
2446 if ((!bytes_in_tx_fifo) && (uart->break_to_send)) | |
2447 bytes_in_tx_fifo = send_break (uart); | |
2448 } | |
2449 | |
2450 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2451 /* | |
2452 * Re-enable the sleep mode. | |
2453 */ | |
2454 | |
2455 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
2456 /* | |
2457 WRITE_UART_REGISTER ( | |
2458 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
2459 | |
2460 */ | |
2461 #endif | |
2462 } | |
2463 } | |
2464 | |
2465 /******************************************************************************* | |
2466 * | |
2467 * read_rx_fifo | |
2468 * | |
2469 * Purpose : Reads the RX FIFO. If the driver is enabled bytes are written in | |
2470 * an array to be analyzed by the RX HISR. | |
2471 * | |
2472 * Arguments: In : uart: Pointer on the UART structure. | |
2473 * Out: none | |
2474 * | |
2475 * Returns : none | |
2476 * | |
2477 ******************************************************************************/ | |
2478 | |
2479 static void | |
2480 read_rx_fifo (t_uart *uart) | |
2481 { | |
2482 | |
2483 /* | |
2484 * If the driver is disabled the RX FIFO is read to acknoledge the | |
2485 * interrupt else bytes received are written into an array which will be | |
2486 * analyzed from the RX HISR. | |
2487 */ | |
2488 | |
2489 if (DRIVER_DISABLED (uart)) | |
2490 empty_rx_fifo (uart); | |
2491 | |
2492 else if (build_rx_fifo_array (uart)){ | |
2493 (void) NU_Activate_HISR (&(uart->rx_hisr_ctrl_block)); | |
2494 | |
2495 } | |
2496 | |
2497 | |
2498 } | |
2499 | |
2500 /******************************************************************************* | |
2501 * | |
2502 * check_v24_input_lines | |
2503 * | |
2504 * Purpose : Check the V.24 input lines. According to the states of the input | |
2505 * lines and to the flow control mode selected, the transmitter is | |
2506 * enabled or disabled. The reading callback function is called if | |
2507 * it is installed and if all conditions are fulfiled. | |
2508 * | |
2509 * Arguments: In : uart: Pointer on the UART structure. | |
2510 * Out: none | |
2511 * | |
2512 * Returns : none | |
2513 * | |
2514 ******************************************************************************/ | |
2515 | |
2516 static void | |
2517 check_v24_input_lines (t_uart *uart) | |
2518 { | |
2519 SYS_BOOL v24_input_line_changed; | |
2520 volatile SYS_UWORD8 modem_status; | |
2521 | |
2522 modem_status = READ_UART_REGISTER (uart, MSR); | |
2523 v24_input_line_changed = 0; | |
2524 | |
2525 if (modem_status & DELTA_CTS) { | |
2526 | |
2527 v24_input_line_changed = 1; | |
2528 | |
2529 if (modem_status & MCTS) | |
2530 uart->rts_level = 0; | |
2531 else | |
2532 uart->rts_level = 1; | |
2533 } | |
2534 | |
2535 #if (CHIPSET == 12) | |
2536 else if (modem_status & DELTA_DSR) { | |
2537 v24_input_line_changed = 1; | |
2538 | |
2539 if (modem_status & MDSR) | |
2540 { | |
2541 uart->dtr_level = 0; | |
2542 if (uart->flow_control_mode != fc_dtr && uart->baudrate == baudrate_value[FD_BAUD_AUTO]) | |
2543 UAF_SetComPar (UAF_UART_1, FD_BAUD_AUTO, bpc_8, sb_1, pa_none); /* switch back to autobaud */ | |
2544 } | |
2545 else | |
2546 uart->dtr_level = 1; | |
2547 | |
2548 /* | |
2549 * The reading callback function has to be called. But bytes received before | |
2550 * the change of state of DTR must be copied into the RX buffer before to | |
2551 * call it. | |
2552 */ | |
2553 | |
2554 if (READ_UART_REGISTER (uart, LSR) & DR) { /* If Rx FIFO is not empty */ | |
2555 | |
2556 /* | |
2557 * The Rx FIFO will be read to fill one of the two buffers and the Rx | |
2558 * HISR will be activated. | |
2559 */ | |
2560 | |
2561 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
2562 uart->dtr_change_detected[uart->index_it] = 1; | |
2563 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
2564 read_rx_fifo (uart); | |
2565 | |
2566 } else | |
2567 v24_input_line_changed = 1; | |
2568 } | |
2569 #endif | |
2570 | |
2571 /* | |
2572 * When the hardware flow control is selected, if the RS 232 input signal is | |
2573 * deactivated (low), the transmitter is stopped. | |
2574 */ | |
2575 | |
2576 if (uart->flow_control_mode == fc_rts) { | |
2577 | |
2578 if (uart->rts_level) { | |
2579 uart->tx_stopped_by_driver = 1; | |
2580 } | |
2581 | |
2582 else { | |
2583 | |
2584 uart->tx_stopped_by_driver = 0; | |
2585 LowGPIO(1); | |
2586 | |
2587 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2588 /* | |
2589 * Disable sleep mode. | |
2590 */ | |
2591 | |
2592 WRITE_UART_REGISTER ( | |
2593 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2594 #endif | |
2595 | |
2596 /* | |
2597 * Unmask Tx interrupt. | |
2598 */ | |
2599 | |
2600 WRITE_UART_REGISTER ( | |
2601 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
2602 | |
2603 } | |
2604 } | |
2605 | |
2606 if (v24_input_line_changed) | |
2607 (void) NU_Activate_HISR (&(uart->v24_hisr_ctrl_block)); | |
2608 } | |
2609 | |
2610 /******************************************************************************* | |
2611 * | |
2612 * fill_tx_fifo | |
2613 * | |
2614 * Purpose : If the TX buffer is not empty, and if there is no break in | |
2615 * progress, bytes are written into the TX FIFO until the TX FIFO is | |
2616 * full or the TX buffer is empty. Else, if there is a break to send | |
2617 * an all 0s character is written into the TX FIFO and a break is | |
2618 * declared in progress to avoid to fill the TX FIFO on the next | |
2619 * interrupt. | |
2620 * When the TX FIFO is empty and if a break is in progress, the break | |
2621 * length is programmed: all 0s characters are written into the TX | |
2622 * FIFO. The number of bytes has been defined previously with the | |
2623 * UAF_SetLineState function. The break condition is enabled. | |
2624 * When the TX FIFO and the transmitter shift register (TSR) are both | |
2625 * empty and if a break is in progress, the break condition is | |
2626 * disabled. | |
2627 * When bytes are written from the TX buffer to the TX FIFO, the | |
2628 * writing callback function is called if it is installed and if all | |
2629 * conditions are fulfiled. | |
2630 * | |
2631 * Arguments: In : uart: Pointer on the UART structure. | |
2632 * Out: none | |
2633 * | |
2634 * Returns : none | |
2635 * | |
2636 ******************************************************************************/ | |
2637 | |
2638 static void | |
2639 fill_tx_fifo (t_uart *uart) | |
2640 { | |
2641 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
2642 /* | |
2643 * Disable sleep mode. | |
2644 */ | |
2645 | |
2646 WRITE_UART_REGISTER ( | |
2647 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
2648 #endif | |
2649 | |
2650 /* | |
2651 * Mask Tx interrupt. | |
2652 */ | |
2653 | |
2654 WRITE_UART_REGISTER ( | |
2655 uart, IER, READ_UART_REGISTER (uart, IER) & ~ETBEI); | |
2656 | |
2657 /* | |
2658 * If a break is in progress, bytes of the TX buffer are not written into | |
2659 * the TX FIFO. | |
2660 */ | |
2661 | |
2662 if (!uart->break_in_progress) | |
2663 (void) NU_Activate_HISR (&(uart->tx_hisr_ctrl_block)); | |
2664 | |
2665 else { | |
2666 | |
2667 /* | |
2668 * The break HISR is activated and the break condition is cleared. | |
2669 */ | |
2670 | |
2671 WRITE_UART_REGISTER ( | |
2672 uart, LCR, READ_UART_REGISTER (uart, LCR) & ~BREAK_CONTROL); | |
2673 | |
2674 (void) NU_Activate_HISR (&(uart->break_hisr_ctrl_block)); | |
2675 } | |
2676 } | |
2677 | |
2678 /******************************************************************************* | |
2679 * | |
2680 * UAF_Init | |
2681 * | |
2682 * Purpose : Initializes the UART hardware and installs interrupt handlers. | |
2683 * The parameters are set to the default values: | |
2684 * - 19200 baud, | |
2685 * - 8 bits / character, | |
2686 * - no parity, | |
2687 * - 1 stop bit, | |
2688 * - no flow control. | |
2689 * All functionalities of the UART driver are disabled. | |
2690 * | |
2691 * Arguments: In : uartNo: Used UART. | |
2692 * Out: none | |
2693 * | |
2694 * Returns : FD_OK : Successful operation. | |
2695 * FD_NOT_SUPPORTED: Wrong UART number. | |
2696 * FD_INTERNAL_ERR : Internal problem. | |
2697 * | |
2698 ******************************************************************************/ | |
2699 | |
2700 T_FDRET | |
2701 UAF_Init (T_fd_UartId uartNo) | |
2702 { | |
2703 t_uart *uart; | |
2704 volatile SYS_UWORD8 status; | |
2705 | |
2706 /* | |
2707 * Check UART number. | |
2708 * A return is used to simplify the code. | |
2709 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
2710 * flow control is not supported. | |
2711 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
2712 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
2713 */ | |
2714 | |
2715 if (uartNo != UAF_UART_1) | |
2716 return (FD_NOT_SUPPORTED); | |
2717 | |
2718 uart = &uart_parameters; | |
2719 | |
2720 /* | |
2721 * Create the 3 HISR actived in the RX/TX and V24 interrupt handlers. | |
2722 * A return is used to simplify the code if an error occurs. | |
2723 * All stacks are entirely filled with the pattern 0xFE. | |
2724 */ | |
2725 | |
2726 memset (&(uart->rx_hisr_stack[0]), 0xFE, RX_HISR_STACK_SIZE); | |
2727 | |
2728 if (NU_Create_HISR (&(uart->rx_hisr_ctrl_block), | |
2729 "UAF_Rx", | |
2730 hisr_execute_rx_operations, | |
2731 RX_HISR_PRIORITY, | |
2732 &(uart->rx_hisr_stack[0]), | |
2733 RX_HISR_STACK_SIZE) != NU_SUCCESS) | |
2734 | |
2735 return (FD_INTERNAL_ERR); | |
2736 | |
2737 memset (&(uart->tx_hisr_stack[0]), 0xFE, TX_HISR_STACK_SIZE); | |
2738 | |
2739 if (NU_Create_HISR (&(uart->tx_hisr_ctrl_block), | |
2740 "UAF_Tx", | |
2741 hisr_execute_tx_operations, | |
2742 TX_HISR_PRIORITY, | |
2743 &(uart->tx_hisr_stack[0]), | |
2744 TX_HISR_STACK_SIZE) != NU_SUCCESS) | |
2745 | |
2746 return (FD_INTERNAL_ERR); | |
2747 | |
2748 memset (&(uart->v24_hisr_stack[0]), 0xFE, V24_HISR_STACK_SIZE); | |
2749 | |
2750 if (NU_Create_HISR (&(uart->v24_hisr_ctrl_block), | |
2751 "UAF_V24", | |
2752 hisr_execute_v24_operations, | |
2753 V24_HISR_PRIORITY, | |
2754 &(uart->v24_hisr_stack[0]), | |
2755 V24_HISR_STACK_SIZE) != NU_SUCCESS) | |
2756 | |
2757 return (FD_INTERNAL_ERR); | |
2758 | |
2759 /* | |
2760 * Create the HISR used to send a break. | |
2761 * A return is used to simplify the code if an error occurs. | |
2762 * The stack is entirely filled with the pattern 0xFE. | |
2763 */ | |
2764 | |
2765 memset (&(uart->break_hisr_stack[0]), 0xFE, BREAK_HISR_STACK_SIZE); | |
2766 | |
2767 if (NU_Create_HISR (&(uart->break_hisr_ctrl_block), | |
2768 "UAF_Brk", | |
2769 hisr_start_break, | |
2770 BREAK_HISR_PRIORITY, | |
2771 &(uart->break_hisr_stack[0]), | |
2772 BREAK_HISR_STACK_SIZE) != NU_SUCCESS) | |
2773 | |
2774 return (FD_INTERNAL_ERR); | |
2775 | |
2776 /* | |
2777 * Create a timer used in the break HISR. | |
2778 * A return is used to simplify the code if an error occurs. | |
2779 */ | |
2780 | |
2781 if (NU_Create_Timer (&(uart->break_timer_ctrl_block), | |
2782 "Break", | |
2783 stop_break, | |
2784 0, /* Parameter supplied to the routine: not used. */ | |
2785 0, /* This parameter is set when the timer is reset. */ | |
2786 0, /* The timer expires once. */ | |
2787 NU_DISABLE_TIMER) != NU_SUCCESS) | |
2788 | |
2789 return (FD_INTERNAL_ERR); | |
2790 | |
2791 /* | |
2792 * Create a timer used in the detection of the escape sequence. | |
2793 * A return is used to simplify the code if an error occurs. | |
2794 */ | |
2795 | |
2796 if (NU_Create_Timer (&(uart->guard_period_timer_ctrl_block), | |
2797 "Esc seq", | |
2798 analyze_guard_period_timer_expiration, | |
2799 0, /* Parameter supplied to the routine: not used. */ | |
2800 0, /* This parameter is set when the timer is reset. */ | |
2801 0, /* The timer expires once. */ | |
2802 NU_DISABLE_TIMER) != NU_SUCCESS) | |
2803 | |
2804 return (FD_INTERNAL_ERR); | |
2805 | |
2806 /* | |
2807 * These data are used to send a break. | |
2808 * A character has: 8 data bits + 1 start bit + 1 stop bit = 10 bits. | |
2809 */ | |
2810 | |
2811 uart->baudrate = baudrate_value[FD_BAUD_19200]; | |
2812 uart->autobauding = 0; | |
2813 uart->bits_per_char = 10; | |
2814 | |
2815 /* | |
2816 * UART base address. | |
2817 */ | |
2818 | |
2819 uart->base_address = base_address[uartNo]; | |
2820 | |
2821 /* | |
2822 * Select the current array used to store received bytes. | |
2823 */ | |
2824 | |
2825 uart->rx_buffer_used_by_rx_lisr = &(uart->rx_fifo_byte_2[0]); | |
2826 uart->rx_buffer_used_by_rx_hisr = &(uart->rx_fifo_byte_2[0]); | |
2827 | |
2828 /* | |
2829 * RX and TX buffers. | |
2830 */ | |
2831 | |
2832 uart->buffer_size = FD_MAX_BUFFER_SIZE; | |
2833 uart->rx_threshold_level = 1; | |
2834 uart->tx_threshold_level = 0; | |
2835 uart->rx_in = &(uart->rx_buffer[0]); | |
2836 uart->rx_out = &(uart->rx_buffer[0]); | |
2837 uart->tx_in = &(uart->tx_buffer[0]); | |
2838 uart->tx_out = &(uart->tx_buffer[0]); | |
2839 | |
2840 /* | |
2841 * Escape sequence. | |
2842 */ | |
2843 | |
2844 uart->esc_seq_modified = 0; | |
2845 uart->esc_seq_detection_state = INITIALIZATION; | |
2846 uart->esc_seq_character = DEFAULT_ESC_SEQ_CHARACTER; | |
2847 uart->guard_period = CONVERT_TIME_IN_TDMA ( | |
2848 DEFAULT_GUARD_PERIOD); | |
2849 | |
2850 /* | |
2851 * Flow control. | |
2852 */ | |
2853 | |
2854 uart->flow_control_mode = fc_none; | |
2855 uart->send_xon_xoff = 0; | |
2856 uart->rx_stopped_by_application = 1; | |
2857 uart->rx_stopped_by_driver = 0; | |
2858 uart->rx_stopped_by_lisr = 0; | |
2859 uart->tx_stopped_by_application = 1; | |
2860 uart->tx_stopped_by_driver = 0; | |
2861 | |
2862 /* | |
2863 * Break. | |
2864 */ | |
2865 | |
2866 uart->break_received = 0; | |
2867 uart->break_to_send = 0; | |
2868 uart->break_in_progress = 0; | |
2869 | |
2870 /* | |
2871 * Callback (UAF_ReadData and UAF_WriteData). | |
2872 */ | |
2873 | |
2874 uart->esc_seq_received = 0; | |
2875 | |
2876 uart->reading_suspended = 0; | |
2877 uart->writing_suspended = 0; | |
2878 uart->rd_call_from_hisr_in_progress = 0; | |
2879 uart->wr_call_from_hisr_in_progress = 0; | |
2880 uart->rd_call_setup = rm_noInstall; | |
2881 uart->wr_call_setup = rm_noInstall; | |
2882 | |
2883 /* | |
2884 * State defined in UAF_GetLineState. | |
2885 */ | |
2886 | |
2887 uart->state_1 = 0; | |
2888 uart->state_2 = 0; | |
2889 uart->state = &(uart->state_1); | |
2890 | |
2891 /* | |
2892 * Errors counters. | |
2893 */ | |
2894 | |
2895 uart->framing_error = 0; | |
2896 uart->parity_error = 0; | |
2897 uart->overrun_error = 0; | |
2898 uart->spurious_interrupts = 0; | |
2899 | |
2900 uart->max_rx_fifo_level = 0; | |
2901 | |
2902 /* | |
2903 * Mask all interrupts causes and disable sleep mode and low power mode. | |
2904 */ | |
2905 | |
2906 WRITE_UART_REGISTER (uart, IER, 0x00); | |
2907 | |
2908 /* | |
2909 * Reset UART mode configuration. | |
2910 */ | |
2911 | |
2912 WRITE_UART_REGISTER (uart, MDR1, RESET_DEFAULT_STATE | | |
2913 IR_SLEEP_DISABLED | | |
2914 SIR_TX_WITHOUT_ACREG2 | | |
2915 FRAME_LENGTH_METHOD); | |
2916 | |
2917 /* | |
2918 * FIFO configuration. | |
2919 * EFR[4] = 1 to allow to program FCR[5:4] and MCR[7:5]. | |
2920 */ | |
2921 | |
2922 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
2923 SET_BIT (uart, EFR, ENHANCED_FEATURE_BIT); | |
2924 | |
2925 /* | |
2926 * Select the word length, the number of stop bits , the parity and set | |
2927 * LCR[7] (DLAB) to allow to program FCR, DLL and DLM. | |
2928 */ | |
2929 | |
2930 WRITE_UART_REGISTER (uart, LCR, WLS_8 | DLAB); | |
2931 | |
2932 /* | |
2933 * Program the trigger levels. | |
2934 * MCR[6] must be set to 1. | |
2935 */ | |
2936 | |
2937 SET_BIT (uart, MCR, TCR_TLR_BIT); | |
2938 WRITE_UART_REGISTER (uart, TCR, 0x0F); | |
2939 WRITE_UART_REGISTER (uart, TLR, RX_FIFO_TRIGGER_LEVEL); | |
2940 RESET_BIT (uart, MCR, TCR_TLR_BIT); | |
2941 | |
2942 /* | |
2943 * Force the generation of THR_IT on TX FIFO empty: SCR[3] = 1. | |
2944 */ | |
2945 | |
2946 WRITE_UART_REGISTER ( | |
2947 uart, SCR, READ_UART_REGISTER (uart, SCR) | TX_EMPTY_CTL_IT); | |
2948 | |
2949 /* | |
2950 * Program the FIFO control register. Bit 0 must be set when other FCR bits | |
2951 * are written to or they are not programmed. | |
2952 * FCR is a write-only register. It will not be modified. | |
2953 */ | |
2954 | |
2955 WRITE_UART_REGISTER (uart, FCR, FIFO_ENABLE | | |
2956 RX_FIFO_RESET | /* self cleared */ | |
2957 TX_FIFO_RESET); /* self cleared */ | |
2958 | |
2959 /* | |
2960 * Program the baud generator. | |
2961 */ | |
2962 | |
2963 WRITE_UART_REGISTER (uart, DLL, dll[FD_BAUD_19200]); | |
2964 WRITE_UART_REGISTER (uart, DLM, dlh[FD_BAUD_19200]); | |
2965 | |
2966 /* | |
2967 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
2968 */ | |
2969 | |
2970 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
2971 | |
2972 /* | |
2973 * Select UART mode. | |
2974 */ | |
2975 | |
2976 WRITE_UART_REGISTER (uart, MDR1, UART_MODE | | |
2977 IR_SLEEP_DISABLED | | |
2978 SIR_TX_WITHOUT_ACREG2 | | |
2979 FRAME_LENGTH_METHOD); | |
2980 | |
2981 /* | |
2982 * Read the state of RTS (RTS on RS232, CTS on chipset). | |
2983 */ | |
2984 | |
2985 status = READ_UART_REGISTER (uart, MSR); | |
2986 | |
2987 if (status & MCTS) | |
2988 uart->rts_level = 0; | |
2989 else | |
2990 uart->rts_level = 1; | |
2991 | |
2992 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
2993 /* | |
2994 * On C & D-Sample, 2 I/O are used to control DCD and DTR on UART Modem. | |
2995 * DCD: I/O 2 (output) | |
2996 * DTR: I/O 3 (input) | |
2997 */ | |
2998 | |
2999 #define EXTENDED_MCU_REG (0xFFFEF006) /* Extended MCU register */ | |
3000 #define ASIC_CONFIG_REG (0xFFFEF008) /* Asic Configuration register */ | |
3001 | |
3002 #define IO_DTR (10) /* I/O 3; bit 10 of Asic Configuration register */ | |
3003 #define IO_DCD ( 6) /* I/O 2; bit 6 of Extended MCU register */ | |
3004 | |
3005 /* | |
3006 * Select I/O for DCD and configure it as output. | |
3007 * DCD should start HIGH (not asserted). | |
3008 */ | |
3009 | |
3010 *((volatile SYS_UWORD16 *) EXTENDED_MCU_REG) &= ~(1 << IO_DCD); | |
3011 AI_ConfigBitAsOutput (ARMIO_DCD); | |
3012 AI_SetBit (ARMIO_DCD); | |
3013 | |
3014 /* | |
3015 * Select I/O for DTR and configure it as input. | |
3016 * An interrupt is used to detect a change of state of DTR. Falling edge | |
3017 * or rising edge is selected according to the state of DTR. | |
3018 */ | |
3019 | |
3020 *((volatile SYS_UWORD16 *) ASIC_CONFIG_REG) &= ~(1 << IO_DTR); | |
3021 AI_ConfigBitAsInput (ARMIO_DTR); | |
3022 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
3023 | |
3024 if (uart->dtr_level) | |
3025 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
3026 else | |
3027 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
3028 | |
3029 AI_UnmaskIT (ARMIO_MASKIT_GPIO); | |
3030 | |
3031 /* | |
3032 * Reset the 2 indexes of the circular buffer of 2 elements. | |
3033 * The circular buffer does not need to be initialized. | |
3034 */ | |
3035 | |
3036 uart->index_it = 0; | |
3037 uart->index_hisr = 0; | |
3038 #elif (CHIPSET == 12) | |
3039 /* | |
3040 * DCD and DTR are directly handled by Calypso+. | |
3041 * Force DCD pin to HIGH | |
3042 */ | |
3043 | |
3044 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
3045 | |
3046 /* | |
3047 * Read the state of DTR (DTR on RS232, DSR on chipset). | |
3048 */ | |
3049 | |
3050 status = READ_UART_REGISTER (uart, MSR); | |
3051 | |
3052 if (status & MDSR) | |
3053 uart->dtr_level = 0; | |
3054 else | |
3055 uart->dtr_level = 1; | |
3056 | |
3057 /* | |
3058 * Reset the 2 indexes of the circular buffer of 2 elements. | |
3059 * The circular buffer does not need to be initialized. | |
3060 */ | |
3061 | |
3062 uart->index_it = 0; | |
3063 uart->index_hisr = 0; | |
3064 #endif /* BOARD == 8, 9, 40 or 41, CHIPSET == 12 */ | |
3065 | |
3066 /* | |
3067 * Unmask RX interrupt and the modem status interrupt. | |
3068 */ | |
3069 | |
3070 WRITE_UART_REGISTER (uart, IER, ERBI | EDSSI); | |
3071 | |
3072 #if (CHIPSET == 12) | |
3073 /* | |
3074 * Unmask DSR interrupt in order to detect a change of state of DTR. | |
3075 */ | |
3076 | |
3077 ENABLE_DSR_INTERRUPT (uart); | |
3078 #endif | |
3079 | |
3080 return (FD_OK); | |
3081 } | |
3082 | |
3083 /******************************************************************************* | |
3084 * | |
3085 * UAF_Enable | |
3086 * | |
3087 * Purpose : The functionalities of the UART driver are disabled or enabled. | |
3088 * In the deactivated state, all information about the communication | |
3089 * parameters should be stored and recalled if the driver is again | |
3090 * enabled. When the driver is enabled the RX and TX buffers are | |
3091 * cleared. | |
3092 * | |
3093 * Arguments: In : uartNo: Used UART. | |
3094 * : enable: 1: enable the driver | |
3095 * 0: disable the driver | |
3096 * Out: none | |
3097 * | |
3098 * Returns : FD_OK : Successful operation. | |
3099 * FD_NOT_SUPPORTED: Wrong UART number. | |
3100 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3101 * | |
3102 ******************************************************************************/ | |
3103 | |
3104 T_FDRET | |
3105 UAF_Enable (T_fd_UartId uartNo, | |
3106 SYS_BOOL enable) | |
3107 { | |
3108 t_uart *uart; | |
3109 | |
3110 /* | |
3111 * Check UART number. | |
3112 * A return is used to simplify the code. | |
3113 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3114 * flow control is not supported. | |
3115 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3116 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3117 */ | |
3118 | |
3119 if (uartNo != UAF_UART_1) | |
3120 return (FD_NOT_SUPPORTED); | |
3121 | |
3122 /* | |
3123 * There is no case where FD_INTERNAL_ERR may be returned. | |
3124 */ | |
3125 | |
3126 uart = &uart_parameters; | |
3127 | |
3128 if (enable) { | |
3129 | |
3130 uart->rx_stopped_by_driver = 0; | |
3131 | |
3132 ENABLE_DRIVER (uart); | |
3133 start_receiver (uart); | |
3134 | |
3135 } else { | |
3136 | |
3137 DISABLE_DRIVER (uart); | |
3138 stop_receiver (uart); | |
3139 | |
3140 uart->tx_in = &(uart->tx_buffer[0]); | |
3141 uart->rx_in = &(uart->rx_buffer[0]); | |
3142 uart->tx_out = uart->tx_in; | |
3143 uart->rx_out = uart->rx_in; | |
3144 } | |
3145 | |
3146 return (FD_OK); | |
3147 } | |
3148 | |
3149 /******************************************************************************* | |
3150 * | |
3151 * UAF_SetComPar | |
3152 * | |
3153 * Purpose : Sets up the communication parameters: baud rate, bits per | |
3154 * character, number of stop bits, parity. | |
3155 * | |
3156 * Arguments: In : uartNo : Used UART. | |
3157 * baudrate: Used baud rate. | |
3158 * bpc : Used bits per character. | |
3159 * sb : Used stop bits. | |
3160 * parity : Used parity. | |
3161 * Out: none | |
3162 * | |
3163 * Returns : FD_OK : Successful operation. | |
3164 * FD_NOT_SUPPORTED: The specified parameters don't fit to the | |
3165 * capabilities of the UART or wrong UART number. | |
3166 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3167 * | |
3168 ******************************************************************************/ | |
3169 | |
3170 T_FDRET | |
3171 UAF_SetComPar (T_fd_UartId uartNo, | |
3172 T_baudrate baudrate, | |
3173 T_bitsPerCharacter bpc, | |
3174 T_stopBits sb, | |
3175 T_parity parity) | |
3176 { | |
3177 t_uart *uart; | |
3178 volatile SYS_UWORD8 mcr_value; | |
3179 volatile SYS_UWORD8 status; | |
3180 | |
3181 /* | |
3182 * Check UART number. | |
3183 * A return is used to simplify the code. | |
3184 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3185 * flow control is not supported. | |
3186 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3187 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3188 */ | |
3189 | |
3190 if (uartNo != UAF_UART_1) | |
3191 return (FD_NOT_SUPPORTED); | |
3192 | |
3193 /* | |
3194 * There is no case where FD_INTERNAL_ERR may be returned. | |
3195 * pa_space is not supported. Some baudrates are not supported too. | |
3196 * A return is used to simplify the code. | |
3197 */ | |
3198 | |
3199 if ((!baudrate_value[baudrate]) || | |
3200 (parity == pa_space)) | |
3201 | |
3202 return (FD_NOT_SUPPORTED); | |
3203 | |
3204 uart = &uart_parameters; | |
3205 | |
3206 /* | |
3207 * Mask all interrupts causes and disable sleep mode and low power mode. | |
3208 */ | |
3209 | |
3210 WRITE_UART_REGISTER (uart, IER, 0x00); | |
3211 | |
3212 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
3213 AI_MaskIT (ARMIO_MASKIT_GPIO); | |
3214 #elif (CHIPSET == 12) | |
3215 DISABLE_DSR_INTERRUPT (uart); | |
3216 #endif | |
3217 | |
3218 /* | |
3219 * Reset UART mode configuration. | |
3220 */ | |
3221 | |
3222 WRITE_UART_REGISTER (uart, MDR1, RESET_DEFAULT_STATE | | |
3223 IR_SLEEP_DISABLED | | |
3224 SIR_TX_WITHOUT_ACREG2 | | |
3225 FRAME_LENGTH_METHOD); | |
3226 | |
3227 /* | |
3228 * FIFO configuration. | |
3229 * EFR[4] = 1 to allow to program FCR[5:4] and MCR[7:5]. | |
3230 */ | |
3231 | |
3232 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
3233 SET_BIT (uart, EFR, ENHANCED_FEATURE_BIT); | |
3234 | |
3235 /* | |
3236 * Select the word length, the number of stop bits , the parity and set | |
3237 * LCR[7] (DLAB) to allow to program FCR, DLL and DLM. | |
3238 */ | |
3239 | |
3240 uart->baudrate = baudrate_value[baudrate]; | |
3241 uart->autobauding = (baudrate == FD_BAUD_AUTO); /* if autobauding enable trigger */ | |
3242 uart->bits_per_char = 1; /* Start bit. */ | |
3243 mcr_value = DLAB; | |
3244 | |
3245 if (bpc == bpc_7) { | |
3246 | |
3247 mcr_value |= WLS_7; | |
3248 uart->bits_per_char += 7; | |
3249 | |
3250 } else { | |
3251 | |
3252 mcr_value |= WLS_8; | |
3253 uart->bits_per_char += 8; | |
3254 } | |
3255 | |
3256 if (sb == sb_2) { | |
3257 | |
3258 mcr_value |= STB; | |
3259 uart->bits_per_char += 2; | |
3260 | |
3261 } else | |
3262 uart->bits_per_char += 1; | |
3263 | |
3264 switch (parity) { | |
3265 | |
3266 case pa_even: | |
3267 | |
3268 mcr_value |= (PEN | EPS); | |
3269 uart->bits_per_char += 1; | |
3270 | |
3271 break; | |
3272 | |
3273 case pa_odd: | |
3274 | |
3275 mcr_value |= PEN; | |
3276 uart->bits_per_char += 1; | |
3277 | |
3278 break; | |
3279 | |
3280 default: | |
3281 | |
3282 /* | |
3283 * There is nothing to do. | |
3284 */ | |
3285 | |
3286 break; | |
3287 } | |
3288 | |
3289 WRITE_UART_REGISTER (uart, LCR, mcr_value); | |
3290 | |
3291 /* | |
3292 * Program the trigger levels. | |
3293 * MCR[6] must be set to 1. | |
3294 */ | |
3295 | |
3296 SET_BIT (uart, MCR, TCR_TLR_BIT); | |
3297 WRITE_UART_REGISTER (uart, TCR, 0x0F); | |
3298 WRITE_UART_REGISTER (uart, TLR, RX_FIFO_TRIGGER_LEVEL); | |
3299 RESET_BIT (uart, MCR, TCR_TLR_BIT); | |
3300 | |
3301 /* | |
3302 * Force the generation of THR_IT on TX FIFO empty: SCR[3] = 1. | |
3303 */ | |
3304 | |
3305 WRITE_UART_REGISTER ( | |
3306 uart, SCR, READ_UART_REGISTER (uart, SCR) | TX_EMPTY_CTL_IT); | |
3307 | |
3308 /* | |
3309 * Program the FIFO control register. Bit 0 must be set when other FCR bits | |
3310 * are written to or they are not programmed. | |
3311 * FCR is a write-only register. It will not be modified. | |
3312 */ | |
3313 | |
3314 WRITE_UART_REGISTER (uart, FCR, FIFO_ENABLE | | |
3315 RX_FIFO_RESET | /* self cleared */ | |
3316 TX_FIFO_RESET); /* self cleared */ | |
3317 | |
3318 /* | |
3319 * Program the baud generator. | |
3320 */ | |
3321 | |
3322 WRITE_UART_REGISTER (uart, DLL, dll[baudrate]); | |
3323 WRITE_UART_REGISTER (uart, DLM, dlh[baudrate]); | |
3324 | |
3325 /* | |
3326 * Reset LCR[7] (DLAB) to have access to the RBR, THR and IER registers. | |
3327 */ | |
3328 | |
3329 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) & ~DLAB); | |
3330 | |
3331 /* | |
3332 * Select UART mode. | |
3333 */ | |
3334 | |
3335 WRITE_UART_REGISTER (uart, MDR1, ((baudrate==FD_BAUD_AUTO)? | |
3336 UART_MODE_AUTOBAUDING: | |
3337 UART_MODE) | | |
3338 IR_SLEEP_DISABLED | | |
3339 SIR_TX_WITHOUT_ACREG2 | | |
3340 FRAME_LENGTH_METHOD); | |
3341 | |
3342 /* | |
3343 * Read the state of RTS (RTS on RS232, CTS on chipset). | |
3344 */ | |
3345 | |
3346 status = READ_UART_REGISTER (uart, MSR); | |
3347 | |
3348 if (status & MCTS) | |
3349 uart->rts_level = 0; | |
3350 else | |
3351 uart->rts_level = 1; | |
3352 | |
3353 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
3354 /* | |
3355 * Read the state of DTR and select the edge. | |
3356 */ | |
3357 | |
3358 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
3359 | |
3360 if (uart->dtr_level) | |
3361 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
3362 else | |
3363 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
3364 | |
3365 AI_UnmaskIT (ARMIO_MASKIT_GPIO); | |
3366 #elif (CHIPSET == 12) | |
3367 /* | |
3368 * Read the state of DTR - No need to reload MSR register since its value | |
3369 * is still stored in the "status" local variable. | |
3370 */ | |
3371 | |
3372 if (status & MDSR) | |
3373 uart->dtr_level = 0; | |
3374 else | |
3375 uart->dtr_level = 1; | |
3376 #endif | |
3377 | |
3378 #if ((CHIPSET == 5) || (CHIPSET == 6)) | |
3379 /* | |
3380 * Unmask RX and TX interrupts and the modem status interrupt. | |
3381 */ | |
3382 | |
3383 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3384 #elif (CHIPSET == 12) | |
3385 /* | |
3386 * Unmask RX and TX interrupts and the modem status interrupt... | |
3387 */ | |
3388 | |
3389 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3390 | |
3391 /* | |
3392 * ... Then, unmask DSR interrupt... | |
3393 */ | |
3394 | |
3395 ENABLE_DSR_INTERRUPT (uart); | |
3396 | |
3397 /* | |
3398 * ... And finally allow sleep mode. | |
3399 */ | |
3400 | |
3401 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3402 /* | |
3403 WRITE_UART_REGISTER (uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
3404 */ | |
3405 #else | |
3406 /* | |
3407 * Unmask RX and TX interrupts and the modem status interrupt | |
3408 * and allow sleep mode. | |
3409 */ | |
3410 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3411 | |
3412 /* WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI | IER_SLEEP);*/ | |
3413 | |
3414 WRITE_UART_REGISTER (uart, IER, ERBI | ETBEI | EDSSI); | |
3415 #endif | |
3416 | |
3417 | |
3418 return (FD_OK); | |
3419 } | |
3420 | |
3421 /******************************************************************************* | |
3422 * | |
3423 * UAF_SetBuffer | |
3424 * | |
3425 * Purpose : Sets up the size of the circular buffers to be used in the UART | |
3426 * driver. This function may be called only if the UART is disabled | |
3427 * with UAF_Enable. | |
3428 * | |
3429 * Arguments: In : uartNo : Used UART. | |
3430 * bufSize : Specifies the size of the circular buffer. | |
3431 * rxThreshold: Amount of received bytes that leads to a call | |
3432 * to suspended read-out function which is passed | |
3433 * to the function UAF_ReadData. | |
3434 * txThreshold: Amount of bytes in the TX buffer to call the | |
3435 * suspended write-in function which is passed to | |
3436 * the function UAF_WriteData | |
3437 * Out: none | |
3438 * | |
3439 * Returns : FD_OK : Successful operation. | |
3440 * FD_NOT_SUPPORTED: bufSize exceeds the maximal possible | |
3441 * capabilities of the driver or the threshold | |
3442 * values don't correspond to the bufSize or | |
3443 * wrong UART number. | |
3444 * FD_INTERNAL_ERR : Internal problem with the hardware or the | |
3445 * function has been called while the UART is | |
3446 * enabled. | |
3447 * | |
3448 ******************************************************************************/ | |
3449 | |
3450 T_FDRET | |
3451 UAF_SetBuffer (T_fd_UartId uartNo, | |
3452 SYS_UWORD16 bufSize, | |
3453 SYS_UWORD16 rxThreshold, | |
3454 SYS_UWORD16 txThreshold) | |
3455 { | |
3456 T_FDRET result; | |
3457 t_uart *uart; | |
3458 | |
3459 /* | |
3460 * Check UART number. | |
3461 * A return is used to simplify the code. | |
3462 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3463 * flow control is not supported. | |
3464 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3465 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3466 */ | |
3467 | |
3468 if (uartNo != UAF_UART_1) | |
3469 return (FD_NOT_SUPPORTED); | |
3470 | |
3471 if ((bufSize > FD_MAX_BUFFER_SIZE) || | |
3472 (rxThreshold > FD_MAX_BUFFER_SIZE) || | |
3473 (txThreshold > FD_MAX_BUFFER_SIZE)) | |
3474 | |
3475 result = FD_NOT_SUPPORTED; | |
3476 | |
3477 else { | |
3478 | |
3479 uart = &uart_parameters; | |
3480 | |
3481 if (!DRIVER_DISABLED (uart)) | |
3482 result = FD_INTERNAL_ERR; | |
3483 | |
3484 else if (RX_HIGH_WATERMARK (bufSize) < RX_LOW_WATERMARK (bufSize)) | |
3485 result = FD_NOT_SUPPORTED; | |
3486 | |
3487 else { | |
3488 | |
3489 uart->buffer_size = bufSize; | |
3490 uart->rx_threshold_level = rxThreshold; | |
3491 uart->tx_threshold_level = txThreshold; | |
3492 | |
3493 result = FD_OK; | |
3494 } | |
3495 } | |
3496 | |
3497 return (result); | |
3498 } | |
3499 | |
3500 /******************************************************************************* | |
3501 * | |
3502 * UAF_SetFlowCtrl | |
3503 * | |
3504 * Purpose : Changes the flow control mode of the UART driver. | |
3505 * If a flow control is activated, DTR is activated or XOFF is sent | |
3506 * if the RX buffer is not able to store the received characters else | |
3507 * DTR is deactivated or XON is sent. | |
3508 * | |
3509 * Arguments: In : uartNo: Used UART. | |
3510 * fcMode: flow control mode (none, DTR/DSR, RTS/CTS, XON/XOFF). | |
3511 * XON : ASCII code of the XON character. | |
3512 * XOFF : ASCII code of the XOFF character. | |
3513 * Out: none | |
3514 * | |
3515 * Returns : FD_OK : Successful operation. | |
3516 * FD_NOT_SUPPORTED: The flow control mode is not supported or wrong | |
3517 * UART number. | |
3518 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3519 * | |
3520 ******************************************************************************/ | |
3521 | |
3522 T_FDRET | |
3523 UAF_SetFlowCtrl (T_fd_UartId uartNo, | |
3524 T_flowCtrlMode fcMode, | |
3525 SYS_UWORD8 XON, | |
3526 SYS_UWORD8 XOFF) | |
3527 { | |
3528 T_FDRET result; | |
3529 t_uart *uart; | |
3530 | |
3531 /* | |
3532 * Check UART number. | |
3533 * A return is used to simplify the code. | |
3534 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3535 * flow control is not supported. | |
3536 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3537 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3538 */ | |
3539 | |
3540 if (uartNo != UAF_UART_1) | |
3541 return (FD_NOT_SUPPORTED); | |
3542 | |
3543 /* | |
3544 * There is no case where FD_INTERNAL_ERR may be returned. | |
3545 * The DTR/DSR protocol is not supported. | |
3546 */ | |
3547 | |
3548 if (fcMode == fc_dtr) | |
3549 result = FD_NOT_SUPPORTED; | |
3550 | |
3551 else { | |
3552 | |
3553 uart = &uart_parameters; | |
3554 | |
3555 uart->tx_stopped_by_driver = 0; | |
3556 | |
3557 | |
3558 uart->xon_character = XON; | |
3559 uart->xoff_character = XOFF; | |
3560 uart->flow_control_mode = fcMode; | |
3561 | |
3562 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3563 /* | |
3564 * Disable sleep mode. | |
3565 */ | |
3566 | |
3567 WRITE_UART_REGISTER ( | |
3568 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3569 #endif | |
3570 | |
3571 WRITE_UART_REGISTER ( | |
3572 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
3573 | |
3574 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3575 /* | |
3576 * Re-enable sleep mode. | |
3577 */ | |
3578 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
3579 /* | |
3580 WRITE_UART_REGISTER ( | |
3581 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
3582 */ | |
3583 #endif | |
3584 | |
3585 if (fcMode == fc_rts) { | |
3586 #if 1 // Dmitriy: enable hardware assisted CTS | |
3587 volatile SYS_UWORD8 oldValue; | |
3588 | |
3589 oldValue = READ_UART_REGISTER (uart, LCR); | |
3590 | |
3591 // LCR value to allow acces to EFR | |
3592 | |
3593 WRITE_UART_REGISTER (uart, LCR, 0xBF); | |
3594 | |
3595 // enable hardware assisted CTS | |
3596 | |
3597 SET_BIT (uart, EFR, AUTO_CTS_BIT); | |
3598 | |
3599 WRITE_UART_REGISTER (uart, LCR, oldValue); | |
3600 #endif | |
3601 if (uart->rts_level) | |
3602 uart->tx_stopped_by_driver = 1; | |
3603 } | |
3604 | |
3605 /* | |
3606 * If the high watermark is reached, RTS is activated or XOFF is sent | |
3607 * according to the flow control mode. Else, RTS is deactivated or XON | |
3608 * is sent. | |
3609 */ | |
3610 | |
3611 if (fcMode != fc_none) { | |
3612 | |
3613 if (get_bytes_in_rx_buffer (uart) >= RX_HIGH_WATERMARK ( | |
3614 uart->buffer_size)) { | |
3615 | |
3616 uart->rx_stopped_by_driver = 1; | |
3617 stop_receiver (uart); | |
3618 | |
3619 } else if (!DRIVER_DISABLED (uart)) { | |
3620 | |
3621 uart->rx_stopped_by_driver = 0; | |
3622 start_receiver (uart); | |
3623 } | |
3624 | |
3625 } else { | |
3626 | |
3627 uart->rx_stopped_by_driver = 0; | |
3628 uart->tx_stopped_by_driver = 0; | |
3629 } | |
3630 | |
3631 result = FD_OK; | |
3632 } | |
3633 | |
3634 return (result); | |
3635 } | |
3636 | |
3637 /******************************************************************************* | |
3638 * | |
3639 * UAF_SetEscape | |
3640 * | |
3641 * Purpose : To return to the command mode at the ACI while a data connection | |
3642 * is established, an escape sequence has to be detected. | |
3643 * To distinguish between user data and the escape sequence a | |
3644 * defined guard period is necessary before and after this sequence. | |
3645 * | |
3646 * Arguments: In: uartNo : Used UART. | |
3647 * escChar : ASCII character which could appear three times | |
3648 * as an escape sequence. | |
3649 * guardPeriod: Denotes the minimal duration of the rest before | |
3650 * the first and after the last character of the | |
3651 * escape sequence, and the maximal receiving | |
3652 * duration of the whole escape string. This value | |
3653 * is expressed in ms. | |
3654 * Out: none | |
3655 * | |
3656 * Returns : FD_OK : Successful operation. | |
3657 * FD_NOT_SUPPORTED: Wrong UART number. | |
3658 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3659 * | |
3660 ******************************************************************************/ | |
3661 | |
3662 T_FDRET | |
3663 UAF_SetEscape (T_fd_UartId uartNo, | |
3664 SYS_UWORD8 escChar, | |
3665 SYS_UWORD16 guardPeriod) | |
3666 { | |
3667 t_uart *uart; | |
3668 | |
3669 /* | |
3670 * Check UART number. | |
3671 * A return is used to simplify the code. | |
3672 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3673 * flow control is not supported. | |
3674 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3675 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3676 */ | |
3677 | |
3678 if (uartNo != UAF_UART_1) | |
3679 return (FD_NOT_SUPPORTED); | |
3680 | |
3681 /* | |
3682 * There is no case where FD_INTERNAL_ERR may be returned. | |
3683 */ | |
3684 | |
3685 uart = &uart_parameters; | |
3686 | |
3687 uart->esc_seq_modified = 1; | |
3688 uart->esc_seq_character = escChar; | |
3689 uart->guard_period = CONVERT_TIME_IN_TDMA ((UNSIGNED) guardPeriod); | |
3690 uart->esc_seq_modified = 0; /* Set to 0 by the RX interrupt handler. */ | |
3691 | |
3692 return (FD_OK); | |
3693 } | |
3694 | |
3695 /******************************************************************************* | |
3696 * | |
3697 * UAF_InpAvail | |
3698 * | |
3699 * Purpose : Returns the number of characters available in the RX buffer of the | |
3700 * driver. If the driver is disabled the function returns 0. | |
3701 * | |
3702 * Arguments: In : uartNo: Used UART. | |
3703 * Out: none | |
3704 * | |
3705 * Returns : >= 0 : The returned value is the amount of data in the | |
3706 * RX buffer. | |
3707 * FD_NOT_SUPPORTED: Wrong UART number. | |
3708 * FD_NOT_READY : The function is called while the callback of the | |
3709 * readOutFunc function is activated and still not | |
3710 * terminated. | |
3711 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3712 * | |
3713 ******************************************************************************/ | |
3714 | |
3715 T_FDRET | |
3716 UAF_InpAvail (T_fd_UartId uartNo) | |
3717 { | |
3718 T_FDRET result; | |
3719 t_uart *uart; | |
3720 SYS_UWORD16 bytes_read; | |
3721 SYS_UWORD16 bytes_in_rx_buffer; | |
3722 | |
3723 /* | |
3724 * Check UART number. | |
3725 * A return is used to simplify the code. | |
3726 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3727 * flow control is not supported. | |
3728 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3729 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3730 */ | |
3731 | |
3732 if (uartNo != UAF_UART_1) | |
3733 return (FD_NOT_SUPPORTED); | |
3734 | |
3735 /* | |
3736 * There is no case where FD_INTERNAL_ERR may be returned. | |
3737 */ | |
3738 | |
3739 uart = &uart_parameters; | |
3740 | |
3741 if (uart->rd_call_setup == rm_notDefined) | |
3742 result = FD_NOT_READY; | |
3743 | |
3744 else if (DRIVER_DISABLED (uart)) | |
3745 result = 0; | |
3746 | |
3747 else { | |
3748 | |
3749 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
3750 | |
3751 /* | |
3752 * Update reading pointer of the RX buffer if a callback from LISR | |
3753 * has been done. | |
3754 */ | |
3755 | |
3756 if (uart->rd_call_from_hisr_in_progress) { | |
3757 | |
3758 bytes_read = uart->rd_size_before_call[0] - | |
3759 uart->rd_size_after_call[0] + | |
3760 uart->rd_size_before_call[1] - | |
3761 uart->rd_size_after_call[1]; | |
3762 | |
3763 uart->rx_out += bytes_read; | |
3764 | |
3765 if (uart->rx_out >= &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
3766 uart->rx_out = uart->rx_out - uart->buffer_size - 1; | |
3767 | |
3768 /* | |
3769 * Check if the low watermark is reached to enable the receiver. | |
3770 */ | |
3771 | |
3772 bytes_in_rx_buffer = get_bytes_in_rx_buffer (uart); | |
3773 | |
3774 if ((uart->flow_control_mode != fc_none) && | |
3775 (bytes_in_rx_buffer <= RX_LOW_WATERMARK (uart->buffer_size))) { | |
3776 | |
3777 if ((!uart->rx_stopped_by_application) && | |
3778 uart->rx_stopped_by_driver) | |
3779 start_receiver (uart); | |
3780 | |
3781 uart->rx_stopped_by_driver = 0; | |
3782 } | |
3783 | |
3784 uart->rd_call_from_hisr_in_progress = 0; | |
3785 } | |
3786 | |
3787 result = (T_FDRET) bytes_in_rx_buffer; | |
3788 } | |
3789 | |
3790 return (result); | |
3791 } | |
3792 | |
3793 /******************************************************************************* | |
3794 * | |
3795 * UAF_OutpAvail | |
3796 * | |
3797 * Purpose : Returns the number of free characters in TX buffer of the driver. | |
3798 * If the driver is disabled the function returns 0. | |
3799 * | |
3800 * Arguments: In : uartNo: Used UART. | |
3801 * Out: none | |
3802 * | |
3803 * Returns : >= 0 : The returned value is the amount of data in the | |
3804 * TX buffer. | |
3805 * FD_NOT_SUPPORTED: Wrong UART number. | |
3806 * FD_NOT_READY : The function is called while the callback of the | |
3807 * writeInFunc function is activated and still not | |
3808 * terminated. | |
3809 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
3810 * | |
3811 ******************************************************************************/ | |
3812 | |
3813 T_FDRET | |
3814 UAF_OutpAvail (T_fd_UartId uartNo) | |
3815 { | |
3816 T_FDRET result; | |
3817 t_uart *uart; | |
3818 SYS_UWORD16 bytes_written; | |
3819 | |
3820 /* | |
3821 * Check UART number. | |
3822 * A return is used to simplify the code. | |
3823 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3824 * flow control is not supported. | |
3825 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3826 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3827 */ | |
3828 | |
3829 if (uartNo != UAF_UART_1) | |
3830 return (FD_NOT_SUPPORTED); | |
3831 | |
3832 /* | |
3833 * There is no case where FD_INTERNAL_ERR may be returned. | |
3834 */ | |
3835 | |
3836 uart = &uart_parameters; | |
3837 | |
3838 if (uart->wr_call_setup == rm_notDefined) | |
3839 result = FD_NOT_READY; | |
3840 | |
3841 else if (DRIVER_DISABLED (uart)) | |
3842 result = 0; | |
3843 | |
3844 else { | |
3845 | |
3846 /* | |
3847 * Update reading pointer of the TX buffer if a callback from LISR | |
3848 * has been done. | |
3849 */ | |
3850 | |
3851 if (uart->wr_call_from_hisr_in_progress) { | |
3852 | |
3853 bytes_written = uart->wr_size_before_call[0] - | |
3854 uart->wr_size_after_call[0] + | |
3855 uart->wr_size_before_call[1] - | |
3856 uart->wr_size_after_call[1]; | |
3857 | |
3858 uart->tx_in += bytes_written; | |
3859 | |
3860 if (uart->tx_in >= &(uart->tx_buffer[0]) + uart->buffer_size + 1) | |
3861 uart->tx_in = uart->tx_in - uart->buffer_size - 1; | |
3862 | |
3863 uart->wr_call_from_hisr_in_progress = 0; | |
3864 | |
3865 /* | |
3866 * if the TX FIFO is empty, unmask TX empty interrupt. | |
3867 */ | |
3868 | |
3869 if (!uart->tx_stopped_by_driver && | |
3870 (READ_UART_REGISTER (uart, LSR) & THRE)) | |
3871 { | |
3872 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3873 /* | |
3874 * Disable sleep mode. | |
3875 */ | |
3876 | |
3877 WRITE_UART_REGISTER ( | |
3878 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3879 #endif | |
3880 | |
3881 /* | |
3882 * Unmask Tx interrupt. | |
3883 */ | |
3884 | |
3885 WRITE_UART_REGISTER ( | |
3886 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
3887 } | |
3888 } | |
3889 | |
3890 result = (T_FDRET) (uart->buffer_size - get_bytes_in_tx_buffer (uart)); | |
3891 } | |
3892 | |
3893 return (result); | |
3894 } | |
3895 | |
3896 /******************************************************************************* | |
3897 * | |
3898 * UAF_EnterSleep | |
3899 * | |
3900 * Purpose : Checks if UART is ready to enter Deep Sleep. If ready, enables | |
3901 * wake-up interrupt. | |
3902 * | |
3903 * Arguments: In : uartNo: Used UART. | |
3904 * Out: none | |
3905 * | |
3906 * Returns : 0 : Deep Sleep is not possible. | |
3907 * >= 1 : Deep Sleep is possible. | |
3908 * FD_NOT_SUPPORTED: Wrong UART number. | |
3909 * | |
3910 * Warning: Parameters are not verified. | |
3911 * | |
3912 ******************************************************************************/ | |
3913 | |
3914 T_FDRET | |
3915 UAF_EnterSleep (T_fd_UartId uartNo) | |
3916 { | |
3917 t_uart *uart; | |
3918 SYS_BOOL deep_sleep; | |
3919 volatile SYS_UWORD8 status; | |
3920 | |
3921 /* | |
3922 * Check UART number. | |
3923 * A return is used to simplify the code. | |
3924 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
3925 * flow control is not supported. | |
3926 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
3927 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
3928 */ | |
3929 | |
3930 if (uartNo != UAF_UART_1) | |
3931 return (FD_NOT_SUPPORTED); | |
3932 | |
3933 uart = &uart_parameters; | |
3934 deep_sleep = 0; | |
3935 | |
3936 /* | |
3937 * Check if RX & TX FIFOs are both empty | |
3938 */ | |
3939 | |
3940 status = READ_UART_REGISTER (uart, LSR); | |
3941 | |
3942 if (!(status & DR) && | |
3943 (status & TEMT)) { | |
3944 | |
3945 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
3946 /* | |
3947 * Disable sleep mode. | |
3948 */ | |
3949 | |
3950 WRITE_UART_REGISTER ( | |
3951 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
3952 #endif | |
3953 | |
3954 #if (CHIPSET == 12) | |
3955 /* | |
3956 * Mask DSR interrupt. | |
3957 */ | |
3958 | |
3959 DISABLE_DSR_INTERRUPT (uart); | |
3960 #endif | |
3961 | |
3962 /* | |
3963 * Mask RX, TX and the modem status interrupts. | |
3964 */ | |
3965 | |
3966 WRITE_UART_REGISTER ( | |
3967 uart, IER, READ_UART_REGISTER (uart, IER) & | |
3968 ~(ERBI | ETBEI | EDSSI)); | |
3969 | |
3970 /* | |
3971 * Enable the wake-up interrupt. | |
3972 */ | |
3973 | |
3974 ENABLE_WAKEUP_INTERRUPT (uart); | |
3975 | |
3976 deep_sleep = 1; | |
3977 } | |
3978 | |
3979 return (deep_sleep); | |
3980 } | |
3981 | |
3982 /******************************************************************************* | |
3983 * | |
3984 * UAF_WakeUp | |
3985 * | |
3986 * Purpose : Wakes up UART after Deep Sleep. | |
3987 * | |
3988 * Arguments: In : uartNo: Used UART. | |
3989 * Out: none | |
3990 * | |
3991 * Returns : FD_OK : Successful operation. | |
3992 * FD_NOT_SUPPORTED: Wrong UART number. | |
3993 * | |
3994 * Warning: Parameters are not verified. | |
3995 * | |
3996 ******************************************************************************/ | |
3997 | |
3998 T_FDRET | |
3999 UAF_WakeUp (T_fd_UartId uartNo) | |
4000 { | |
4001 t_uart *uart; | |
4002 | |
4003 /* | |
4004 * Check UART number. | |
4005 * A return is used to simplify the code. | |
4006 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4007 * flow control is not supported. | |
4008 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4009 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4010 */ | |
4011 | |
4012 if (uartNo != UAF_UART_1) | |
4013 return (FD_NOT_SUPPORTED); | |
4014 | |
4015 uart = &uart_parameters; | |
4016 | |
4017 /* | |
4018 * Disable the wake-up interrupt. | |
4019 */ | |
4020 | |
4021 DISABLE_WAKEUP_INTERRUPT (uart); | |
4022 | |
4023 /* | |
4024 * Unmask RX and modem status interrupts. | |
4025 */ | |
4026 | |
4027 WRITE_UART_REGISTER ( | |
4028 uart, IER, READ_UART_REGISTER (uart, IER) | (ERBI | EDSSI)); | |
4029 | |
4030 #if (CHIPSET == 12) | |
4031 /* | |
4032 * Unmask DSR interrupt. | |
4033 */ | |
4034 | |
4035 ENABLE_DSR_INTERRUPT (uart); | |
4036 #endif | |
4037 | |
4038 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4039 /* | |
4040 * Allow sleep mode. | |
4041 */ | |
4042 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
4043 /* | |
4044 WRITE_UART_REGISTER ( | |
4045 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
4046 */ | |
4047 #endif | |
4048 | |
4049 return (FD_OK); | |
4050 } | |
4051 | |
4052 /******************************************************************************* | |
4053 * | |
4054 * UAF_ReadData | |
4055 * | |
4056 * Purpose : To read the received characters out of the RX buffer the address | |
4057 * of a function is passed. If characters are available, the driver | |
4058 * calls this function and pass the address and the amount of | |
4059 * readable characters. Because the RX buffer is circular, the | |
4060 * callback function may be called with more than one address of | |
4061 * buffer fragment. | |
4062 * The readOutFunc function modifies the contents of the size array | |
4063 * to return the driver the number of processed characters. Each | |
4064 * array entry is decremented by the number of bytes read in the | |
4065 * fragment. | |
4066 * If the UAF_ReadData is called while the RX buffer is empty, it | |
4067 * depends on the suspend parameter to suspend the call-back or to | |
4068 * leave without any operation. In the case of suspension, the | |
4069 * return value of UAF_ReadData is UAF_SUSPENDED. A delayed call-back | |
4070 * will be performed if: | |
4071 * - the RX buffer reachs the adjusted threshold (rxThreshold of | |
4072 * UAF_SetBuffer), | |
4073 * - the state of a V.24 input line has changed, | |
4074 * - a break is detected, | |
4075 * - an escape sequence is detected. | |
4076 * If no suspension is necessary the function returns the number of | |
4077 * processed bytes. | |
4078 * | |
4079 * Arguments: In : uartNo : Used UART. | |
4080 * suspend : mode of suspension in case of RX buffer empty. | |
4081 * readOutFunc: Callback function. | |
4082 * cldFromIrq: The driver sets this parameter to 1 | |
4083 * if the callback function is called | |
4084 * from an interrupt service routine. | |
4085 * reInstall : The call-back function sets this | |
4086 * parameter to rm_reInstall if the | |
4087 * driver must call again the callback | |
4088 * function when the RX threshold level | |
4089 * is reached. Else it will be set to | |
4090 * rm_noInstall. Before to call the | |
4091 * readOutFunc function this parameter | |
4092 * is set to rm_notDefined. | |
4093 * nsource : Informed the callback function about | |
4094 * the number of fragments which are | |
4095 * ready to copy from the circular RX | |
4096 * buffer. | |
4097 * source : Array which contains the addresses | |
4098 * of the fragments. | |
4099 * size : Array which contains the sizes of | |
4100 * each fragments. | |
4101 * state : The state parameter is the status | |
4102 * of the V.24 lines and the break / | |
4103 * escape detection. The state | |
4104 * parameter is described in the | |
4105 * specification of UAF_GetLineState. | |
4106 * Out: none | |
4107 * | |
4108 * Returns : >= 0 : Succesful operation. Amount of processed bytes. | |
4109 * FD_NOT_SUPPORTED: Wrong UART number. | |
4110 * FD_SUSPENDED : The callback is suspended until the buffer or | |
4111 * state condition changed. | |
4112 * FD_NOT_READY : The function is called while the callback is | |
4113 * activated and still not terminated. | |
4114 * FD_INTERNAL_ERR : Internal problems with the hardware. | |
4115 * | |
4116 ******************************************************************************/ | |
4117 | |
4118 T_FDRET | |
4119 UAF_ReadData (T_fd_UartId uartNo, | |
4120 T_suspendMode suspend, | |
4121 void (readOutFunc (SYS_BOOL cldFromIrq, | |
4122 T_reInstMode *reInstall, | |
4123 SYS_UWORD8 nsource, | |
4124 SYS_UWORD8 *source[], | |
4125 SYS_UWORD16 size[], | |
4126 SYS_UWORD32 state))) | |
4127 { | |
4128 T_FDRET result; | |
4129 t_uart *uart; | |
4130 SYS_UWORD16 bytes_read; | |
4131 SYS_UWORD16 bytes_in_rx_buffer; | |
4132 | |
4133 /* | |
4134 * Check UART number. | |
4135 * A return is used to simplify the code. | |
4136 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4137 * flow control is not supported. | |
4138 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4139 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4140 */ | |
4141 | |
4142 if (uartNo != UAF_UART_1) | |
4143 return (FD_NOT_SUPPORTED); | |
4144 | |
4145 /* | |
4146 * There is no case where FD_INTERNAL_ERR may be returned. | |
4147 */ | |
4148 | |
4149 uart = &uart_parameters; | |
4150 | |
4151 if (uart->rd_call_setup == rm_notDefined) | |
4152 result = FD_NOT_READY; | |
4153 | |
4154 else if (get_bytes_in_rx_buffer (uart) || uart->esc_seq_received) { | |
4155 | |
4156 uart->readOutFunc = readOutFunc; | |
4157 update_reading_callback (uart, 0); /* 0: call from application. */ | |
4158 | |
4159 bytes_read = uart->rd_size_before_call[0] - | |
4160 uart->rd_size_after_call[0] + | |
4161 uart->rd_size_before_call[1] - | |
4162 uart->rd_size_after_call[1]; | |
4163 | |
4164 uart->rx_out += bytes_read; | |
4165 | |
4166 if (uart->rx_out >= &(uart->rx_buffer[0]) + uart->buffer_size + 1) | |
4167 uart->rx_out = uart->rx_out - uart->buffer_size - 1; | |
4168 | |
4169 /* | |
4170 * Check if the low watermark is reached to enable the receiver. | |
4171 */ | |
4172 | |
4173 if ((uart->flow_control_mode != fc_none) && | |
4174 (get_bytes_in_rx_buffer (uart) <= RX_LOW_WATERMARK ( | |
4175 uart->buffer_size))) { | |
4176 | |
4177 if ((!uart->rx_stopped_by_application) && | |
4178 uart->rx_stopped_by_driver && (!uart->rx_stopped_by_lisr)) | |
4179 start_receiver (uart); | |
4180 | |
4181 uart->rx_stopped_by_driver = 0; | |
4182 } | |
4183 | |
4184 uart->esc_seq_received = 0; | |
4185 result = (T_FDRET) bytes_read; | |
4186 | |
4187 } else if (suspend == sm_suspend) { | |
4188 | |
4189 uart->readOutFunc = readOutFunc; | |
4190 uart->reading_suspended = 1; | |
4191 result = FD_SUSPENDED; | |
4192 | |
4193 } else { | |
4194 | |
4195 /* | |
4196 * The previous callback function is deinstalled. | |
4197 */ | |
4198 | |
4199 uart->rd_call_setup = rm_noInstall; | |
4200 uart->reading_suspended = 0; | |
4201 result = 0; /* 0 byte read. */ | |
4202 } | |
4203 | |
4204 return (result); | |
4205 } | |
4206 | |
4207 /******************************************************************************* | |
4208 * | |
4209 * UAF_WriteData | |
4210 * | |
4211 * Purpose : To write characters into the TX buffer the address of a function | |
4212 * is passed. If free space is available in the buffer, the driver | |
4213 * calls this function and passes the destination address and the | |
4214 * amount of space. Because the TX buffer is circular, the callback | |
4215 * function may be called with more than one address of buffer | |
4216 * fragment. | |
4217 * The writeInFunc function modifies the contents of the size array | |
4218 * to return the driver the number of processed bytes. Each array | |
4219 * entry is decremented by the number of bytes written in this | |
4220 * fragment. | |
4221 * If the UAF_WriteData function is called while the TX buffer is | |
4222 * full, it depends on the suspend parameter to suspend the | |
4223 * call-back or to leave this function without any operation. In the | |
4224 * case of suspension the returned value of the UAF_WriteData is | |
4225 * UAF_SUSPENDED. A delayed call-back will be performed if the TX | |
4226 * buffer reaches the adjusted threshold (txThreshold of | |
4227 * UAF_SetBuffer). If no suspension is necessary the function returns | |
4228 * the number of processed bytes. | |
4229 * | |
4230 * Arguments: In : uartNo : Used UART. | |
4231 * suspend : mode of suspension in case of TX buffer empty. | |
4232 * writeInFunc: Callback function. | |
4233 * cldFromIrq: The driver sets this parameter to 1 | |
4234 * if the call-back function is called | |
4235 * from an interrupt service routine. | |
4236 * reInstall : The callback function sets this | |
4237 * parameter to rm_reInstall if the | |
4238 * driver must call again the callback | |
4239 * function when the TX threshold level | |
4240 * is reached. Else it will be set to | |
4241 * rm_noInstall. Before to call the | |
4242 * writeInFunc function this parameter | |
4243 * is set to rm_notDefined. | |
4244 * ndest : Informed the callback function about | |
4245 * the number of fragments which are | |
4246 * available in the TX buffer. | |
4247 * dest : Array which contains the addresses | |
4248 * of the fragments. | |
4249 * size : Array which contains the sizes of | |
4250 * each fragments. | |
4251 * Out: none | |
4252 * | |
4253 * Returns : >= 0 : Succesful operation. Amount of processed bytes. | |
4254 * FD_NOT_SUPPORTED: Wrong UART number. | |
4255 * FD_SUSPENDED : The callback is suspended until the buffer | |
4256 * condition changed. | |
4257 * FD_NOT_READY : The function is called while the callback is | |
4258 * activated and still not terminated. | |
4259 * FD_INTERNAL_ERR : Internal problems with the hardware. | |
4260 * | |
4261 ******************************************************************************/ | |
4262 | |
4263 T_FDRET | |
4264 UAF_WriteData (T_fd_UartId uartNo, | |
4265 T_suspendMode suspend, | |
4266 void (writeInFunc (SYS_BOOL cldFromIrq, | |
4267 T_reInstMode *reInstall, | |
4268 SYS_UWORD8 ndest, | |
4269 SYS_UWORD8 *dest[], | |
4270 SYS_UWORD16 size[]))) | |
4271 { | |
4272 T_FDRET result; | |
4273 t_uart *uart; | |
4274 SYS_UWORD16 bytes_written; | |
4275 | |
4276 /* | |
4277 * Check UART number. | |
4278 * A return is used to simplify the code. | |
4279 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4280 * flow control is not supported. | |
4281 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4282 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4283 */ | |
4284 | |
4285 if (uartNo != UAF_UART_1) | |
4286 return (FD_NOT_SUPPORTED); | |
4287 | |
4288 /* | |
4289 * There is no case where FD_INTERNAL_ERR may be returned. | |
4290 */ | |
4291 | |
4292 uart = &uart_parameters; | |
4293 | |
4294 if (uart->wr_call_setup == rm_notDefined) | |
4295 result = FD_NOT_READY; | |
4296 | |
4297 else if ((!DRIVER_DISABLED (uart)) && | |
4298 (get_bytes_in_tx_buffer (uart) < uart->buffer_size)) { | |
4299 | |
4300 uart->writeInFunc = writeInFunc; | |
4301 update_writing_callback (uart, 0); /* 0: call from application. */ | |
4302 | |
4303 bytes_written = uart->wr_size_before_call[0] - | |
4304 uart->wr_size_after_call[0] + | |
4305 uart->wr_size_before_call[1] - | |
4306 uart->wr_size_after_call[1]; | |
4307 | |
4308 uart->tx_in += bytes_written; | |
4309 | |
4310 if (uart->tx_in >= &(uart->tx_buffer[0]) + uart->buffer_size + 1) | |
4311 uart->tx_in = uart->tx_in - uart->buffer_size - 1; | |
4312 | |
4313 /* If we have been stopped due to high RTS, we have to | |
4314 * wake up application processor by IRQ via IO1 -HW */ | |
4315 if (uart->tx_stopped_by_driver) | |
4316 HighGPIO(1); | |
4317 | |
4318 /* | |
4319 * If: | |
4320 * - there is no break to send, | |
4321 * - the flow control is not activated, | |
4322 * unmask the TX empty interrupt to be able to send characters. | |
4323 */ | |
4324 if (!uart->break_to_send && | |
4325 !uart->tx_stopped_by_driver) | |
4326 { | |
4327 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4328 /* | |
4329 * Disable sleep mode. | |
4330 */ | |
4331 | |
4332 WRITE_UART_REGISTER ( | |
4333 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
4334 #endif | |
4335 | |
4336 /* | |
4337 * Unmask Tx interrupt. | |
4338 */ | |
4339 | |
4340 WRITE_UART_REGISTER ( | |
4341 uart, IER, READ_UART_REGISTER (uart, IER) | ETBEI); | |
4342 } | |
4343 | |
4344 result = (T_FDRET) bytes_written; | |
4345 | |
4346 } else if (suspend == sm_suspend) { | |
4347 | |
4348 uart->writeInFunc = writeInFunc; | |
4349 uart->writing_suspended = 1; | |
4350 result = FD_SUSPENDED; | |
4351 | |
4352 } else { | |
4353 | |
4354 /* | |
4355 * The previous callback function is deinstalled. | |
4356 */ | |
4357 | |
4358 uart->wr_call_setup = rm_noInstall; | |
4359 uart->writing_suspended = 0; | |
4360 result = 0; | |
4361 } | |
4362 | |
4363 return (result); | |
4364 } | |
4365 | |
4366 /******************************************************************************* | |
4367 * | |
4368 * UAF_StopRec | |
4369 * | |
4370 * Purpose : If a flow control mode is set, this function tells the terminal | |
4371 * equipment that no more data can be received. | |
4372 * XON/XOFF: XOFF is sent. | |
4373 * DTR/DSR : DTR is desactivated. | |
4374 * RTS/CTS : RTS is deactivated. | |
4375 * | |
4376 * Arguments: In : uartNo: Used UART. | |
4377 * Out: none | |
4378 * | |
4379 * Returns : FD_OK : Successful operation. | |
4380 * FD_NOT_SUPPORTED: Wrong UART number. | |
4381 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4382 * | |
4383 ******************************************************************************/ | |
4384 | |
4385 T_FDRET | |
4386 UAF_StopRec (T_fd_UartId uartNo) | |
4387 { | |
4388 t_uart *uart; | |
4389 | |
4390 /* | |
4391 * Check UART number. | |
4392 * A return is used to simplify the code. | |
4393 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4394 * flow control is not supported. | |
4395 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4396 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4397 */ | |
4398 | |
4399 if (uartNo != UAF_UART_1) | |
4400 return (FD_NOT_SUPPORTED); | |
4401 | |
4402 /* | |
4403 * There is no case where FD_INTERNAL_ERR may be returned. | |
4404 */ | |
4405 | |
4406 uart = &uart_parameters; | |
4407 | |
4408 if (uart->flow_control_mode != fc_none) | |
4409 stop_receiver (uart); | |
4410 | |
4411 uart->rx_stopped_by_application = 1; | |
4412 | |
4413 return (FD_OK); | |
4414 } | |
4415 | |
4416 /******************************************************************************* | |
4417 * | |
4418 * UAF_StartRec | |
4419 * | |
4420 * Purpose : If a flow control mode is set, this function tells the terminal | |
4421 * equipment that the receiver is again able to receive more data. | |
4422 * If the buffer has already reached the high water mark the driver | |
4423 * sends the signal only if the buffer drains to a low water mark. | |
4424 * XON/XOFF: XON is sent. | |
4425 * DTR/DSR : DTR is activated. | |
4426 * RTS/CTS : RTS is activated. | |
4427 * | |
4428 * Arguments: In : uartNo: Used UART. | |
4429 * Out: none | |
4430 * | |
4431 * Returns : FD_OK : Successful operation. | |
4432 * FD_NOT_SUPPORTED: Wrong UART number. | |
4433 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4434 * | |
4435 ******************************************************************************/ | |
4436 | |
4437 T_FDRET | |
4438 UAF_StartRec (T_fd_UartId uartNo) | |
4439 { | |
4440 t_uart *uart; | |
4441 | |
4442 /* | |
4443 * Check UART number. | |
4444 * A return is used to simplify the code. | |
4445 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4446 * flow control is not supported. | |
4447 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4448 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4449 */ | |
4450 | |
4451 if (uartNo != UAF_UART_1) | |
4452 return (FD_NOT_SUPPORTED); | |
4453 | |
4454 /* | |
4455 * There is no case where FD_INTERNAL_ERR may be returned. | |
4456 */ | |
4457 | |
4458 uart = &uart_parameters; | |
4459 | |
4460 if ((uart->flow_control_mode != fc_none) && (!uart->rx_stopped_by_driver)) | |
4461 start_receiver (uart); | |
4462 | |
4463 uart->rx_stopped_by_application = 0; | |
4464 | |
4465 return (FD_OK); | |
4466 } | |
4467 | |
4468 /******************************************************************************* | |
4469 * | |
4470 * UAF_GetLineState | |
4471 * | |
4472 * Purpose : Returns the state of the V.24 lines, the flow control state and | |
4473 * the result of the break/escape detection process as a bit field. | |
4474 * | |
4475 * Arguments: In : uartNo: Used UART. | |
4476 * Out: state : State of the V.24 lines, the flow control state and | |
4477 * the result of the break/escape sequence detection | |
4478 * process as a bit field. | |
4479 * | |
4480 * Returns : FD_OK : Successful operation. | |
4481 * FD_NOT_SUPPORTED: Wrong UART number. | |
4482 * FD_NOT_READY : The function is called while the callback of | |
4483 * the readOutFunc function is activated and still | |
4484 * not terminated. | |
4485 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4486 * | |
4487 ******************************************************************************/ | |
4488 | |
4489 T_FDRET | |
4490 UAF_GetLineState (T_fd_UartId uartNo, | |
4491 SYS_UWORD32 *state) | |
4492 { | |
4493 T_FDRET result; | |
4494 t_uart *uart; | |
4495 | |
4496 /* | |
4497 * Check UART number. | |
4498 * A return is used to simplify the code. | |
4499 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4500 * flow control is not supported. | |
4501 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4502 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4503 */ | |
4504 | |
4505 if (uartNo != UAF_UART_1) | |
4506 return (FD_NOT_SUPPORTED); | |
4507 | |
4508 /* | |
4509 * There is no case where FD_INTERNAL_ERR may be returned. | |
4510 * Signals not supported are reported as 0. | |
4511 */ | |
4512 | |
4513 uart = &uart_parameters; | |
4514 | |
4515 if (uart->rd_call_setup == rm_notDefined) | |
4516 result = FD_NOT_READY; | |
4517 | |
4518 else { | |
4519 | |
4520 /* | |
4521 * The field state_2 is used when state_1 is set to 0 to avoid to | |
4522 * lose events detected in the RX interrupt handler. | |
4523 * Fields BRK and BRKLEN are set when a break is detected. | |
4524 * The field ESC is set when an escape sequence is detected. | |
4525 */ | |
4526 | |
4527 *state = uart->state_2; | |
4528 uart->state_2 = 0; | |
4529 uart->state = &(uart->state_2); | |
4530 | |
4531 *state |= uart->state_1; | |
4532 uart->state_1 = 0; | |
4533 uart->state = &(uart->state_1); | |
4534 | |
4535 *state |= ((((SYS_UWORD32) uart->rts_level) << RTS) | | |
4536 | |
4537 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4538 (((SYS_UWORD32) uart->dtr_level) << DTR) | | |
4539 #endif | |
4540 | |
4541 (((SYS_UWORD32) (uart->tx_stopped_by_application | | |
4542 uart->tx_stopped_by_driver)) << TXSTP) | | |
4543 | |
4544 (((SYS_UWORD32) (uart->rx_stopped_by_application | | |
4545 uart->rx_stopped_by_driver)) << RXSTP) | | |
4546 | |
4547 (((SYS_UWORD32) (uart->buffer_size - | |
4548 get_bytes_in_rx_buffer (uart))) << RXBLEV)); | |
4549 | |
4550 /* | |
4551 * Fields SA, SB and X are set according to the flow control: | |
4552 * | |
4553 * None RTS/CTS XON/XOFF | |
4554 * SA DTR DTR DTR | |
4555 * SB RTS 0 RTS | |
4556 * X 0 RTS XON:0 XOFF:1 (transmitter) | |
4557 * | |
4558 * DTR is supported on C, D & E-Sample. | |
4559 */ | |
4560 | |
4561 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4562 *state |= (((SYS_UWORD32) uart->dtr_level) << SA); | |
4563 #endif | |
4564 | |
4565 if (uart->flow_control_mode != fc_rts) | |
4566 *state |= (((SYS_UWORD32) uart->rts_level) << SB); | |
4567 | |
4568 if (uart->flow_control_mode == fc_rts) | |
4569 *state |= (((SYS_UWORD32) uart->rts_level) << X); | |
4570 | |
4571 else if ((uart->flow_control_mode == fc_xoff) && | |
4572 (uart->tx_stopped_by_application || | |
4573 uart->tx_stopped_by_driver)) | |
4574 *state |= (1 << X); | |
4575 | |
4576 result = FD_OK; | |
4577 } | |
4578 | |
4579 return (result); | |
4580 } | |
4581 | |
4582 /******************************************************************************* | |
4583 * | |
4584 * UAF_SetLineState | |
4585 * | |
4586 * Purpose : Sets the states of the V.24 status lines according to the bit | |
4587 * field of the parameter state. | |
4588 * | |
4589 * Arguments: In : uartNo: Used UART. | |
4590 * state : Bit field. Only the signals which are marked with | |
4591 * the 'set' access can be used to change the state of | |
4592 * the signal. | |
4593 * mask : Bit field with the same structure as state. Each bit | |
4594 * in state corresponds to a bit in mask. Settabled | |
4595 * bits marked by a 1 are manipulated by the driver. | |
4596 * Out: none | |
4597 * | |
4598 * Returns : FD_OK : Successful operation. | |
4599 * FD_NOT_SUPPORTED: Wrong UART number. | |
4600 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4601 * | |
4602 ******************************************************************************/ | |
4603 | |
4604 T_FDRET | |
4605 UAF_SetLineState (T_fd_UartId uartNo, | |
4606 SYS_UWORD32 state, | |
4607 SYS_UWORD32 mask) | |
4608 { | |
4609 t_uart *uart; | |
4610 UNSIGNED break_length; | |
4611 | |
4612 /* | |
4613 * Check UART number. | |
4614 * A return is used to simplify the code. | |
4615 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4616 * flow control is not supported. | |
4617 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4618 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4619 */ | |
4620 | |
4621 if (uartNo != UAF_UART_1) | |
4622 return (FD_NOT_SUPPORTED); | |
4623 | |
4624 uart = &uart_parameters; | |
4625 | |
4626 /* | |
4627 * There is no case where FD_INTERNAL_ERR may be returned. | |
4628 * DCD is supported on C, D & E-Sample. The SA field is not supported because | |
4629 * DSR is not supported on all platforms. | |
4630 */ | |
4631 | |
4632 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4633 if (mask & (1 << SA)) | |
4634 #else | |
4635 if ((mask & (1 << SA)) || (mask & (1 << DCD))) | |
4636 #endif | |
4637 return (FD_NOT_SUPPORTED); /* Return used to simplify the code */ | |
4638 | |
4639 /* | |
4640 * Check if a break has to be sent. | |
4641 */ | |
4642 | |
4643 uart->break_length = (UNSIGNED) ((state >> BRKLEN) & 0xFF); | |
4644 | |
4645 if (state & (1 << BRK) && (mask & (1 << BRK))) { | |
4646 | |
4647 if (uart->break_length > FIFO_SIZE) | |
4648 return (FD_NOT_SUPPORTED); /* Return used to simplify the code */ | |
4649 | |
4650 else { | |
4651 | |
4652 uart->time_without_character = | |
4653 compute_break_time (uart->baudrate, uart->bits_per_char, 3); | |
4654 | |
4655 uart->break_to_send = 1; | |
4656 | |
4657 /* | |
4658 * If the TX FIFO is empty the break is send from this function | |
4659 * else the interrupt handler will send the break. | |
4660 */ | |
4661 | |
4662 if (READ_UART_REGISTER (uart, LSR) & TEMT) | |
4663 send_break(uart); | |
4664 } | |
4665 } | |
4666 | |
4667 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4668 /* | |
4669 * Disable sleep mode. | |
4670 */ | |
4671 | |
4672 WRITE_UART_REGISTER ( | |
4673 uart, IER, READ_UART_REGISTER (uart, IER) & ~IER_SLEEP); | |
4674 #endif | |
4675 | |
4676 /* | |
4677 * The CTS field is ignored if the X bit in the mask is set. In this case | |
4678 * the X bit controls CTS. | |
4679 */ | |
4680 | |
4681 if (mask & (1 << CTS)) { | |
4682 | |
4683 if (uart->flow_control_mode != fc_rts) { | |
4684 | |
4685 /* | |
4686 * As the RTS/CTS flow control is not selected, the X bit does not | |
4687 * control CTS. CTS needs only to be activated or deactivated | |
4688 * according to the value of the CTS field. | |
4689 */ | |
4690 | |
4691 if (state & (1 << CTS)) | |
4692 WRITE_UART_REGISTER ( | |
4693 uart, MCR, READ_UART_REGISTER (uart, MCR) | MRTS); | |
4694 | |
4695 else | |
4696 WRITE_UART_REGISTER ( | |
4697 uart, MCR, READ_UART_REGISTER (uart, MCR) & ~MRTS); | |
4698 | |
4699 } else if (!(mask & (1 << X))) { | |
4700 | |
4701 /* | |
4702 * The RTS/CTS flow control is selected but the X bit in the mask | |
4703 * is null. Then the CTS bit controls CTS and the receiver must be | |
4704 * stopped or started according to the state of the CTS bit. | |
4705 * The receiver is started only if it was not stopped by the driver | |
4706 * and if it was stopped by the application. | |
4707 */ | |
4708 | |
4709 if (state & (1 << CTS)) { | |
4710 | |
4711 if (!uart->rx_stopped_by_application) { | |
4712 | |
4713 if (!uart->rx_stopped_by_driver) | |
4714 stop_receiver (uart); | |
4715 | |
4716 uart->rx_stopped_by_application = 1; | |
4717 } | |
4718 | |
4719 } else { | |
4720 | |
4721 if ((!uart->rx_stopped_by_driver) && | |
4722 uart->rx_stopped_by_application) | |
4723 start_receiver (uart); | |
4724 | |
4725 uart->rx_stopped_by_application = 0; | |
4726 } | |
4727 } | |
4728 } | |
4729 | |
4730 /* | |
4731 * The DCD field is ignored if the SB bit of the mask is set. | |
4732 */ | |
4733 | |
4734 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4735 | |
4736 if (!(mask & (1 << SB)) && (mask & (1 << DCD))) { | |
4737 | |
4738 if (state & (1 << DCD)) { | |
4739 /* Turn on DCD */ | |
4740 #if (CHIPSET == 12) | |
4741 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) | MDCD); | |
4742 #else | |
4743 AI_ResetBit (ARMIO_DCD); | |
4744 #endif | |
4745 } else { | |
4746 /* Turn off DCD */ | |
4747 #if (CHIPSET == 12) | |
4748 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
4749 #else | |
4750 AI_SetBit (ARMIO_DCD); | |
4751 #endif | |
4752 } | |
4753 } | |
4754 | |
4755 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
4756 | |
4757 /* | |
4758 * Signals are set according to fields SA, SB and X states and flow | |
4759 * control: | |
4760 * | |
4761 * None RTS/CTS XON/XOFF | |
4762 * SA 0 (ns) 0 (ns) 0 (ns) | |
4763 * SB DCD DCD DCD | |
4764 * X ignore CTS XON:0 XOFF:1 (receiver) | |
4765 * | |
4766 * ns: signal not supported. | |
4767 * DCD is supported on C, D & E-Sample. | |
4768 */ | |
4769 | |
4770 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4771 | |
4772 if (mask & (1 << SB)) { | |
4773 | |
4774 if (state & (1 << SB)) { | |
4775 /* Turn on DCD */ | |
4776 #if (CHIPSET == 12) | |
4777 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) | MDCD); | |
4778 #else | |
4779 AI_ResetBit (ARMIO_DCD); | |
4780 #endif | |
4781 } else { | |
4782 /* Turn off DCD */ | |
4783 #if (CHIPSET == 12) | |
4784 WRITE_UART_REGISTER (uart, MCR, READ_UART_REGISTER(uart, MCR) & ~MDCD); | |
4785 #else | |
4786 AI_SetBit (ARMIO_DCD); | |
4787 #endif | |
4788 } | |
4789 } | |
4790 | |
4791 #endif /* BOARD 8 or 9 or 40 or 41 or CHIPSET 12 */ | |
4792 | |
4793 if ((mask & (1 << X)) && | |
4794 (uart->flow_control_mode != fc_none)) { | |
4795 | |
4796 if (state & (1 << X)) { | |
4797 | |
4798 if (!uart->rx_stopped_by_application) { | |
4799 | |
4800 if (!uart->rx_stopped_by_driver) | |
4801 stop_receiver (uart); | |
4802 | |
4803 uart->rx_stopped_by_application = 1; | |
4804 } | |
4805 | |
4806 } else { | |
4807 | |
4808 /* | |
4809 * The receiver is started only if it is not stopped by the driver | |
4810 * and if it is stopped by the application. | |
4811 */ | |
4812 | |
4813 if ((!uart->rx_stopped_by_driver) && | |
4814 uart->rx_stopped_by_application) | |
4815 start_receiver (uart); | |
4816 | |
4817 uart->rx_stopped_by_application = 0; | |
4818 } | |
4819 } | |
4820 | |
4821 #if ((CHIPSET != 5) && (CHIPSET != 6)) | |
4822 /* | |
4823 * Re-enable sleep mode. | |
4824 */ | |
4825 /* BELOW LINES WERE COMMENTED TO DISABLE SLEEP MODE IN DRIVER */ | |
4826 /* | |
4827 WRITE_UART_REGISTER ( | |
4828 uart, IER, READ_UART_REGISTER (uart, IER) | IER_SLEEP); | |
4829 */ | |
4830 #endif | |
4831 | |
4832 return (FD_OK); | |
4833 } | |
4834 | |
4835 /******************************************************************************* | |
4836 * | |
4837 * UAF_InterruptHandler | |
4838 * | |
4839 * Purpose : Interrupt handler. | |
4840 * | |
4841 * Arguments: In : uart_id : origin of interrupt | |
4842 * interrupt_status: source of interrupt | |
4843 * Out: none | |
4844 * | |
4845 * Returns : none | |
4846 * | |
4847 ******************************************************************************/ | |
4848 | |
4849 void | |
4850 UAF_InterruptHandler (T_fd_UartId uart_id, | |
4851 SYS_UWORD8 interrupt_status) | |
4852 { | |
4853 | |
4854 t_uart *uart; | |
4855 | |
4856 /* | |
4857 * uart_id is not used. | |
4858 */ | |
4859 | |
4860 uart = &uart_parameters; | |
4861 | |
4862 uart->current_time = NU_Retrieve_Clock (); | |
4863 | |
4864 /* | |
4865 * Causes of interrupt: | |
4866 * - trigger level reached, | |
4867 * - character time-out indication, | |
4868 * - transmitter holding register empty, | |
4869 * - modem status. | |
4870 */ | |
4871 | |
4872 switch (interrupt_status) { | |
4873 | |
4874 case RX_DATA: | |
4875 | |
4876 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41) || (CHIPSET == 12)) | |
4877 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
4878 uart->dtr_change_detected[uart->index_it] = 0; | |
4879 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
4880 #endif | |
4881 read_rx_fifo (uart); | |
4882 | |
4883 // Disable Autobaud and lock baudrate upon first received character | |
4884 if (uart->autobauding != 0) | |
4885 { | |
4886 /* MSMSMSMS */ | |
4887 SYS_UWORD8 uasr; | |
4888 T_baudrate baudrate; | |
4889 T_bitsPerCharacter bpc; | |
4890 T_parity parity; | |
4891 | |
4892 WRITE_UART_REGISTER (uart, LCR, READ_UART_REGISTER (uart, LCR) | DLAB); | |
4893 | |
4894 | |
4895 uasr = READ_UART_REGISTER (uart, UASR); | |
4896 | |
4897 switch (uasr & 0x1F) | |
4898 { | |
4899 case 0x01: baudrate = FD_BAUD_115200; break; | |
4900 case 0x02: baudrate = FD_BAUD_57600; break; | |
4901 case 0x03: baudrate = FD_BAUD_38400; break; | |
4902 case 0x04: baudrate = FD_BAUD_28800; break; | |
4903 case 0x05: baudrate = FD_BAUD_19200; break; | |
4904 case 0x06: baudrate = FD_BAUD_14400; break; | |
4905 case 0x07: baudrate = FD_BAUD_9600; break; | |
4906 case 0x08: baudrate = FD_BAUD_4800; break; | |
4907 case 0x09: baudrate = FD_BAUD_2400; break; | |
4908 case 0x0A: baudrate = FD_BAUD_1200; break; | |
4909 default: /* no baudrate detected, abort for now */ | |
4910 return; | |
4911 } | |
4912 | |
4913 switch (uasr>>5 & 0x01) | |
4914 { | |
4915 case 0x00: bpc = bpc_7; break; | |
4916 case 0x01: bpc = bpc_8; break; | |
4917 } | |
4918 | |
4919 switch (uasr>>6 & 0x03) | |
4920 { | |
4921 case 0x00: parity = pa_none; break; | |
4922 case 0x01: parity = pa_space; break; | |
4923 case 0x02: parity = pa_even; break; | |
4924 case 0x03: parity = pa_odd; break; | |
4925 } | |
4926 | |
4927 UAF_SetComPar (UAF_UART_1, | |
4928 baudrate, | |
4929 bpc, | |
4930 sb_1, | |
4931 parity); | |
4932 | |
4933 uart->baudrate = baudrate_value[FD_BAUD_AUTO]; /* remember autobauding */ | |
4934 } | |
4935 | |
4936 break; | |
4937 | |
4938 case TX_EMPTY: | |
4939 | |
4940 fill_tx_fifo (uart); | |
4941 break; | |
4942 | |
4943 case MODEM_STATUS: | |
4944 | |
4945 check_v24_input_lines (uart); | |
4946 break; | |
4947 } | |
4948 } | |
4949 | |
4950 /******************************************************************************* | |
4951 * | |
4952 * UAF_CheckXEmpty | |
4953 * | |
4954 * Purpose : Checks the empty condition of the Transmitter. | |
4955 * | |
4956 * Arguments: In : uartNo: Used UART. | |
4957 * Out: none | |
4958 * | |
4959 * Returns : FD_OK : Empty condition OK. | |
4960 * FD_NOT_SUPPORTED: Wrong UART number. | |
4961 * FD_NOT_READY : Empty condition not OK. | |
4962 * FD_INTERNAL_ERR : Internal problem with the hardware. | |
4963 * | |
4964 ******************************************************************************/ | |
4965 | |
4966 T_FDRET | |
4967 UAF_CheckXEmpty (T_fd_UartId uartNo) | |
4968 { | |
4969 T_FDRET result; | |
4970 t_uart *uart; | |
4971 SYS_UWORD8 status; | |
4972 | |
4973 /* | |
4974 * Check UART number. | |
4975 * A return is used to simplify the code. | |
4976 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
4977 * flow control is not supported. | |
4978 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
4979 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
4980 */ | |
4981 | |
4982 if (uartNo != UAF_UART_1) | |
4983 return (FD_NOT_SUPPORTED); | |
4984 | |
4985 /* | |
4986 * There is no case where FD_INTERNAL_ERR may be returned. | |
4987 */ | |
4988 | |
4989 result = FD_OK; | |
4990 | |
4991 uart = &uart_parameters; | |
4992 status = READ_UART_REGISTER (uart, LSR); | |
4993 | |
4994 /* | |
4995 * Checks if: | |
4996 * - the TX SW Buffer is empty, | |
4997 * - the TX HW FIFO is empty (THRE), | |
4998 * - the Transmitter Shift Register is empty (TEMT). | |
4999 */ | |
5000 | |
5001 if (!(TX_BUFFER_EMPTY (uart)) || | |
5002 !(status & THRE) || | |
5003 !(status & TEMT)) | |
5004 | |
5005 result = FD_NOT_READY; | |
5006 | |
5007 return (result); | |
5008 } | |
5009 | |
5010 #if ((BOARD == 8) || (BOARD == 9) || (BOARD == 40) || (BOARD == 41)) | |
5011 /******************************************************************************* | |
5012 * | |
5013 * UAF_DTRInterruptHandler | |
5014 * | |
5015 * Purpose : This function is only used on C & D-Sample. On this platform, the | |
5016 * DTR signal is controlled with an I/O. A change of state of this | |
5017 * signal is detected with an interrupt. This function is called when | |
5018 * this interrupt occurs. | |
5019 * | |
5020 * Arguments: In : none | |
5021 * Out: none | |
5022 * | |
5023 * Returns : none | |
5024 * | |
5025 ******************************************************************************/ | |
5026 | |
5027 void | |
5028 UAF_DTRInterruptHandler (void) | |
5029 { | |
5030 t_uart *uart; | |
5031 | |
5032 uart = &uart_parameters; | |
5033 | |
5034 /* | |
5035 * Read the state of DTR and change the edge to detect the next change | |
5036 * of DTR. | |
5037 */ | |
5038 | |
5039 uart->dtr_level = AI_ReadBit (ARMIO_DTR); | |
5040 | |
5041 if (uart->dtr_level) | |
5042 { | |
5043 AI_SelectIOForIT (ARMIO_DTR, ARMIO_FALLING_EDGE); | |
5044 if (uart->flow_control_mode != fc_dtr && uart->baudrate == baudrate_value[FD_BAUD_AUTO]) | |
5045 UAF_SetComPar (UAF_UART_1, FD_BAUD_AUTO, bpc_8, sb_1, pa_none); | |
5046 } | |
5047 else | |
5048 AI_SelectIOForIT (ARMIO_DTR, ARMIO_RISING_EDGE); | |
5049 | |
5050 /* | |
5051 * The reading callback function has to be called. But bytes received before | |
5052 * the change of state of DTR must be copied into the RX buffer before to | |
5053 * call it. | |
5054 */ | |
5055 | |
5056 if (READ_UART_REGISTER (uart, LSR) & DR) { /* If Rx FIFO is not empty */ | |
5057 | |
5058 /* | |
5059 * The Rx FIFO will be read to fill one of the two buffers and the Rx | |
5060 * HISR will be activated. | |
5061 */ | |
5062 | |
5063 uart->index_it = (uart->index_it + 1) & 0x01; /* 0 or 1 */ | |
5064 uart->dtr_change_detected[uart->index_it] = 1; | |
5065 uart->dtr_level_saved[uart->index_it] = uart->dtr_level; | |
5066 read_rx_fifo (uart); | |
5067 | |
5068 } else | |
5069 (void) NU_Activate_HISR (&(uart->v24_hisr_ctrl_block)); | |
5070 | |
5071 } | |
5072 #endif /* BOARD 8 or 9 or 40 or 41 */ | |
5073 | |
5074 #if (defined BTEMOBILE && (CHIPSET != 12)) | |
5075 /******************************************************************************* | |
5076 * | |
5077 * UAF_Exit | |
5078 * | |
5079 * Purpose : | |
5080 * | |
5081 * Arguments: In : uartNo: Used UART. | |
5082 * Out: none | |
5083 * | |
5084 * Returns : FD_OK : Successful operation. | |
5085 * FD_NOT_SUPPORTED: Wrong UART number. | |
5086 * FD_INTERNAL_ERR : Internal problem. | |
5087 * | |
5088 ******************************************************************************/ | |
5089 | |
5090 T_FDRET | |
5091 UAF_Exit (T_fd_UartId uartNo) | |
5092 { | |
5093 t_uart *uart; | |
5094 | |
5095 /* | |
5096 * Check UART number. | |
5097 * A return is used to simplify the code. | |
5098 * UART IrDA (UAF_UART_0) can't be used for F&D on Ulysse because hardware | |
5099 * flow control is not supported. | |
5100 * DCD and DTR are not supported on UART Irda on C & D-Sample. | |
5101 * DCD and DTR are not supported on UART Irda & Modem2 on E-Sample. | |
5102 */ | |
5103 | |
5104 if (uartNo != UAF_UART_1) | |
5105 return (FD_NOT_SUPPORTED); | |
5106 | |
5107 uart = &uart_parameters; | |
5108 | |
5109 /* | |
5110 * Delete the 3 HISR actived in the RX/TX and V24 interrupt handlers. | |
5111 * A return is used to simplify the code if an error occurs. | |
5112 */ | |
5113 | |
5114 if (NU_Delete_HISR (&(uart->rx_hisr_ctrl_block)) != NU_SUCCESS) | |
5115 return (FD_INTERNAL_ERR); | |
5116 | |
5117 if (NU_Delete_HISR (&(uart->tx_hisr_ctrl_block)) != NU_SUCCESS) | |
5118 return (FD_INTERNAL_ERR); | |
5119 | |
5120 if (NU_Delete_HISR (&(uart->v24_hisr_ctrl_block)) != NU_SUCCESS) | |
5121 return (FD_INTERNAL_ERR); | |
5122 | |
5123 /* | |
5124 * Delete the HISR used to send a break. | |
5125 * A return is used to simplify the code if an error occurs. | |
5126 */ | |
5127 | |
5128 if (NU_Delete_HISR (&(uart->break_hisr_ctrl_block)) != NU_SUCCESS) | |
5129 return (FD_INTERNAL_ERR); | |
5130 | |
5131 /* | |
5132 * Disable and then delete the timer used in the break HISR | |
5133 * A return is used to simplify the code if an error occurs. | |
5134 */ | |
5135 | |
5136 (void) NU_Control_Timer (&(uart->break_timer_ctrl_block), | |
5137 NU_DISABLE_TIMER); | |
5138 | |
5139 if (NU_Delete_Timer (&(uart->break_timer_ctrl_block)) != NU_SUCCESS) | |
5140 return (FD_INTERNAL_ERR); | |
5141 | |
5142 /* | |
5143 * Disable and then delete the timer used in the detection of the escape | |
5144 * sequence. A return is used to simplify the code if an error occurs. | |
5145 */ | |
5146 | |
5147 (void) NU_Control_Timer (&(uart->guard_period_timer_ctrl_block), | |
5148 NU_DISABLE_TIMER); | |
5149 | |
5150 if (NU_Delete_Timer (&(uart->guard_period_timer_ctrl_block)) != NU_SUCCESS) | |
5151 return (FD_INTERNAL_ERR); | |
5152 | |
5153 /* | |
5154 * At that point, all HISRs and Timers have been successfully deleted. | |
5155 */ | |
5156 | |
5157 return (FD_OK); | |
5158 } | |
5159 #endif /* (defined BTEMOBILE && (CHIPSET != 12)) */ | |
5160 | |
5161 |