view L1/cust1/l1_cust.c @ 39:f385e4d87bad

cfgmagic/feature.fcfam-ffs: copy&paste error
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 04 May 2017 07:24:31 +0000
parents 75a11d740a02
children
line wrap: on
line source

/************* Revision Controle System Header *************
 *                  GSM Layer 1 software
 * L1_CUST.C
 *
 *        Filename l1_cust.c
 *  Copyright 2003 (C) Texas Instruments
 *
 ************* Revision Controle System Header *************/

//#define  GLOBAL

#include "l1sw.cfg"
#include "l1_types.h"

#include "string.h"
#include "l1_confg.h"
#include "l1_const.h"
#include "ulpd.h"
#include "tm_defs.h"
#include "l1_types.h"
#include "l1_time.h"
#include "l1_trace.h"
#include "sys_types.h"
#include "l1_macro.h"
#if (OP_L1_STANDALONE == 1)
  #include "serialswitch_core.h"
#else
  #include "uart/serialswitch.h"
#endif

#include "abb.h"

#if(OP_L1_STANDALONE == 0)
  #include "buzzer/buzzer.h"       // for BZ_KeyBeep_OFF function
  #include "sim/sim.h"
#endif

#if TESTMODE
  #include "l1tm_defty.h"
#endif

#if (AUDIO_TASK == 1)
  #include "l1audio_const.h"
  #include "l1audio_cust.h"
  #include "l1audio_defty.h"
#endif

#if (L1_GTT == 1)
  #include "l1gtt_const.h"
  #include "l1gtt_defty.h"
#endif

#if (L1_MP3 == 1)
  #include "l1mp3_defty.h"
#endif

#if (L1_MIDI == 1)
  #include "l1midi_defty.h"
#endif

#include "l1_defty.h"
#include "l1_msgty.h"
#include "l1_tabs.h"
#include "l1_varex.h"
#include "l1_proto.h"
#if (VCXO_ALGO == 1)
  #include "l1_ctl.h"
#endif


#if (RF_FAM == 61)
 #include "drp_drive.h"
  #include "tpudrv61.h"
  #include "l1_rf61.h"
  #include "l1_rf61.c"
#endif


#if (RF_FAM == 60 )
#include "drp_drive.h"
  #include "tpudrv60.h"
  #include "l1_rf60.h"
  #include "l1_rf60.c"
  //#include "rf60.h"
#endif

#if (RF_FAM == 43)
  #include "tpudrv43.h"
  #include "l1_rf43.h"
  #include "l1_rf43.c"
#endif

#if (RF_FAM == 35)
  #include "tpudrv35.h"
  #include "l1_rf35.h"
  #include "l1_rf35.c"
#endif

#if (RF_FAM == 12)
  #include "tpudrv12.h"
  #include "l1_rf12.h"
  #include "l1_rf12.c"
#endif

#if (RF_FAM == 10)
  #include "tpudrv10.h"
  #include "l1_rf10.h"
  #include "l1_rf10.c"
#endif

#if (RF_FAM == 8)
  #include "tpudrv8.h"
  #include "l1_rf8.h"
  #include "l1_rf8.c"
#endif

#if (RF_FAM == 2)
  #include "l1_rf2.h"
  #include "l1_rf2.c"
#endif

#if (DRP_FW_EXT == 1)
#include "l1_drp_inc.h"
#include "l1_ver.h"
#endif


// Nucleus functions
extern INT                TMD_Timer_State;
extern UWORD32            TMD_Timer;               // for big sleep
extern UWORD32            TCD_Priority_Groups;
extern VOID              *TCD_Current_Thread;
extern TC_HCB            *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
extern TC_HCB            *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
extern TC_PROTECT         TCD_System_Protect;

#if (L2_L3_SIMUL == 0)
  #define FFS_WORKAROUND 0
#else
  #define FFS_WORKAROUND 0
#endif
  #if (FFS_WORKAROUND == 1)
    #include "ffs/ffs.h"
  #else
/*    typedef signed int int32;
    typedef signed char effs_t;*/
    typedef signed int  filesize_t;
    effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
#if (DRP_FW_EXT == 0)        
    effs_t ffs_fread(const char *name, void *addr, filesize_t size);
  #endif
  #endif

// Import band configuration from Flash module (need to replace by an access function)
//extern UWORD8       std;
extern T_L1_CONFIG  l1_config;
extern T_L1S_GLOBAL l1s;

#if(OP_L1_STANDALONE == 0)
  extern SYS_BOOL cama_sleep_status(void);
#endif

#if (CODE_VERSION != SIMULATION)
  // Import serial switch configuration
  #if (CHIPSET == 12)
    extern char ser_cfg_info[3];
  #else
    extern char ser_cfg_info[2];
  #endif
#endif

#if(REL99 && FF_PRF)
T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band,
                                                UWORD8 number_uplink_timeslot,
                                                T_TX_LEVEL *p_tx_level);
#endif


void   get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
UWORD8 save_cal_in_nvmem  (UWORD8 *ptr, UWORD16 len, UWORD8 id);
void config_rf_rw_band(char type, UWORD8 read);
void config_rf_read(char type);
void config_rf_write(char type);

#if (RF_FAM == 61)
#include "drp_api.h"


extern T_DRP_SW_DATA  drp_sw_data_init;
extern T_DRP_SW_DATA  drp_sw_data_calib;
extern  T_DRP_SW_DATA  drp_sw_data_calib_saved;
#endif

enum {
  RF_ID        = 0,
  ADC_ID       = 1
};

#if (L1_FF_MULTIBAND == 0)
/*-------------------------------------------------------*/
/* Parameters:    none                                   */
/* Return:        none                                   */
/* Functionality: Defines the location of rf-struct      */
/*                for each std.                          */
/*-------------------------------------------------------*/
//omaps00090550 #83 warinng removal
static const T_BAND_CONFIG band_config[] =
{ /*ffs name, default addr, max carrier, min tx pwr */
  {"",(T_RF_BAND *) 0,0,0},//undefined
  {"900", (T_RF_BAND *)&rf_900,  174, 19 },//EGSM
  {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
  {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
  {"850", (T_RF_BAND *)&rf_850,  124, 19 },//GSM850
#if (RF_FAM == 10)
  {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
#endif
  {"900", (T_RF_BAND *)&rf_900,  124, 19 } //GSM, this should be last entry
};

/*-------------------------------------------------------*/
/* Parameters:    none                                   */
/* Return:        none                                   */
/* Functionality: Defines the indices into band_config   */
/*                for each std.                          */
/*-------------------------------------------------------*/
const T_STD_CONFIG std_config[] =
{
 /* band1 index,  band2 index, txpwr turning point, first arfcn*/
  {           0,          0,     0, 0   }, // std = 0 not used
  { BAND_GSM900,  BAND_NONE,     0, 1   }, // std = 1 GSM
  { BAND_EGSM900, BAND_NONE,     0, 1   }, // std = 2 EGSM
  { BAND_PCS1900, BAND_NONE,    21, 512 }, // std = 3 PCS
  { BAND_DCS1800, BAND_NONE,    28, 512 }, // std = 4 DCS
  { BAND_GSM900,  BAND_DCS1800, 28, 1   }, // std = 5 DUAL
  { BAND_EGSM900, BAND_DCS1800, 28, 1   }, // std = 6 DUALEXT
  { BAND_GSM850,  BAND_NONE,     0, 128 }, // std = 7 850
#if (RF_FAM == 10)
  { BAND_GSM850,  BAND_PCS1900_US, 21, 1   }  // std = 8 850/1900
#else
  { BAND_GSM850,  BAND_PCS1900, 21, 1   }  // std = 8 850/1900
#endif
};
#endif //if (L1_FF_MULTIBAND == 0)

/*-------------------------------------------------------*/
/* Prototypes of external functions used in this file.   */
/*-------------------------------------------------------*/
void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
#if (L1_FF_MULTIBAND == 0)
WORD16 Convert_l1_radio_freq  (UWORD16 radio_freq);
#endif
/*-------------------------------------------------------*/
/* Cust_recover_Os()                                      */
/*-------------------------------------------------------*/
/*                                                       */
/* Description: adjust OS from sleep duration            */
/* ------------                                          */
/* This function fix the :                               */
/* - system clock                                        */
/* - Nucleus timers                                      */
/* - xxxxxx (customer dependant)                         */
/*-------------------------------------------------------*/

UWORD8 Cust_recover_Os(void)
{
#if (CODE_VERSION != SIMULATION)
  if (l1_config.pwr_mngt == PWR_MNGT)
  {
    UWORD32 current_system_clock;

    /***************************************************/
    // Fix System clock and Nucleus Timers if any....  */
    /***************************************************/
    // Fix System clock ....
    current_system_clock  = NU_Retrieve_Clock();
    current_system_clock += l1s.pw_mgr.sleep_duration;
    NU_Set_Clock(current_system_clock);

    // Fix Nucleus timer (if needed) ....
    if (TMD_Timer_State == TM_ACTIVE)
    {
      TMD_Timer -= l1s.pw_mgr.sleep_duration;
      if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
    }

    /***************************************************/
    // Cust dependant part                        ...  */
    /***************************************************/
    //.............
    //.............
    //..............
    return(TRUE);

  }
#endif
    return(TRUE); //omaps00090550
}



/*-------------------------------------------------------*/
/* Cust_check_system()                                   */
/*-------------------------------------------------------*/
/*                                                       */
/* Description:                                          */
/* ------------                                          */
/* GSM 1.5 :                                             */
/* - authorize UWIRE clock to be stopped                 */
/*   and write value in l1s.pw_mgr.modules_status.       */
/* - authorize ARMIO clock to be stopped if the light is */
/*   off and write value in l1s.pw_mgr.modules_status.   */
/* - check if SIM clock have been stopped                */
/*   before allowing DEEP SLEEP.                         */
/* - check if UARTs are ready to enter deep sleep        */
/* - choose the sleep mode                               */
/*                                                       */
/* Return:                                               */
/* -------                                               */
/* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP                */
/*-------------------------------------------------------*/
UWORD8 Cust_check_system(void)
{

#if (CODE_VERSION != SIMULATION)
  if (l1_config.pwr_mngt == PWR_MNGT)
  {

#if (L2_L3_SIMUL == 0)
    // Forbid deep sleep if the light is on
    if(LT_Status())
    {
       //cut ARMIO and UWIRE clocks in big sleep
       l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
       l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
       return(FRAME_STOP);  // BIG sleep
    }

  #if (OP_L1_STANDALONE == 0)
    // Forbid deep sleep if the camera is working
    if(!cama_sleep_status())
    {
      l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA;
      return(FRAME_STOP);  // BIG sleep
    }

// Forbid deep sleep if the SIM and UARTs not ready
#if (REQUIRED_FOR_ESAMPLE_LOCOSTO)
    // Forbid deep sleep if the SIM and UARTs not ready
    if(SIM_SleepStatus())
#endif
    {
  #endif
#endif
        if(SER_UartSleepStatus())
          {
              return(CLOCK_STOP);   // DEEP sleep
          }
         else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART;
#if (L2_L3_SIMUL == 0)
  #if (OP_L1_STANDALONE == 0)
    }
// Forbid deep sleep if the SIM and UARTs not ready
#if (REQUIRED_FOR_ESAMPLE_LOCOSTO)
    else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
#endif
  #endif
#endif
        // cut ARMIO and UWIRE clocks in big sleep
        l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
        return(FRAME_STOP);  // BIG sleep
  }
#else // Simulation part
  return(CLOCK_STOP);   // DEEP sleep
#endif
return(CLOCK_STOP); // omaps00090550
}


/*-------------------------------------------------------*/
/* Parameters:    none                                   */
/* Return:        none                                   */
/* Functionality: Read the RF configuration, tables etc. */
/*                from FFS files.                        */
/*-------------------------------------------------------*/
//omaps00090550 #83-d warnimg removal
static const  T_CONFIG_FILE config_files_common[] =
{
#if (CODE_VERSION != SIMULATION)

    // The first char is NOT part of the filename. It is used for
    // categorizing the ffs file contents:
    // f=rf-cal,  F=rf-config,
    // t=tx-cal,  T=tx-config,
    // r=rx-cal,  R=rx-config,
    // s=sys-cal, S=sys-config,
    "f/gsm/rf/afcdac",             &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
    "F/gsm/rf/stdmap",             &rf.radio_band_support, sizeof(rf.radio_band_support),
#if (VCXO_ALGO == 1)
    "F/gsm/rf/afcparams",          &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
#else
    "F/gsm/rf/afcparams",          &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
#endif

    "R/gsm/rf/rx/agcglobals",      &rf.rx.agc, 4 * sizeof(UWORD16),
    "R/gsm/rf/rx/il2agc",          &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
    "R/gsm/rf/rx/agcwords",        &AGC_TABLE, sizeof(AGC_TABLE),

    "s/sys/adccal",                &adc_cal, sizeof(adc_cal),

    "S/sys/abb",                   &abb, sizeof(abb),
    "S/sys/uartswitch",            &ser_cfg_info, sizeof(ser_cfg_info),

    #if (RF_FAM ==61)
    "S/sys/drp_wrapper",  & drp_wrapper, sizeof(drp_wrapper),
    #if (DRP_FW_EXT == 0)    
    "S/sys/drp_calibration",  & drp_sw_data_calib, sizeof(drp_sw_data_calib),
    #endif
    #endif

#endif
    NULL,                          0, 0 // terminator
 };

/*-------------------------------------------------------*/
/* Parameters:    none                                   */
/* Return:        none                                   */
/* Functionality: Read the RF configurations for         */
/*                each band from FFS files. These files  */
/*                are defined for one band, and and used */
/*                for all bands.                         */
/*-------------------------------------------------------*/
//omaps00090550 #83 warning removal
static const  T_CONFIG_FILE config_files_band[] =
{
    // The first char is NOT part of the filename. It is used for
    // categorizing the ffs file contents:
    // f=rf-cal,  F=rf-config,
    // t=tx-cal,  T=tx-config,
    // r=rx-cal,  R=rx-config,
    // s=sys-cal, S=sys-config,

    // generic for all bands
    // band[0] is used as template for all bands.
    "t/gsm/rf/tx/ramps",     &rf_band[0].tx.ramp_tables,    sizeof(rf_band[0].tx.ramp_tables),
    "t/gsm/rf/tx/levels",    &rf_band[0].tx.levels,         sizeof(rf_band[0].tx.levels),
    "t/gsm/rf/tx/calchan",   &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
    "T/gsm/rf/tx/caltemp",   &rf_band[0].tx.temp,           sizeof(rf_band[0].tx.temp),

    "r/gsm/rf/rx/calchan",   &rf_band[0].rx.agc_bands,      sizeof(rf_band[0].rx.agc_bands),
    "R/gsm/rf/rx/caltemp",   &rf_band[0].rx.temp,           sizeof(rf_band[0].rx.temp),
    "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params,  sizeof(rf_band[0].rx.rx_cal_params),
    NULL,                          0,                   0 // terminator
};

void config_ffs_read(char type)
{
  config_rf_read(type);
  config_rf_rw_band(type, 1);
}

void config_ffs_write(char type)
{
  config_rf_write(type);
  config_rf_rw_band(type, 0);
}

void config_rf_read(char type)
{
    const T_CONFIG_FILE *file = config_files_common;

    while (file->name != NULL)
    {
        if (type == '*' || type == file->name[0]) {
            ffs_fread(&file->name[1], file->addr, file->size);
        }
        file++;
    }
}

void config_rf_write(char type)
{
    const T_CONFIG_FILE *file = config_files_common;

    while (file->name != NULL)
    {
        if (type == '*' || type == file->name[0]) {
            ffs_fwrite(&file->name[1], file->addr, file->size);
        }
        file++;
    }
}

void config_rf_rw_band(char type, UWORD8 read)
{
    const T_CONFIG_FILE *f1 = config_files_band;
    UWORD8 i;
    WORD32 offset;
    char name[64];
    char *p;
#if (L1_FF_MULTIBAND == 0)
    UWORD8 std = l1_config.std.id;
#endif

#if FFS_WORKAROUND == 1
    struct stat_s stat;
    UWORD16 time;
#endif
 #if (L1_FF_MULTIBAND == 0)
    for (i=0; i< GSM_BANDS; i++)
    {
      if(std_config[std].band[i] !=0 )
      {
#else
      for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++)
      {
#endif /*if (L1_FF_MULTIBAND == 0) */
        f1 = &config_files_band[0];
        while (f1->name != NULL)
        {
          offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
          p = ((char *) &rf_band[i]) + offset;
          if (type == '*' || type == f1->name[0])
          {
            strcpy(name, &f1->name[1]);
            strcat(name, ".");
#if (L1_FF_MULTIBAND == 0)
            strcat(name, band_config[std_config[std].band[i]].name);
#else
            strcat(name, multiband_rf[i].name);
#endif /*if (L1_FF_MULTIBAND == 0)*/

            if (read == 1)
              ffs_fread(name, p, f1->size);
            else //write == 0
            {
              ffs_fwrite(name, p, f1->size);

              // wait until ffs write has finished
#if FFS_WORKAROUND == 1
              stat.inode = 0;
              time = 0;

              do {
                rvf_delay(10);  // in milliseconds
                time += 10;
                ffs_stat(name, &stat);
              } while (stat.inode == 0 && time < 500);
#endif
            }
          }
          f1++;
        }
      }
 #if (L1_FF_MULTIBAND == 0)
}
#endif
}


/*-------------------------------------------------------*/
/* Cust_init_std()                                       */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality : Init Standard variable configuration  */
/*-------------------------------------------------------*/
void Cust_init_std(void)
#if (L1_FF_MULTIBAND == 0)
{
  UWORD8 std = l1_config.std.id;
  UWORD8 band1, band2;
  T_RF_BAND *pt1, *pt2;

  band1 = std_config[std].band[0];
  band2 = std_config[std].band[1];

  //get these from std
  pt1 = band_config[band1].addr;
  pt2 = band_config[band2].addr;

  // copy rf-struct from default flash to ram
  memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));

  if(std_config[std].band[1] != BAND_NONE )
    memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));

  // Read all RF and system configuration from FFS *before* we copy any of
  // the rf structure variables to other places, like L1.

  config_ffs_read('*');

  l1_config.std.first_radio_freq       = std_config[std].first_arfcn;

  if(band2!=0)
    l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
  else
    l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0

  // if band2 is not used it is initialised with zeros
  l1_config.std.nbmax_carrier          = band_config[band1].max_carrier;
  if(band2!=0)
     l1_config.std.nbmax_carrier      += band_config[band2].max_carrier;

  l1_config.std.max_txpwr_band1        = band_config[band1].max_txpwr;
  l1_config.std.max_txpwr_band2        = band_config[band2].max_txpwr;
  l1_config.std.txpwr_turning_point    = std_config[std].txpwr_tp;
  l1_config.std.cal_freq1_band1        = 0;
  l1_config.std.cal_freq1_band2        = 0;

  l1_config.std.g_magic_band1             = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
  l1_config.std.lna_att_band1             = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
  l1_config.std.lna_switch_thr_low_band1  = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
  l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
  l1_config.std.swap_iq_band1             = rf_band[MULTI_BAND1].swap_iq;

  l1_config.std.g_magic_band2             = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
  l1_config.std.lna_att_band2             = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
  l1_config.std.lna_switch_thr_low_band2  = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
  l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
  l1_config.std.swap_iq_band2             = rf_band[MULTI_BAND2].swap_iq;

  l1_config.std.radio_freq_index_offset   = l1_config.std.first_radio_freq-1;

  // init variable indicating which radio bands are supported by the chosen RF
  l1_config.std.radio_band_support = rf.radio_band_support;

  //TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration
  // on a need basis ?
}
#else
{
  UWORD8 i;

  for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++)
  {
    switch(multiband_rf[i].gsm_band_identifier)
    {
        case RF_GSM900:
            rf_band[i]=rf_900;
        break;
        case RF_GSM850:
            rf_band[i]=rf_850;
        break;
        case RF_DCS1800:
            rf_band[i]=rf_1800;
        break;
        case RF_PCS1900:
            rf_band[i]=rf_1900;
        break;
        default:
        break;
    }
  }
  config_ffs_read('*');
}
#endif // if (L1_FF_MULTIBAND == 0)


/*-------------------------------------------------------*/
/* Cust_init_params()                                    */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality : Init RF dependent paramters (AGC, TX) */
/*-------------------------------------------------------*/
void Cust_init_params(void)
{

#if (CODE_VERSION==SIMULATION)
  extern UWORD16  simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
  extern UWORD16  simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file

  l1_config.params.rx_synth_setup_time   = simu_RX_SYNTH_SETUP_TIME;
  l1_config.params.tx_synth_setup_time   = simu_TX_SYNTH_SETUP_TIME;
#else
  l1_config.params.rx_synth_setup_time   = RX_SYNTH_SETUP_TIME;
  l1_config.params.tx_synth_setup_time   = TX_SYNTH_SETUP_TIME;
#endif


  // Convert SYNTH_SETUP_TIME into SPLIT.
  // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
  l1_config.params.rx_synth_load_split   = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
  l1_config.params.tx_synth_load_split   = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);

  l1_config.params.rx_synth_start_time   = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
  l1_config.params.tx_synth_start_time   = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;

  l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
  l1_config.params.rx_change_offset_time  = l1_config.params.rx_synth_start_time - EPSILON_OFFS;

  l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
                                           TA_MAX -
                                           l1_config.params.tx_synth_setup_time -
                                           EPSILON_OFFS;

  // TX duration = ramp up time + burst duration (data + tail bits)
  l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
  l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;

  l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
  l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);

  // time for the end of RX and TX TPU scenarios
  l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
  l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;

  // FB26 anchoring time is computed backward to leave only 6 qbit margin between
  // FB26 window and next activity (RX time tracking).
  // This margin is used as follow:
  //    Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
  //    Tpu Sleep:              2 qbit (TPU_SLEEP_LOAD)
  //                          ---------
  //                     Total: 3 qbit

  l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
                                          #if (CODE_VERSION == SIMULATION)
                                          // simulator: end of scenario not included in window (no serialization)
                                            1 -
                                          #else
                                          // RF dependent end of RX TPU scenario
                                            l1_config.params.rx_tpu_scenario_ending -
                                          #endif
                                          EPSILON_SYNC -
                                          TPU_SLEEP_LOAD -
                                          SERV_OFFS_REST_LOAD -
                                          FB26_ACQUIS_DURATION -
                                          PROVISION_TIME +
                                          TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;

  l1_config.params.fb26_change_offset_time  = l1_config.params.fb26_anchoring_time +
                                              PROVISION_TIME -
                                              l1_config.params.rx_synth_setup_time -
                                              EPSILON_OFFS;

  l1_config.params.guard_bits         = rf.tx.guard_bits;

  l1_config.params.prg_tx_gsm         = rf.tx.prg_tx;
  l1_config.params.prg_tx_dcs         = rf.tx.prg_tx; //delay for dual band not implemented yet

  l1_config.params.low_agc_noise_thr  = rf.rx.agc.low_agc_noise_thr;
  l1_config.params.high_agc_sat_thr   = rf.rx.agc.high_agc_sat_thr;
  l1_config.params.low_agc            = rf.rx.agc.low_agc;
  l1_config.params.high_agc           = rf.rx.agc.high_agc;
  l1_config.params.il_min             = IL_MIN;

  l1_config.params.fixed_txpwr        = FIXED_TXPWR;
  l1_config.params.eeprom_afc         = rf.afc.eeprom_afc;
  l1_config.params.setup_afc_and_rf   = SETUP_AFC_AND_RF;
  l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation

  l1_config.params.psi_sta_inv        = rf.afc.psi_sta_inv;
  l1_config.params.psi_st             = rf.afc.psi_st;
  l1_config.params.psi_st_32          = rf.afc.psi_st_32;
  l1_config.params.psi_st_inv         = rf.afc.psi_st_inv;

  #if (CODE_VERSION == SIMULATION)
    #if (VCXO_ALGO == 1)
      l1_config.params.afc_algo           = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
    #endif
  #else
    #if (VCXO_ALGO == 1)
      l1_config.params.afc_dac_center       = rf.afc.dac_center;      // VCXO - assuming DAC linearity
      l1_config.params.afc_dac_min          = rf.afc.dac_min;         // VCXO - assuming DAC linearity
      l1_config.params.afc_dac_max          = rf.afc.dac_max;         // VCXO - assuming DAC linearity
#if (NEW_SNR_THRESHOLD == 0)
      l1_config.params.afc_snr_thr          = rf.afc.snr_thr;         // VCXO - SNR threshold
#else
      l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD;
#endif /* NEW_SNR_THRESHOLD */
      l1_config.params.afc_algo             = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
      l1_config.params.afc_win_avg_size_M   = C_WIN_AVG_SIZE_M;       // VCXO - Average psi values with this value
      l1_config.params.rgap_algo            = ALGO_AFC_RXGAP;         // VCXO - Choosing Reception Gap algorithm
      l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
    #endif
  #endif

  #if DCO_ALGO
    #if (RF_FAM == 10)
      // Enable DCO algorithm for direct conversion RFs
      l1_config.params.dco_enabled = TRUE;
    #else
      l1_config.params.dco_enabled = FALSE;
    #endif
  #endif

  #if (ANLG_FAM == 1)
    l1_config.params.debug1           = C_DEBUG1;            // Enable f_tx delay of 400000 cyc DEBUG
    l1_config.params.afcctladd        = abb[ABB_AFCCTLADD];  // Value at reset
    l1_config.params.vbuctrl          = abb[ABB_VBUCTRL];    // Uplink gain amp 0dB, Sidetone gain to mute
    l1_config.params.vbdctrl          = abb[ABB_VBDCTRL];    // Downlink gain amp 0dB, Volume control 0 dB
    l1_config.params.bbctrl           = abb[ABB_BBCTRL];     // value at reset
    l1_config.params.apcoff           = abb[ABB_APCOFF];     // value at reset
    l1_config.params.bulioff          = abb[ABB_BULIOFF];    // value at reset
    l1_config.params.bulqoff          = abb[ABB_BULQOFF];    // value at reset
    l1_config.params.dai_onoff        = abb[ABB_DAI_ON_OFF]; // value at reset
    l1_config.params.auxdac           = abb[ABB_AUXDAC];     // value at reset
    l1_config.params.vbctrl           = abb[ABB_VBCTRL];     // VULSWITCH=0, VDLAUX=1, VDLEAR=1
    l1_config.params.apcdel1          = abb[ABB_APCDEL1];    // value at reset
  #endif
  #if (ANLG_FAM == 2)
    l1_config.params.debug1           = C_DEBUG1;            // Enable f_tx delay of 400000 cyc DEBUG
    l1_config.params.afcctladd        = abb[ABB_AFCCTLADD];  // Value at reset
    l1_config.params.vbuctrl          = abb[ABB_VBUCTRL];    // Uplink gain amp 0dB, Sidetone gain to mute
    l1_config.params.vbdctrl          = abb[ABB_VBDCTRL];    // Downlink gain amp 0dB, Volume control 0 dB
    l1_config.params.bbctrl           = abb[ABB_BBCTRL];     // value at reset
    l1_config.params.bulgcal          = abb[ABB_BULGCAL];    // value at reset
    l1_config.params.apcoff           = abb[ABB_APCOFF];     // value at reset
    l1_config.params.bulioff          = abb[ABB_BULIOFF];    // value at reset
    l1_config.params.bulqoff          = abb[ABB_BULQOFF];    // value at reset
    l1_config.params.dai_onoff        = abb[ABB_DAI_ON_OFF]; // value at reset
    l1_config.params.auxdac           = abb[ABB_AUXDAC];     // value at reset
    l1_config.params.vbctrl1          = abb[ABB_VBCTRL1];    // VULSWITCH=0, VDLAUX=1, VDLEAR=1
    l1_config.params.vbctrl2          = abb[ABB_VBCTRL2];    // MICBIASEL=0, VDLHSO=0, MICAUX=0
    l1_config.params.apcdel1          = abb[ABB_APCDEL1];    // value at reset
    l1_config.params.apcdel2          = abb[ABB_APCDEL2];    // value at reset
  #endif
  #if (ANLG_FAM == 3)
    l1_config.params.debug1           = C_DEBUG1;               // Enable f_tx delay of 400000 cyc DEBUG
    l1_config.params.afcctladd        = abb[ABB_AFCCTLADD];     // Value at reset
    l1_config.params.vbuctrl          = abb[ABB_VBUCTRL];       // Uplink gain amp 0dB, Sidetone gain to mute
    l1_config.params.vbdctrl          = abb[ABB_VBDCTRL];       // Downlink gain amp 0dB, Volume control 0 dB
    l1_config.params.bbctrl           = abb[ABB_BBCTRL];        // value at reset
    l1_config.params.bulgcal          = abb[ABB_BULGCAL];       // value at reset
    l1_config.params.apcoff           = abb[ABB_APCOFF];        // X2 Slope 128 and APCSWP disabled
    l1_config.params.bulioff          = abb[ABB_BULIOFF];       // value at reset
    l1_config.params.bulqoff          = abb[ABB_BULQOFF];       // value at reset
    l1_config.params.dai_onoff        = abb[ABB_DAI_ON_OFF];    // value at reset
    l1_config.params.auxdac           = abb[ABB_AUXDAC];        // value at reset
    l1_config.params.vbctrl1          = abb[ABB_VBCTRL1];       // VULSWITCH=0
    l1_config.params.vbctrl2          = abb[ABB_VBCTRL2];       // MICBIASEL=0, VDLHSO=0, MICAUX=0
    l1_config.params.apcdel1          = abb[ABB_APCDEL1];       // value at reset
    l1_config.params.apcdel2          = abb[ABB_APCDEL2];       // value at reset
    l1_config.params.vbpop            = abb[ABB_VBPOP];         // HSOAUTO enabled
    l1_config.params.vau_delay_init   = abb[ABB_VAUDINITD];     // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
    l1_config.params.vaud_cfg         = abb[ABB_VAUDCTRL];      // value at reset
    l1_config.params.vauo_onoff       = abb[ABB_VAUOCTRL];      // speech on AUX and EAR
    l1_config.params.vaus_vol         = abb[ABB_VAUSCTRL];      // value at reset
    l1_config.params.vaud_pll         = abb[ABB_VAUDPLL];       // value at reset
#endif

  #if (RF_FAM == 61)
    l1_config.params.apcctrl2   =  drp_wrapper[DRP_WRAPPER_APCCTRL2];
    l1_config.params.apcdel1   =  drp_wrapper[DRP_WRAPPER_APCDEL1];
    l1_config.params.apcdel2   =  drp_wrapper[DRP_WRAPPER_APCDEL2];
  #endif
  #if (ANLG_FAM == 11)
    l1_config.params.vulgain		= abb[ABB_VULGAIN];
    l1_config.params.vdlgain		= abb[ABB_VDLGAIN];
    l1_config.params.sidetone           = abb[ABB_SIDETONE];
    l1_config.params.ctrl1			= abb[ABB_CTRL1];
    l1_config.params.ctrl2			= abb[ABB_CTRL2];
    l1_config.params.ctrl3			= abb[ABB_CTRL3];
    l1_config.params.ctrl4			= abb[ABB_CTRL4];
    l1_config.params.ctrl5			= abb[ABB_CTRL5];
    l1_config.params.ctrl6			= abb[ABB_CTRL6];
    l1_config.params.popauto		= abb[ABB_POPAUTO];
    l1_config.params.outen1		= abb[ABB_OUTEN1];
    l1_config.params.outen2		= abb[ABB_OUTEN2];
    l1_config.params.outen3		= abb[ABB_OUTEN3];
    l1_config.params.aulga		= abb[ABB_AULGA];
    l1_config.params.aurga		= abb[ABB_AURGA];
  #endif
}


/************************************/
/* Automatic Gain Control           */
/************************************/

/*-------------------------------------------------------*/
/* Cust_get_agc_from_IL()                                */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality : returns agc value                     */
/*-------------------------------------------------------*/
WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val)
{

  UWORD16 agc_index_temp;
	
// radio_freq currently not used
// this parameter is passed in order to allow band dependent tables for specific RFs
// (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)

  agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq)); 
  agc_index= agc_index_temp>>1;
  if (agc_index > 120)
    agc_index = 120;    // Clip agc_index

  switch (table_id)
  {
    case MAX_ID:  return(rf.rx.agc.il2agc_max[agc_index]);
    case AV_ID:   return(rf.rx.agc.il2agc_av[agc_index]);
    case PWR_ID:  return(rf.rx.agc.il2agc_pwr[agc_index]);
  }
  return (0);//omaps00090550
}

/*-------------------------------------------------------*/
/* Cust_get_agc_band                                     */
/*-------------------------------------------------------*/
/* Parameters : radio_freq                               */
/* Return     : band number                              */
/* Functionality :  Computes the band for RF calibration */
/*-------------------------------------------------------*/
/*---------------------------------------------*/

  UWORD8  band_number;
  #if (CODE_VERSION == SIMULATION)
    UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
  #else
    UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
  #endif
    {
//      WORD32 i =0 ;  //omaps00090550

      for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++)
      {
        if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound)
          return(band_number);
      }
      // Should never happen!
      return(0);
    }

#if (L1_FF_MULTIBAND == 0)
/*-------------------------------------------------------*/
/* Cust_is_band_high                                     */
/*-------------------------------------------------------*/
/* Parameters :  arfcn                                   */
/* Return     :  0 if low band                           */
/*               1 if high band                          */
/* Functionality : Generic function which return 1 if    */
/*                 arfcn is in the high band             */
/*-------------------------------------------------------*/

UWORD8 Cust_is_band_high(UWORD16 radio_freq)
{
  UWORD16 max_carrier;
  UWORD8  std = l1_config.std.id;

  max_carrier = band_config[std_config[std].band[0]].max_carrier;

  return(((radio_freq >= l1_config.std.first_radio_freq) &&
          (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
}
#endif

/*-------------------------------------------------------*/
/* l1ctl_encode_delta2()                                 */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :                                       */
/*-------------------------------------------------------*/
WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
{
  WORD8    delta2_freq;
  UWORD16  i;
  UWORD16  arfcn;
#if (L1_FF_MULTIBAND == 0)
  UWORD8   band;

  band  = Cust_is_band_high(radio_freq);
  arfcn = Convert_l1_radio_freq(radio_freq);
#else
  WORD8   band;
  // Corrected for input being rf_freq and not l1_freq
  arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
#endif

  i = Cust_get_agc_band(arfcn,band); //
  delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;

  //temperature compensation
  for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
  {
    if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
    {
      delta2_freq += rf_band[band].rx.temp[i].agc_calib;
      break;
    }
  }

  return(delta2_freq);
}

#if (L1_FF_MULTIBAND == 0)
#else
/*-------------------------------------------------------*/
/* l1ctl_get_g_magic()                                   */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :                                       */
/*-------------------------------------------------------*/
UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq)
{
  // Corrected for input being rf_freq and not l1_freq
  return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic);
}


/*-------------------------------------------------------*/
/* l1ctl_get_lna_att()                                   */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :                                       */
/*-------------------------------------------------------*/
UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq)
{
// The function is provided with rf_freq as input so 
// convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band
  return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att);    
//  return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att);
}
/*-------------------------------------------------------*/
/* l1ctl_encode_delta1()                                 */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :                                       */
/*-------------------------------------------------------*/
WORD8 l1ctl_encode_delta1(UWORD16 radio_freq)
{
  return 0;
}
/*-------------------------------------------------------*/
/* l1ctl_encode_lna()                                    */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :                                       */
/*-------------------------------------------------------*/
void l1ctl_encode_lna( UWORD8   input_level,
                       UWORD8  *lna_state,
                       UWORD16  radio_freq)
{

  /*** LNA Hysteresis is implemented as following :

            |
          On|---<>----+-------+
            |         |       |
   LNA      |         |       |
            |         ^       v
            |         |       |
            |         |       |
         Off|         +-------+----<>-----
            +--------------------------------
              50      40      30      20   input_level /-dBm
                   THR_HIGH THR_LOW                          ***/
  WORD8 band;
  // Corrected for input to be rf_freq and not l1_freq
  band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)];
  if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high)  // < -44dBm ?
  {
   *lna_state = LNA_ON;  // lna_off = FALSE
  }
  else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low)   // > -40dBm ?
  {
   *lna_state = LNA_OFF; // lna off = TRUE
  }
}

UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq)
{
  return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq);
}

#endif //if L1_FF_MULTIBAND == 0)

/************************************/
/* TX Management                    */
/************************************/
/*-------------------------------------------------------*/
/* Cust_get_ramp_tab                                     */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :
     Notes:
Cal+
APCRAM : Dwn(15:11)Up(10:6)Forced(0)
Locosto:
APCRAM: Dwn(15:8)Up(7:0)

*/
/*-------------------------------------------------------*/

void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
{
  UWORD16 index_up, index_down,j, arfcn;
#if (L1_FF_MULTIBAND == 0)
  UWORD8 band;

  band  = Cust_is_band_high(radio_freq);
  arfcn = Convert_l1_radio_freq(radio_freq);
#else
  WORD8 band;
  // Corrected for input being rf_freq and not l1_freq
  arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
#endif //if( L1_FF_MULTIBAND == 0)

  index_up   = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
  index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;

  #if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3))
    for (j=0; j<16; j++)
    {
      a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
                ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])  << 6) |
                  0x14;
    }
  #endif

   #if (RF_FAM == 61)
  // 20 Coeff each 8 (RampDown) + 8 (RampUp)
      for (j=0; j<20; j++)
      {
         a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) |
                ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ;
      }
   #endif
}

/*-------------------------------------------------------*/
/* get_pwr_data                                          */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :                                       */
/*-------------------------------------------------------*/

#if ((ANLG_FAM == 1) || (ANLG_FAM == 2) || (ANLG_FAM == 3) || (RF_FAM == 61))
UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq
                          #if (REL99 && FF_PRF)
                            , UWORD8 number_uplink_timeslot
                          #endif
                          )
{

  UWORD16 i,j;
  UWORD16 arfcn;

  T_TX_LEVEL *a_tx_levels;

  #if (APC_VBAT_COMP == 1)
    static UWORD16 apc_max_value = APC_MAX_VALUE;
  #endif

#if(ORDER2_TX_TEMP_CAL==1)
        WORD16 pwr_data;
#else
        UWORD16  pwr_data;
#endif

#if (L1_FF_MULTIBAND == 0)
    UWORD8 band;
    band  = Cust_is_band_high(radio_freq);
    arfcn = Convert_l1_radio_freq(radio_freq);
#else
    WORD8 band;
    // Corrected for input being rf_freq and not l1_freq
    arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band);
#endif //if( L1_FF_MULTIBAND == 0)

//  band  = Cust_is_band_high(radio_freq);
//  arfcn = Convert_l1_radio_freq(radio_freq);

  a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure

  #if REL99
    #if FF_PRF
      // uplink power reduction feature which decrease power level in case of uplink multislot
      a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels);
    #endif
  #endif

// get uncalibrated apc
  pwr_data = a_tx_levels->apc;

  i = a_tx_levels->chan_cal_index; // get index for channel compensation
  j=0;

  while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
    j++;

  // channel calibrate apc
  pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;

  // temperature compensate apc
  {
    T_TX_TEMP_CAL *pt;

    pt = rf_band[band].tx.temp;
    while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1)))
      pt++;
#if(ORDER2_TX_TEMP_CAL==1)
                pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64;      //delta apc = ax^2+bx+c
                if(pwr_data < 0) pwr_data = 0;
#else
    pwr_data += pt->apc_calib;
#endif
  }

  // Vbat compensate apc
  #if (APC_VBAT_COMP == 1)

    if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD)
       apc_max_value = APC_MAX_VALUE_LOW_BAT;

    else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD)
            apc_max_value = APC_MAX_VALUE;

    // else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and
    // VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one

    if (pwr_data > apc_max_value)
	  pwr_data = apc_max_value;
  #endif // APC_VBAT_COMP == 1

  return(pwr_data);
}
#endif


#if(REL99 && FF_PRF)

/*-------------------------------------------------------*/
/* Cust_get_uplink_apc_power_reduction                   */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* - frenquency band                                     */
/* - modulation type                                     */
/* - number of uplink timeslot                           */
/* - pointer to radio power control structure            */
/* Return     :                                          */
/* - pointer to radio power control structure            */
/*                                                       */
/* Functionality : This function returns a pointer to    */
/* the radio power control structure after power         */
/* reduction processing.                                 */
/* Depending of the number of uplink timeslot, the       */
/* analogue power control (apc) value can be reduced     */
/* in order to limit effect of terminal heat             */
/* dissipation due to power amplifier.                   */
/*-------------------------------------------------------*/

T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band,
                                                UWORD8 number_uplink_timeslot,
                                                T_TX_LEVEL *p_tx_level)
{
  T_TX_LEVEL *p_power_reduction_tx_level;

  #if TESTMODE
    if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE))
      return p_tx_level ;       // return without any power reduction
  #endif

  if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <=   MAX_UPLINK_TIME_SLOT))
  {
    number_uplink_timeslot--;  // index start from 0
  }
  else
  {
    return p_tx_level;         // abnormal case we do not apply any power reduction
  }

 p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]);

  // We select the lowest power level in order to apply power reduction
  #if (CODE_VERSION != SIMULATION)
    if (p_tx_level->apc > p_power_reduction_tx_level->apc)   // higher apc value means higher transmit power
  #else
    if (p_tx_level->apc < p_power_reduction_tx_level->apc)   // ! for simulation rf apc tables are inverted so comparaison is the reverse
  #endif
      return p_power_reduction_tx_level;
    else
      return p_tx_level;
}

#endif

/*-------------------------------------------------------*/
/* Cust_Init_Layer1                                      */
/*-------------------------------------------------------*/
/* Parameters :                                          */
/* Return     :                                          */
/* Functionality :  Load and boot the DSP                */
/* Initialize shared memory and L1 data structures       */
/*-------------------------------------------------------*/

void Cust_Init_Layer1(void)
{
  T_MMI_L1_CONFIG cfg;

  // Get the current band configuration from the flash
  #if (OP_WCP==1) && (OP_L1_STANDALONE!=1)
    extern unsigned char ffs_GetBand();
    cfg.std = ffs_GetBand();
  #else // NO OP_WCP
    //  cfg.std = std;
    cfg.std = STD;
  #endif // OP_WCP

  cfg.tx_pwr_code = 1;

  // sleep management configuration

  #if(L1_POWER_MGT == 0)
    cfg.pwr_mngt = 0;
    cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
    cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
  #endif
  #if(L1_POWER_MGT == 1)
    cfg.pwr_mngt = 1;
    cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode
    cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
  #endif





  #if (CODE_VERSION != SIMULATION)
    cfg.dwnld = DWNLD; //external define from makefile
  #endif

  l1_initialize(&cfg);
  
  //add below line for CSR 174476
 trace_info.current_config->l1_dyn_trace = 0;  //disable L1 trace after L1 init

  get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
  get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);

}


/*****************************************************************************************/
/***************************     TESTMODE functions     **********************************/
/*****************************************************************************************/



  /*------------------------------------------------------*/
  /* madc_hex_2_physical                                  */
  /*------------------------------------------------------*/
  /* Parameters :                                         */
  /* Return     :                                         */
  /* Functionality : Function to convert MAD hexadecimal  */
  /*                 values into physical values          */
  /*------------------------------------------------------*/

void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
{
 WORD16 i;
 UWORD16 y;
 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
 WORD16 index = (TEMP_TABLE_SIZE-1)/2;       /* y is the adc code after compensation of ADC slope error introduced by VREF error */

  //store raw ADC values
  memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));

  // Convert Vbat [mV] : direct equation with slope and offset compensation
  for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
    adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];

  /*Convert RF Temperature [Celsius]: binsearch into a table*/
  y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8;       /* rf.tempcal is the calibration of VREF*/
  while((Smax-Smin) > 1 )
  {
    if(y < temperature[index].adc)
      Smax=index;
    else
      Smin=index;

    index = (Smax+Smin)/2;
  }
  adc.converted[ADC_RFTEMP] = temperature[index].temp;

  for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
    adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];

  //store converted ADC values
  memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
}


  /*------------------------------------------------------*/
  /*  get_cal_from_nvmem                                  */
  /*------------------------------------------------------*/
  /* Parameters :                                         */
  /* Return     :                                         */
  /* Functionality : Copy calibrated parameter to         */
  /*                 calibration structure in RAM         */
  /*------------------------------------------------------*/

void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
{

}

  /*------------------------------------------------------*/
  /*  save_cal_from_nvmem                                 */
  /*------------------------------------------------------*/
  /* Parameters :                                         */
  /* Return     :                                         */
  /* Functionality : Copy calibrated structure from RAM   */
  /*                 into NV memory                       */
  /*------------------------------------------------------*/

UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
{
  return (0);
}

#if (TRACE_TYPE == 4)

/*------------------------------------------------------*/
/*  l1_cst_l1_parameters                                */
/*------------------------------------------------------*/
/* Parameters :  s: pointer on configuration string     */
/* Return     :  nothing: global var are set            */
/* Functionality : Set global L1 vars for dynamic trace */
/*                 and configuration                    */
/*                                                      */
/*   This function is called when a CST message is sent */
/*   from the Condat Panel.                             */
/*------------------------------------------------------*/
void l1_cst_l1_parameters(char *s)
{
  /*
    a sample command string can be:
    L1_PARAMS=<1,2,3,4,5> or
    L1_PARAMS=<1,23,3E32,4,5>
    with n parameters (here: 5 params); n>=1
    parameters are decoded as hexadecimal unsigned integers (UWORD16)
  */

  UWORD8  uNParams = 0;  /* Number of parameters */
  UWORD32 aParam[10];    /* Parameters array */
  UWORD8  uIndex = 0;

  /* ***  retrieve all parameters *** */
  while (s[uIndex] != '<') uIndex++;
  uIndex++;
  aParam[0] = 0;

  /* uIndex points on 1st parameter */

  while (s[uIndex] != '>')
  {
    if (s[uIndex] == ',')
    {
      uNParams++;
      aParam[uNParams] = 0;
    }
    else
    {
      /* uIndex points on a parameter char */
      UWORD8 uChar = s[uIndex];
      aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
      if ((uChar>='0') && (uChar<='9'))
        aParam[uNParams] += (uChar - '0');        /* retrieve value */
      else if ((uChar>='A') && (uChar<='F'))
        aParam[uNParams] += (10 + uChar - 'A');        /* retrieve value */
      else if ((uChar>='a') && (uChar<='f'))
        aParam[uNParams] += (10 + uChar - 'a');        /* retrieve value */
    }

    uIndex++; /* go to next char */
  }

  /* increment number of params */
  uNParams++;

  /* *** handle parameters *** */
  /*
    1st param: command type
    2nd param: argument for command type
  */
  switch (aParam[0])
  {
    case 0: /* Trace setting */
      /* The 2nd parameter contains the trace bitmap*/
      if (uNParams >=2)
        trace_info.current_config->l1_dyn_trace = aParam[1];
      else
        trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
      Trace_dyn_trace_change();
      break;
    default: /* ignore it */
      break;
  } // switch
}

#endif

#if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
     (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
     (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
     (CHIPSET == 11) || (CHIPSET == 12))
/*-------------------------------------------------------*/
/* power_down_config() : temporary implementation !!!    */
/*-------------------------------------------------------*/
/* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
/*              clocks to be cut in BIG sleep            */
/* Return     :                                          */
/* Functionality : set the l1s variables          */
/* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks      */
/* according to the desired mode.                       */
/*-------------------------------------------------------*/
void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
{
#if (OP_L1_STANDALONE == 1)
  if(sleep_mode != NO_SLEEP)
#endif
  {
    l1_config.pwr_mngt = PWR_MNGT;
    l1s.pw_mgr.mode_authorized = sleep_mode;
    l1s.pw_mgr.clocks = clocks;
  }

#if (OP_L1_STANDALONE == 0)
  l1s.pw_mgr.enough_gaug = FALSE;
#endif
}
#endif
 //added for L1 standalone DRP calibration- this will overwrite the previous data
#if (OP_L1_STANDALONE == 1)
#pragma DATA_SECTION(drp_l1_standalone_calib_data, ".drp_l1_standalone_calib_data");
T_DRP_SW_DATA drp_l1_standalone_calib_data;
#pragma DATA_SECTION(valid_dro_standalone_calib_data_flag , ".valid_dro_standalone_calib_data_flag");
UWORD32 valid_dro_standalone_calib_data_flag;
//const T_DRP_SW_DATA drp_sw_data_init = { (UINT16) sizeof(T_DRP_CALIB), } -this needs to be filled by CCS
//added for L1 standalone DRP calibration- ends
#endif
// for DRP Calibration
/*-------------------------------------------------------*/
/* Cust_init_params_drp()                                */
/*-------------------------------------------------------*/
/* Parameters : none                                     */
/* Return     : none                                     */
/* Functionality : Intialization of DRP calibration.     */
/*-------------------------------------------------------*/
#if (L1_DRP == 1)
  void Cust_init_params_drp(void)
  {
#if (DRP_FW_EXT==1)
    l1s.boot_result=drp_sw_data_calib_upload_from_ffs(&drp_sw_data_calib);
    drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib);
#else // DRP_FW_EXT==0
  volatile UINT16 indx, strsize;
  volatile UINT8  *ptrsrc, *ptrdst;

#if (OP_L1_STANDALONE == 0)
  if(drp_sw_data_calib.length != drp_sw_data_init.length)
  {
#endif

    // For the 1st time FFS might have garbage, if so use the above as check to ensure
    //and copy from the .drp_sw_data_init structure.

    // Copy drp_sw_data_init into drp_sw_data_calib
    strsize = sizeof(T_DRP_SW_DATA);
    ptrsrc = (UINT8 *)(&drp_sw_data_init);
    ptrdst = (UINT8 *)(&drp_sw_data_calib);

    for(indx=0;indx < strsize;indx++)
      *ptrdst++ = *ptrsrc++;

#if (OP_L1_STANDALONE == 0)
  }
#endif

  drp_copy_sw_data_to_drpsrm(&drp_sw_data_calib);

//added for L1 standalone DRP calibration- this will overwrite the previous data
#if (OP_L1_STANDALONE == 1)
  if(valid_dro_standalone_calib_data_flag == 0xDEADBEAF ) //indicates down the data via CCS
  drp_copy_sw_data_to_drpsrm(&drp_l1_standalone_calib_data);
#endif
//added for L1 standalone DRP calibration- ends
#endif // DRP_FW_EXT
  }
#endif


#if (DRP_FW_EXT==1)
void l1_get_boot_result_and_version(T_L1_BOOT_VERSION_CODE * p_version)
{
  if(! p_version)
  {  
    return;
  }   
  p_version->dsp_code_version  = l1s_dsp_com.dsp_ndb_ptr->d_version_number1;
  p_version->dsp_patch_version = l1s_dsp_com.dsp_ndb_ptr->d_version_number2;
  p_version->mcu_tcs_program_release = PROGRAM_RELEASE_VERSION;
  p_version->mcu_tcs_internal        = INTERNAL_VERSION;
  p_version->mcu_tcs_official        = OFFICIAL_VERSION;

  p_version->drp_maj_ver = drp_ref_sw_ver;
  p_version->drp_min_ver = drp_ref_sw_tag;
 
  p_version->boot_result = l1s.boot_result;
}
#endif /* DRP_FW_EXT */