diff L1/cust0/mv100/l1_cust.c @ 0:75a11d740a02

initial import of gsm-fw from freecalypso-sw rev 1033:5ab737ac3ad7
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 09 Jun 2016 00:02:41 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/L1/cust0/mv100/l1_cust.c	Thu Jun 09 00:02:41 2016 +0000
@@ -0,0 +1,1187 @@
+/************* Revision Controle System Header *************
+ *                  GSM Layer 1 software 
+ * L1_CUST.C
+ *
+ *        Filename l1_cust.c
+ *        Version  3.66
+ *        Date     03/21/03
+ *
+ ************* Revision Controle System Header *************/
+
+//#define  GLOBAL
+
+
+#include "string.h"
+
+#include "l1_confg.h"
+#include "l1_const.h"
+#include "ulpd.h"
+#include "tm_defs.h"       
+#include "l1_types.h"
+#include "l1_time.h"
+#include "l1_trace.h"
+#include "sys_types.h"
+#include "sim.h"
+#include "buzzer.h"
+#include "serialswitch.h"
+
+#if TESTMODE
+  #include "l1tm_defty.h"
+#endif
+
+#if (AUDIO_TASK == 1)
+  #include "l1audio_const.h"
+  #include "l1audio_cust.h"
+  #include "l1audio_defty.h"
+#endif
+
+  #if (L1_GTT == 1)
+    #include "l1gtt_const.h"
+    #include "l1gtt_defty.h"
+  #endif
+#include "l1_defty.h"
+#include "l1_msgty.h"
+#include "l1_tabs.h"
+#include "l1_varex.h"
+
+#if (VCXO_ALGO == 1)
+  #include "l1_ctl.h"
+#endif
+
+#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
+  #include "spi_drv.h"
+#endif
+
+#if (RF==35)
+  #include "tpudrv35.h"
+  #include "l1_rf35.h"
+  #include "l1_rf35.c"
+#endif
+
+#if (RF==12)
+  #include "tpudrv12.h"
+  #include "l1_rf12.h"
+  #include "l1_rf12.c"
+#endif
+
+#if (RF==10)
+  #include "tpudrv10.h"
+  #include "l1_rf10.h"
+  #include "l1_rf10.c"
+#endif
+
+#if (RF==8)
+  #include "tpudrv8.h"
+  #include "l1_rf8.h"
+  #include "l1_rf8.c"
+#endif
+
+#if (RF==2)
+  #include "l1_rf2.h"
+  #include "l1_rf2.c"
+#endif
+
+// Nucleus functions
+extern INT                TMD_Timer_State;
+extern UWORD32            TMD_Timer;               // for big sleep 
+extern UWORD32            TCD_Priority_Groups;
+extern VOID              *TCD_Current_Thread;
+extern TC_HCB            *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
+extern TC_HCB            *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
+extern TC_PROTECT         TCD_System_Protect;
+
+#if (L2_L3_SIMUL == 0)
+  #define FFS_WORKAROUND 1
+#else
+  #define FFS_WORKAROUND 0
+#endif
+#if (FFS_WORKAROUND == 1)
+  #include "ffs.h"
+#else
+  typedef signed   int   int32;
+  typedef signed char effs_t;
+  typedef int32  filesize_t;
+  effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
+  effs_t ffs_fread(const char *name, void *addr, filesize_t size);  
+#endif
+
+// Import band configuration from Flash module (need to replace by an access function)
+//extern UWORD8       std;
+extern T_L1_CONFIG  l1_config;
+extern T_L1S_GLOBAL l1s;
+
+#if (CODE_VERSION != SIMULATION)
+  // Import serial switch configuration
+  extern char ser_cfg_info[2];
+#endif
+
+void   get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
+UWORD8 save_cal_in_nvmem  (UWORD8 *ptr, UWORD16 len, UWORD8 id);
+void config_rf_rw_band(char type, UWORD8 read);
+void config_rf_read(char type);
+void config_rf_write(char type);
+
+//TISH20040421 Sean modified for watchdog implemention
+BOOL watchdog_applied(void)
+{
+	return TRUE;
+}
+//Sean modified end
+
+enum {
+  RF_ID        = 0,
+  ADC_ID       = 1
+};
+
+/*-------------------------------------------------------*/
+/* Parameters:    none                                   */
+/* Return:        none                                   */
+/* Functionality: Defines the location of rf-struct      */
+/*                for each std.                          */
+/*-------------------------------------------------------*/
+
+const static T_BAND_CONFIG band_config[] =
+{ /*ffs name, default addr, max carrier, min tx pwr */
+  {"",(T_RF_BAND *) 0,0,0},//undefined
+  {"900", (T_RF_BAND *)&rf_900,  174, 19 },//EGSM
+  {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
+  {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
+  {"850", (T_RF_BAND *)&rf_850,  124, 19 },//GSM850
+#if (RF == 10)
+  {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
+#endif
+  {"900", (T_RF_BAND *)&rf_900,  124, 19 } //GSM, this should be last entry
+};
+
+/*-------------------------------------------------------*/
+/* Parameters:    none                                   */
+/* Return:        none                                   */
+/* Functionality: Defines the indices into band_config   */
+/*                for each std.                          */
+/*-------------------------------------------------------*/
+const T_STD_CONFIG std_config[] =
+{
+ /* band1 index,  band2 index, txpwr turning point, first arfcn*/
+  {           0,          0,     0, 0   }, // std = 0 not used
+  { BAND_GSM900,  BAND_NONE,     0, 1   }, // std = 1 GSM
+  { BAND_EGSM900, BAND_NONE,     0, 1   }, // std = 2 EGSM
+  { BAND_PCS1900, BAND_NONE,    21, 512 }, // std = 3 PCS
+  { BAND_DCS1800, BAND_NONE,    28, 512 }, // std = 4 DCS
+  { BAND_GSM900,  BAND_DCS1800, 28, 1   }, // std = 5 DUAL
+  { BAND_EGSM900, BAND_DCS1800, 28, 1   }, // std = 6 DUALEXT
+  { BAND_GSM850,  BAND_NONE,     0, 128 }, // std = 7 850
+#if (RF == 10)
+  { BAND_GSM850,  BAND_PCS1900_US, 21, 1   }  // std = 8 850/1900
+#else
+  { BAND_GSM850,  BAND_PCS1900, 21, 1   }  // std = 8 850/1900
+#endif
+};
+
+/*-------------------------------------------------------*/
+/* Prototypes of external functions used in this file.   */
+/*-------------------------------------------------------*/
+void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
+WORD16 Convert_l1_radio_freq  (UWORD16 radio_freq);
+
+/*-------------------------------------------------------*/
+/* Cust_recover_Os()                                      */
+/*-------------------------------------------------------*/
+/*                                                       */
+/* Description: adjust OS from sleep duration            */
+/* ------------                                          */
+/* This function fix the :                               */
+/* - system clock                                        */
+/* - Nucleus timers                                      */
+/* - xxxxxx (customer dependant)                         */
+/*-------------------------------------------------------*/
+ 
+UWORD8 Cust_recover_Os(void)
+{
+#if (CODE_VERSION != SIMULATION)
+  if (l1_config.pwr_mngt == PWR_MNGT)
+  {    
+    UWORD32 current_system_clock;
+
+    /***************************************************/
+    // Fix System clock and Nucleus Timers if any....  */
+    /***************************************************/
+    // Fix System clock ....
+    current_system_clock  = NU_Retrieve_Clock();
+    current_system_clock += l1s.pw_mgr.sleep_duration;
+    NU_Set_Clock(current_system_clock);
+
+    // Fix Nucleus timer (if needed) ....
+    if (TMD_Timer_State == TM_ACTIVE)
+    {
+      TMD_Timer -= l1s.pw_mgr.sleep_duration;
+      if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
+    }
+
+    /***************************************************/
+    // Cust dependant part                        ...  */
+    /***************************************************/
+    //.............
+    //.............
+    //..............
+    return(TRUE);
+
+  }
+#endif
+}
+
+
+
+/*-------------------------------------------------------*/
+/* Cust_check_system()                                    */
+/*-------------------------------------------------------*/
+/*                                                       */
+/* Description:                                          */
+/* ------------                                          */
+/* GSM 1.5 :                                             */
+/* - authorize UWIRE clock to be stopped                 */
+/*   and write value in l1s.pw_mgr.modules_status.       */
+/* - authorize ARMIO clock to be stopped if the light is */
+/*   off and write value in l1s.pw_mgr.modules_status.   */
+/* - check if SIM clock have been stopped                */
+/*   before allowing DEEP SLEEP.                         */
+/* - check if UARTs are ready to enter deep sleep        */
+/* - choose the sleep mode                               */
+/*                                                       */
+/* Return:                                               */
+/* -------                                               */
+/* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP                */     
+/*-------------------------------------------------------*/
+UWORD8 Cust_check_system(void)
+{
+  extern UWORD8 why_big_sleep;
+#if (CODE_VERSION != SIMULATION)
+  if (l1_config.pwr_mngt == PWR_MNGT)
+  {   
+
+#if (L2_L3_SIMUL == 0)
+    // Forbid deep sleep if the light is on 
+    if(LT_Status())
+    {
+      //cut ARMIO and UWIRE clocks in big sleep
+      l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
+      why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
+      return(FRAME_STOP);  // BIG sleep
+    }
+
+    // Forbid deep sleep if the SIM and UARTs not ready 
+    if(SIM_SleepStatus())
+    {
+#endif
+      if(SER_UartSleepStatus()) 
+      {
+        return(CLOCK_STOP);   // DEEP sleep
+      }
+      else why_big_sleep = BIG_SLEEP_DUE_TO_UART;
+#if (L2_L3_SIMUL == 0)
+   }
+   else why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
+#endif
+        // cut ARMIO and UWIRE clocks in big sleep
+        l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
+        return(FRAME_STOP);  // BIG sleep
+  }
+#else // Simulation part
+  return(CLOCK_STOP);   // DEEP sleep
+#endif
+}
+
+
+/*-------------------------------------------------------*/
+/* Parameters:    none                                   */
+/* Return:        none                                   */
+/* Functionality: Read the RF configuration, tables etc. */
+/*                from FFS files.                        */
+/*-------------------------------------------------------*/
+const static T_CONFIG_FILE config_files_common[] =
+{
+  #if (CODE_VERSION != SIMULATION)
+
+    // The first char is NOT part of the filename. It is used for
+    // categorizing the ffs file contents:
+    // f=rf-cal,  F=rf-config,
+    // t=tx-cal,  T=tx-config,
+    // r=rx-cal,  R=rx-config,
+    // s=sys-cal, S=sys-config,
+    "f/gsm/rf/afcdac",             &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
+    "F/gsm/rf/stdmap",             &rf.radio_band_support, sizeof(rf.radio_band_support),
+#if (VCXO_ALGO == 1)
+    "F/gsm/rf/afcparams",          &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
+#else
+    "F/gsm/rf/afcparams",          &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
+#endif
+
+    "R/gsm/rf/rx/agcglobals",      &rf.rx.agc, 5 * sizeof(UWORD16),
+    "R/gsm/rf/rx/il2agc",          &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
+    "R/gsm/rf/rx/agcwords",        &AGC_TABLE, sizeof(AGC_TABLE),
+
+    "s/sys/adccal",                &adc_cal, sizeof(adc_cal),
+
+    "S/sys/abb",                   &abb, sizeof(abb),
+    "S/sys/uartswitch",            &ser_cfg_info, sizeof(ser_cfg_info),
+
+  #endif
+    NULL,                          0, 0 // terminator
+};
+
+/*-------------------------------------------------------*/
+/* Parameters:    none                                   */
+/* Return:        none                                   */
+/* Functionality: Read the RF configurations for         */ 
+/*                each band from FFS files. These files  */
+/*                are defined for one band, and and used */
+/*                for all bands.                         */
+/*-------------------------------------------------------*/
+const static T_CONFIG_FILE config_files_band[] =
+{
+    // The first char is NOT part of the filename. It is used for
+    // categorizing the ffs file contents:
+    // f=rf-cal,  F=rf-config,
+    // t=tx-cal,  T=tx-config,
+    // r=rx-cal,  R=rx-config,
+    // s=sys-cal, S=sys-config,
+      
+    // generic for all bands
+    // band[0] is used as template for all bands. 
+    "t/gsm/rf/tx/ramps",     &rf_band[0].tx.ramp_tables,    sizeof(rf_band[0].tx.ramp_tables),
+    "t/gsm/rf/tx/levels",    &rf_band[0].tx.levels,         sizeof(rf_band[0].tx.levels),
+    "t/gsm/rf/tx/calchan",   &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
+    "T/gsm/rf/tx/caltemp",   &rf_band[0].tx.temp,           sizeof(rf_band[0].tx.temp),
+
+    "r/gsm/rf/rx/calchan",   &rf_band[0].rx.agc_bands,      sizeof(rf_band[0].rx.agc_bands),
+    "R/gsm/rf/rx/caltemp",   &rf_band[0].rx.temp,           sizeof(rf_band[0].rx.temp),
+    "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params,  sizeof(rf_band[0].rx.rx_cal_params),
+    NULL,                          0,                   0 // terminator
+};
+
+void config_ffs_read(char type)
+{
+  config_rf_read(type);
+  config_rf_rw_band(type, 1);
+}
+
+void config_ffs_write(char type)
+{
+  config_rf_write(type);
+  config_rf_rw_band(type, 0);
+}
+
+void config_rf_read(char type)
+{
+    const T_CONFIG_FILE *file = config_files_common;
+
+    while (file->name != NULL)
+    {
+        if (type == '*' || type == file->name[0]) {
+            ffs_fread(&file->name[1], file->addr, file->size);
+        }
+        file++;
+    }
+}
+
+void config_rf_write(char type)
+{
+    const T_CONFIG_FILE *file = config_files_common;
+
+    while (file->name != NULL)
+    {
+        if (type == '*' || type == file->name[0]) {
+            ffs_fwrite(&file->name[1], file->addr, file->size);
+        }
+        file++;
+    }
+}
+
+void config_rf_rw_band(char type, UWORD8 read)
+{
+    const T_CONFIG_FILE *f1 = config_files_band;
+    UWORD8 i;
+    WORD32 offset;
+    char name[64];
+    char *p;
+    UWORD8 std = l1_config.std.id;
+    
+#if FFS_WORKAROUND == 1
+    struct stat_s stat;
+    UWORD16 time;
+#endif        
+    for (i=0; i< GSM_BANDS; i++)
+    { 
+      if(std_config[std].band[i] !=0 )
+      {
+        f1 = &config_files_band[0];
+        while (f1->name != NULL)
+        {
+          offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
+          p = ((char *) &rf_band[i]) + offset;
+          if (type == '*' || type == f1->name[0]) 
+          {
+            strcpy(name, &f1->name[1]);
+            strcat(name, ".");
+            strcat(name, band_config[std_config[std].band[i]].name);
+
+            if (read == 1)
+              ffs_fread(name, p, f1->size);
+            else //write == 0
+            {  
+              ffs_fwrite(name, p, f1->size);  
+
+              // wait until ffs write has finished 
+#if FFS_WORKAROUND == 1
+              stat.inode = 0;
+              time = 0;
+
+              do {
+                rvf_delay(10);  // in milliseconds
+                time += 10;
+                ffs_stat(name, &stat);
+              } while (stat.inode == 0 && time < 500);
+#endif
+            }  
+          }
+          f1++;
+        }
+      }
+    }
+}
+
+/*-------------------------------------------------------*/
+/* Cust_init_std()                                       */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality : Init Standard variable configuration  */
+/*-------------------------------------------------------*/
+void Cust_init_std(void)
+{
+  UWORD8 std = l1_config.std.id;
+  UWORD8 band1, band2;
+  T_RF_BAND *pt1, *pt2;
+  
+  band1 = std_config[std].band[0];
+  band2 = std_config[std].band[1];
+  
+  //get these from std 
+  pt1 = band_config[band1].addr;
+  pt2 = band_config[band2].addr;
+
+  // copy rf-struct from default flash to ram
+  memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
+
+  if(std_config[std].band[1] != BAND_NONE )
+    memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
+
+  // Read all RF and system configuration from FFS *before* we copy any of
+  // the rf structure variables to other places, like L1.
+
+  config_ffs_read('*');
+
+  l1_config.std.first_radio_freq       = std_config[std].first_arfcn;
+
+  if(band2!=0)
+    l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
+  else  
+    l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
+    
+  // if band2 is not used it is initialised with zeros
+  l1_config.std.nbmax_carrier          = band_config[band1].max_carrier;
+  if(band2!=0)
+     l1_config.std.nbmax_carrier      += band_config[band2].max_carrier;
+    
+  l1_config.std.max_txpwr_band1        = band_config[band1].max_txpwr;
+  l1_config.std.max_txpwr_band2        = band_config[band2].max_txpwr;
+  l1_config.std.txpwr_turning_point    = std_config[std].txpwr_tp;
+  l1_config.std.cal_freq1_band1        = 0;
+  l1_config.std.cal_freq1_band2        = 0;
+    
+  l1_config.std.g_magic_band1             = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
+  l1_config.std.lna_att_band1             = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
+  l1_config.std.lna_switch_thr_low_band1  = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
+  l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
+  l1_config.std.swap_iq_band1             = rf_band[MULTI_BAND1].swap_iq;
+
+  l1_config.std.g_magic_band2             = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
+  l1_config.std.lna_att_band2             = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
+  l1_config.std.lna_switch_thr_low_band2  = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
+  l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
+  l1_config.std.swap_iq_band2             = rf_band[MULTI_BAND2].swap_iq;
+
+  l1_config.std.radio_freq_index_offset   = l1_config.std.first_radio_freq-1;
+
+  // init variable indicating which radio bands are supported by the chosen RF
+  l1_config.std.radio_band_support = rf.radio_band_support;
+}
+
+
+/*-------------------------------------------------------*/
+/* Cust_init_params()                                    */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality : Init RF dependent paramters (AGC, TX) */
+/*-------------------------------------------------------*/
+void Cust_init_params(void)
+{
+
+#if (CODE_VERSION==SIMULATION)
+  extern UWORD16  simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
+  extern UWORD16  simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
+
+  l1_config.params.rx_synth_setup_time   = simu_RX_SYNTH_SETUP_TIME;
+  l1_config.params.tx_synth_setup_time   = simu_TX_SYNTH_SETUP_TIME;
+#else
+  l1_config.params.rx_synth_setup_time   = RX_SYNTH_SETUP_TIME;
+  l1_config.params.tx_synth_setup_time   = TX_SYNTH_SETUP_TIME;
+#endif
+
+
+  // Convert SYNTH_SETUP_TIME into SPLIT.
+  // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
+  l1_config.params.rx_synth_load_split   = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
+  l1_config.params.tx_synth_load_split   = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
+
+  l1_config.params.rx_synth_start_time   = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
+  l1_config.params.tx_synth_start_time   = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
+
+  l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
+  l1_config.params.rx_change_offset_time  = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
+
+  l1_config.params.tx_change_offset_time = TIME_OFFSET_TX - 
+                                           TA_MAX - 
+                                           l1_config.params.tx_synth_setup_time - 
+                                           EPSILON_OFFS;
+
+  // TX duration = ramp up time + burst duration (data + tail bits) 
+  l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
+  l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
+
+  l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
+  l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
+
+  // time for the end of RX and TX TPU scenarios
+  l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
+  l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING; 
+
+  // FB26 anchoring time is computed backward to leave only 6 qbit margin between
+  // FB26 window and next activity (RX time tracking).
+  // This margin is used as follow:
+  //    Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
+  //    Tpu Sleep:              2 qbit (TPU_SLEEP_LOAD)
+  //                          ---------
+  //                     Total: 3 qbit
+   
+  l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time - 
+                                          #if (CODE_VERSION == SIMULATION)
+                                          // simulator: end of scenario not included in window (no serialization)
+                                            1 -
+                                          #else
+                                          // RF dependent end of RX TPU scenario
+                                            l1_config.params.rx_tpu_scenario_ending -
+                                          #endif
+                                          EPSILON_SYNC -               
+                                          TPU_SLEEP_LOAD -
+                                          SERV_OFFS_REST_LOAD -   
+                                          FB26_ACQUIS_DURATION -  
+                                          PROVISION_TIME +        
+                                          TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
+
+  l1_config.params.fb26_change_offset_time  = l1_config.params.fb26_anchoring_time +
+                                              PROVISION_TIME - 
+                                              l1_config.params.rx_synth_setup_time -
+                                              EPSILON_OFFS;
+
+  l1_config.params.guard_bits         = rf.tx.guard_bits;
+
+  l1_config.params.prg_tx_gsm         = rf.tx.prg_tx;
+  l1_config.params.prg_tx_dcs         = rf.tx.prg_tx; //delay for dual band not implemented yet
+
+  l1_config.params.low_agc_noise_thr  = rf.rx.agc.low_agc_noise_thr;
+  l1_config.params.high_agc_sat_thr   = rf.rx.agc.high_agc_sat_thr;
+  l1_config.params.low_agc            = rf.rx.agc.low_agc;
+  l1_config.params.high_agc           = rf.rx.agc.high_agc;
+  l1_config.params.il_min             = IL_MIN;
+
+  l1_config.params.fixed_txpwr        = FIXED_TXPWR;
+  l1_config.params.eeprom_afc         = rf.afc.eeprom_afc;
+  l1_config.params.setup_afc_and_rf   = SETUP_AFC_AND_RF;
+
+  l1_config.params.psi_sta_inv        = rf.afc.psi_sta_inv;
+  l1_config.params.psi_st             = rf.afc.psi_st;
+  l1_config.params.psi_st_32          = rf.afc.psi_st_32;
+  l1_config.params.psi_st_inv         = rf.afc.psi_st_inv;
+
+#if (CODE_VERSION == SIMULATION)
+  #if (VCXO_ALGO == 1)
+    l1_config.params.afc_algo           = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
+  #endif
+#else
+  #if (VCXO_ALGO == 1)
+    l1_config.params.afc_dac_center       = rf.afc.dac_center;      // VCXO - assuming DAC linearity
+    l1_config.params.afc_dac_min          = rf.afc.dac_min;         // VCXO - assuming DAC linearity
+    l1_config.params.afc_dac_max          = rf.afc.dac_max;         // VCXO - assuming DAC linearity
+    l1_config.params.afc_snr_thr          = rf.afc.snr_thr;         // VCXO - SNR threshold
+    l1_config.params.afc_algo             = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
+    l1_config.params.afc_win_avg_size_M   = C_WIN_AVG_SIZE_M;       // VCXO - Average psi values with this value
+    l1_config.params.rgap_algo            = ALGO_AFC_RXGAP;         // VCXO - Choosing Reception Gap algorithm
+    l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
+  #endif
+  #endif
+
+  #if DCO_ALGO
+    #if (RF == 10)
+      // Enable DCO algorithm for direct conversion RFs
+      l1_config.params.dco_enabled = TRUE;
+    #else
+      l1_config.params.dco_enabled = FALSE;
+    #endif
+  #endif
+
+  #if (ANALOG == 1)
+    l1_config.params.debug1           = C_DEBUG1;             // Enable f_tx delay of 400000 cyc DEBUG     
+    l1_config.params.afcctladd        = abb[ABB_AFCCTLADD];	  // Value at reset              
+    l1_config.params.vbur             = abb[ABB_VBUR];		  // Uplink gain amp 0dB, Sidetone gain to mute
+    l1_config.params.vbdr             = abb[ABB_VBDR];		  // Downlink gain amp 0dB, Volume control 0 dB
+    l1_config.params.bbctl            = abb[ABB_BBCTL];		  // value at reset
+    l1_config.params.apcoff           = abb[ABB_APCOFF];	  // value at reset
+    l1_config.params.bulioff          = abb[ABB_BULIOFF];	  // value at reset
+    l1_config.params.bulqoff          = abb[ABB_BULQOFF];	  // value at reset
+    l1_config.params.dai_onoff        = abb[ABB_DAI_ON_OFF];  // value at reset
+    l1_config.params.auxdac           = abb[ABB_AUXDAC];	  // value at reset
+    l1_config.params.vbcr             = abb[ABB_VBCR];		  // VULSWITCH=0, VDLAUX=1, VDLEAR=1
+    l1_config.params.apcdel           = abb[ABB_APCDEL];	  // value at reset
+  #endif
+  #if (ANALOG == 2)
+    l1_config.params.debug1           = C_DEBUG1;             // Enable f_tx delay of 400000 cyc DEBUG      
+    l1_config.params.afcctladd        = abb[ABB_AFCCTLADD];	  // Value at reset              
+    l1_config.params.vbur             = abb[ABB_VBUR];		  // Uplink gain amp 0dB, Sidetone gain to mute
+    l1_config.params.vbdr             = abb[ABB_VBDR];		  // Downlink gain amp 0dB, Volume control 0 dB
+    l1_config.params.bbctl            = abb[ABB_BBCTL];		  // value at reset
+    l1_config.params.bulgcal          = abb[ABB_BULGCAL];    // value at reset    
+    l1_config.params.apcoff           = abb[ABB_APCOFF];	  // value at reset
+    l1_config.params.bulioff          = abb[ABB_BULIOFF];	  // value at reset
+    l1_config.params.bulqoff          = abb[ABB_BULQOFF];	  // value at reset
+    l1_config.params.dai_onoff        = abb[ABB_DAI_ON_OFF];  // value at reset
+    l1_config.params.auxdac           = abb[ABB_AUXDAC];	  // value at reset
+    l1_config.params.vbcr             = abb[ABB_VBCR];		  // VULSWITCH=0, VDLAUX=1, VDLEAR=1
+    l1_config.params.vbcr2            = abb[ABB_VBCR2];      // MICBIASEL=0, VDLHSO=0, MICAUX=0
+    l1_config.params.apcdel           = abb[ABB_APCDEL];	  // value at reset
+    l1_config.params.apcdel2          = abb[ABB_APCDEL2];    // value at reset    
+  #endif													 
+  #if (ANALOG == 3)
+    l1_config.params.debug1           = C_DEBUG1;               // Enable f_tx delay of 400000 cyc DEBUG      
+    l1_config.params.afcctladd        = abb[ABB_AFCCTLADD];     // Value at reset              
+    l1_config.params.vbur             = abb[ABB_VBUR];          // Uplink gain amp 0dB, Sidetone gain to mute
+    l1_config.params.vbdr             = abb[ABB_VBDR];          // Downlink gain amp 0dB, Volume control 0 dB
+    l1_config.params.bbctl            = abb[ABB_BBCTL];         // value at reset
+    l1_config.params.bulgcal          = abb[ABB_BULGCAL];       // value at reset    
+    l1_config.params.apcoff           = abb[ABB_APCOFF];        // X2 Slope 128 and APCSWP disabled
+    l1_config.params.bulioff          = abb[ABB_BULIOFF];       // value at reset
+    l1_config.params.bulqoff          = abb[ABB_BULQOFF];       // value at reset
+    l1_config.params.dai_onoff        = abb[ABB_DAI_ON_OFF];    // value at reset
+    l1_config.params.auxdac           = abb[ABB_AUXDAC];        // value at reset
+    l1_config.params.vbcr             = abb[ABB_VBCR];          // VULSWITCH=0
+    l1_config.params.vbcr2            = abb[ABB_VBCR2];         // MICBIASEL=0, VDLHSO=0, MICAUX=0
+    l1_config.params.apcdel           = abb[ABB_APCDEL];        // value at reset
+    l1_config.params.apcdel2          = abb[ABB_APCDEL2];       // value at reset    
+    l1_config.params.vbpop            = abb[ABB_VBPOP];         // HSOAUTO enabled
+    l1_config.params.vau_delay_init   = abb[ABB_VAUDINITD];     // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
+    l1_config.params.vaud_cfg         = abb[ABB_VAUDCR];        // value at reset
+    l1_config.params.vauo_onoff       = abb[ABB_VAUOCR];        // speech on AUX and EAR
+    l1_config.params.vaus_vol         = abb[ABB_VAUSCR];        // value at reset
+    l1_config.params.vaud_pll         = abb[ABB_VAUDPLL];       // value at reset
+  #endif
+  
+  // global variable for access to deep sleep time
+  l1_config.params.sleep_time = 0;
+}
+
+
+/************************************/
+/* Automatic Gain Control           */
+/************************************/
+
+/*-------------------------------------------------------*/
+/* Cust_get_agc_from_IL()                                */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality : returns agc value                     */
+/*-------------------------------------------------------*/
+WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id)
+{
+// radio_freq currently not used
+// this parameter is passed in order to allow band dependent tables for specific RFs
+// (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
+
+  if (agc_index > 120)
+    agc_index = 120;    // Clip agc_index
+
+  switch (table_id)
+  {
+    case MAX_ID:  return(rf.rx.agc.il2agc_max[agc_index]);
+    case AV_ID:   return(rf.rx.agc.il2agc_av[agc_index]);
+    case PWR_ID:  return(rf.rx.agc.il2agc_pwr[agc_index]);
+  }
+}
+
+/*-------------------------------------------------------*/
+/* Cust_get_agc_band                                     */
+/*-------------------------------------------------------*/
+/* Parameters : radio_freq                               */
+/* Return     : band number                              */
+/* Functionality :  Computes the band for RF calibration */
+/*-------------------------------------------------------*/
+/*---------------------------------------------*/
+
+
+  #if (CODE_VERSION == SIMULATION)
+    UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
+  #else
+    UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
+  #endif
+    {
+      WORD32 i ;
+
+      for (i=0;i<RF_RX_CAL_CHAN_SIZE;i++)
+      {
+        if (arfcn <= rf_band[gsm_band].rx.agc_bands[i].upper_bound)
+          return(i);
+      }
+      // Should never happen!
+      return(0);
+    }  
+
+/*-------------------------------------------------------*/
+/* Cust_is_band_high                                     */
+/*-------------------------------------------------------*/
+/* Parameters :  arfcn                                   */
+/* Return     :  0 if low band                           */
+/*               1 if high band                          */
+/* Functionality : Generic function which return 1 if    */
+/*                 arfcn is in the high band             */
+/*-------------------------------------------------------*/
+
+UWORD8 Cust_is_band_high(UWORD16 radio_freq)
+{
+  UWORD16 max_carrier;
+  UWORD8  std = l1_config.std.id;
+
+  max_carrier = band_config[std_config[std].band[0]].max_carrier;
+  
+  return(((radio_freq >= l1_config.std.first_radio_freq) && 
+          (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
+}          
+    
+/*-------------------------------------------------------*/
+/* l1ctl_encode_delta2()                                 */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality :                                       */
+/*-------------------------------------------------------*/
+WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
+{  
+  WORD8    delta2_freq;
+  UWORD16  i;
+  UWORD16  arfcn;
+  UWORD8   band;
+
+  band  = Cust_is_band_high(radio_freq);
+  arfcn = Convert_l1_radio_freq(radio_freq);
+  
+  i = Cust_get_agc_band(arfcn,band); //
+  delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
+
+  //temperature compensation
+  for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
+  {
+    if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
+    {
+      delta2_freq += rf_band[band].rx.temp[i].agc_calib;
+      break;
+    }
+  }
+
+  return(delta2_freq);
+}
+
+/************************************/
+/* TX Management                    */
+/************************************/
+/*-------------------------------------------------------*/
+/* Cust_get_ramp_tab                                     */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality :                                       */
+/*-------------------------------------------------------*/
+
+void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
+{
+  UWORD16 index_up, index_down,j, arfcn;
+  UWORD8 band;
+
+  band  = Cust_is_band_high(radio_freq);
+  arfcn = Convert_l1_radio_freq(radio_freq);
+
+  index_up   = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
+  index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
+
+  #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
+    for (j=0; j<16; j++)
+    {
+      a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
+                ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])  << 6) |
+                  0x14;
+    }
+  #endif 
+}
+
+/*-------------------------------------------------------*/
+/* get_pwr_data                                          */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality :                                       */
+/*-------------------------------------------------------*/
+
+#if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
+UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq)
+{  
+
+  UWORD16 i,j;
+  UWORD16 arfcn;
+  UWORD8 band;
+
+#if(ORDER2_TX_TEMP_CAL==1)
+        WORD16 pwr_data;
+#else
+        UWORD16  pwr_data;
+#endif
+
+  band  = Cust_is_band_high(radio_freq);
+  arfcn = Convert_l1_radio_freq(radio_freq);
+   
+  i = rf_band[band].tx.levels[txpwr].chan_cal_index;
+  j=0;
+  // get uncalibrated apc
+  pwr_data = rf_band[band].tx.levels[txpwr].apc;
+
+  while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
+    j++;
+
+  // channel calibrate apc  
+  pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128; 
+
+  // temperature compensate apc
+  {
+    T_TX_TEMP_CAL *pt;
+
+    pt = rf_band[band].tx.temp;
+    while ((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature)
+	    pt++;
+#if(ORDER2_TX_TEMP_CAL==1)
+                pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64;      //delta apc = ax^2+bx+c
+                if(pwr_data < 0) pwr_data = 0;
+#else
+    pwr_data += pt->apc_calib;
+#endif
+  }
+  return(pwr_data);
+}
+#endif
+/*-------------------------------------------------------*/
+/* Cust_Init_Layer1                                      */
+/*-------------------------------------------------------*/
+/* Parameters :                                          */
+/* Return     :                                          */
+/* Functionality :  Load and boot the DSP                */
+/* Initialize shared memory and L1 data structures       */
+/*-------------------------------------------------------*/
+
+void Cust_Init_Layer1(void)
+{
+  T_MMI_L1_CONFIG cfg;
+  
+  // Get the current band configuration from the flash
+  #if (OP_WCP==1)
+    extern unsigned char ffs_GetBand();
+    cfg.std = ffs_GetBand();
+  #else // NO OP_WCP
+    //  cfg.std = std;
+    cfg.std = STD;
+  #endif // OP_WCP
+
+  cfg.tx_pwr_code = 1;
+
+  // sleep management configuration
+  cfg.pwr_mngt = 0;
+  cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
+  cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
+
+
+
+  #if (CODE_VERSION != SIMULATION)
+    cfg.dwnld = DWNLD; //external define from makefile
+  #endif
+
+  l1_initialize(&cfg);
+
+  get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
+  get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
+
+}
+
+
+/*****************************************************************************************/
+/***************************     TESTMODE functions     **********************************/
+/*****************************************************************************************/
+
+
+
+  /*------------------------------------------------------*/
+  /* madc_hex_2_physical                                  */
+  /*------------------------------------------------------*/
+  /* Parameters :                                         */
+  /* Return     :                                         */
+  /* Functionality : Function to convert MAD hexadecimal  */ 
+  /*                 values into physical values          */
+  /*------------------------------------------------------*/
+
+void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)  
+{
+ WORD16 i; 
+ UWORD16 y;
+ WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
+ WORD16 index = (TEMP_TABLE_SIZE-1)/2;       /* y is the adc code after compensation of ADC slope error introduced by VREF error */
+
+  //store raw ADC values
+  memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));   
+
+  // Convert Vbat [mV] : direct equation with slope and offset compensation 
+  for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
+    adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
+
+  /*Convert RF Temperature [Celsius]: binsearch into a table*/ 
+  y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8;       /* rf.tempcal is the calibration of VREF*/
+  while((Smax-Smin) > 1 )
+  {
+    if(y < temperature[index].adc)
+      Smax=index;
+    else 
+      Smin=index;
+       
+    index = (Smax+Smin)/2;
+  }
+  adc.converted[ADC_RFTEMP] = temperature[index].temp;
+   
+  for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
+    adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
+   
+  //store converted ADC values
+  memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
+}
+
+
+  /*------------------------------------------------------*/
+  /*  get_cal_from_nvmem                                  */
+  /*------------------------------------------------------*/
+  /* Parameters :                                         */
+  /* Return     :                                         */
+  /* Functionality : Copy calibrated parameter to         */ 
+  /*                 calibration structure in RAM         */
+  /*------------------------------------------------------*/
+
+void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
+{
+ 
+}
+
+  /*------------------------------------------------------*/
+  /*  save_cal_from_nvmem                                 */
+  /*------------------------------------------------------*/
+  /* Parameters :                                         */
+  /* Return     :                                         */
+  /* Functionality : Copy calibrated structure from RAM   */ 
+  /*                 into NV memory                       */
+  /*------------------------------------------------------*/
+
+UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
+{
+  #if (OP_WCP == 1)
+    //  FFS backup implementation an Avenger 2
+    // Request MPU-S to backup the FFS 
+    // after full calibration of device
+    extern void ffs_backup(void);
+    ffs_backup();
+  #endif
+  return (0);
+}
+
+#if (TRACE_TYPE == 4)
+
+/*------------------------------------------------------*/
+/*  l1_cst_l1_parameters                                */
+/*------------------------------------------------------*/
+/* Parameters :  s: pointer on configuration string     */
+/* Return     :  nothing: global var are set            */
+/* Functionality : Set global L1 vars for dynamic trace */ 
+/*                 and configuration                    */
+/*                                                      */
+/*   This function is called when a CST message is sent */
+/*   from the Condat Panel.                             */
+/*------------------------------------------------------*/
+void l1_cst_l1_parameters(char *s)
+{
+  /* 
+    a sample command string can be: 
+    L1_PARAMS=<1,2,3,4,5> or
+    L1_PARAMS=<1,23,3E32,4,5>
+    with n parameters (here: 5 params); n>=1
+    parameters are decoded as hexadecimal unsigned integers (UWORD16)
+  */
+
+  UWORD8  uNParams = 0;  /* Number of parameters */
+  UWORD32 aParam[10];    /* Parameters array */
+  UWORD8  uIndex = 0;
+  
+  /* ***  retrieve all parameters *** */
+  while (s[uIndex] != '<') uIndex++;
+  uIndex++;
+  aParam[0] = 0;
+  
+  /* uIndex points on 1st parameter */
+ 
+  while (s[uIndex] != '>')
+  {
+    if (s[uIndex] == ',') 
+    {
+      uNParams++;
+      aParam[uNParams] = 0;
+    }
+    else
+    {
+      /* uIndex points on a parameter char */
+      UWORD8 uChar = s[uIndex];
+      aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
+      if ((uChar>='0') && (uChar<='9'))
+        aParam[uNParams] += (uChar - '0');        /* retrieve value */
+      else if ((uChar>='A') && (uChar<='F'))
+        aParam[uNParams] += (10 + uChar - 'A');        /* retrieve value */
+      else if ((uChar>='a') && (uChar<='f'))
+        aParam[uNParams] += (10 + uChar - 'a');        /* retrieve value */
+    }
+    
+    uIndex++; /* go to next char */
+  }
+
+  /* increment number of params */  
+  uNParams++;
+
+  /* *** handle parameters *** */
+  /*
+    1st param: command type
+    2nd param: argument for command type
+  */
+  switch (aParam[0])
+  {
+    case 0: /* Trace setting */ 
+      /* The 2nd parameter contains the trace bitmap*/
+      if (uNParams >=2)
+        trace_info.current_config->l1_dyn_trace = aParam[1];
+      else 
+        trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
+      Trace_dyn_trace_change();
+      break;
+    default: /* ignore it */
+      break;
+  } // switch
+}
+
+#endif
+
+#if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
+     (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
+     (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
+     (CHIPSET == 11) || (CHIPSET == 12))    
+/*-------------------------------------------------------*/
+/* power_down_config() : temporary implementation !!!    */
+/*-------------------------------------------------------*/
+/* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
+/*              clocks to be cut in BIG sleep            */
+/* Return     :                                          */
+/* Functionality : set the l1s variables 				 */
+/* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks      */
+/* according to the desired mode.	                     */
+/*-------------------------------------------------------*/
+void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
+{ 
+#if (OP_L1_STANDALONE == 1)
+  if(sleep_mode != NO_SLEEP)
+#endif
+  {
+    l1_config.pwr_mngt = PWR_MNGT;
+    l1s.pw_mgr.mode_authorized = sleep_mode;
+    l1s.pw_mgr.clocks = clocks;
+  }
+  
+#if (OP_L1_STANDALONE == 0)
+  l1s.pw_mgr.enough_gaug = FALSE;
+#endif
+}
+#endif
+
+/* glowing,2004-06-16, import from M188 */
+void layer1_em_get_rxlevqual(WORD32 *l1_rxlev_scell,WORD32 *l1_rxlev_dedic_sub,
+	WORD32 *l1_rxqual_dedic,WORD32 *l1_rxqual_dedic_sub)
+{
+/*
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.acc));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.nbr_meas));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.acc_sub));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_full));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub));
+	xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub));
+*/
+	if(l1a_l1s_com.Scell_info.meas.nbr_meas != 0){
+	*l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(l1a_l1s_com.Scell_info.meas.nbr_meas);
+	}else{
+	*l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(4);
+	}
+//	xmzhou_trace_string_value("l1_rxlev_scell",(UINT32)(*l1_rxlev_scell));
+
+	if(l1a_l1s_com.Smeas_dedic.nbr_meas_sub !=0){
+	*l1_rxlev_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub);
+	}else{
+	*l1_rxlev_dedic_sub=0;
+	}
+//	xmzhou_trace_string_value("l1_rxlev_dedic_sub",(UINT32)(*l1_rxlev_dedic_sub));
+
+	if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full !=0){
+	*l1_rxqual_dedic=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_full)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full);
+	}else{
+	*l1_rxqual_dedic=0;
+	}
+//	xmzhou_trace_string_value("l1_rxqual_dedic",(UINT32)(*l1_rxqual_dedic));
+
+	if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub){
+	*l1_rxqual_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub);
+	}else{
+	*l1_rxqual_dedic_sub=0;
+	}
+//	xmzhou_trace_string_value("l1_rxqual_dedic_sub",(UINT32)(*l1_rxqual_dedic_sub));
+}
+
+void layer1_em_get_mode(WORD32 *l1_mode)
+{
+	*l1_mode=l1a_l1s_com.mode;
+}
+
+/*glowing,2004-06-16, end of import */
+