FreeCalypso > hg > freecalypso-reveng
view fluid-mnf/flash.c @ 321:24d7d7875ee9
frbl/reconst/command.c: first function reconstructed
author | Mychaela Falconia <falcon@freecalypso.org> |
---|---|
date | Thu, 05 Mar 2020 06:38:36 +0000 |
parents | 9cecc930d78f |
children | f89a20e7adc7 |
line wrap: on
line source
/****************************************************************************** * FLUID (Flash Loader Utility Independent of Device) * Idea, design and coding by Mads Meisner-Jensen, mmj@ti.com * * Copyright Texas Instruments, 2001. * Mads Meisner-Jensen, mmj@ti.com. * * Flash device database and lookup * * $Id: flash.c 1.26 Wed, 30 Oct 2002 12:09:08 +0100 tsj $ * ******************************************************************************/ #include "fluid.h" #include "misc.h" #include "flash.h" #include "trace.h" #include <stdio.h> #include <string.h> #include <ctype.h> #include <stdlib.h> /****************************************************************************** * Global, Static definitions ******************************************************************************/ const struct algorithm_s algorithms[] = { { ALGORITHM_AMD, "amd" }, { ALGORITHM_INTEL, "intel" }, { ALGORITHM_INTEL_BW, "intel_bw" }, { ALGORITHM_MITSUBISHI, "mitsubishi" }, { ALGORITHM_SST, "sst" }, { 0, "unknown" } }; struct manufact_s manufacturers[] = { { MANUFACT_AMD, "AMD" }, { MANUFACT_ATMEL, "Atmel" }, { MANUFACT_FUJITSU, "Fujitsu" }, { MANUFACT_INTEL, "Intel" }, { MANUFACT_MXIC, "MXIC" }, { MANUFACT_MITSUBISHI, "Mitsubishi" }, { MANUFACT_SAMSUNG, "Samsung" }, { MANUFACT_SHARP, "Sharp" }, { MANUFACT_STM, "STM" }, { MANUFACT_SST, "SST" }, { MANUFACT_TOSHIBA, "Toshiba" }, { 0x00, "Unknown" } }; /****************************************************************************** * Default Device Database ******************************************************************************/ struct memmap_s map_63x64_8x8 = { 0, "63x64_8x8kB", 63 + 8, { { 0x000000, 0x10000 }, { 0x010000, 0x10000 }, { 0x020000, 0x10000 }, { 0x030000, 0x10000 }, { 0x040000, 0x10000 }, { 0x050000, 0x10000 }, { 0x060000, 0x10000 }, { 0x070000, 0x10000 }, { 0x080000, 0x10000 }, { 0x090000, 0x10000 }, { 0x0A0000, 0x10000 }, { 0x0B0000, 0x10000 }, { 0x0C0000, 0x10000 }, { 0x0D0000, 0x10000 }, { 0x0E0000, 0x10000 }, { 0x0F0000, 0x10000 }, { 0x100000, 0x10000 }, { 0x110000, 0x10000 }, { 0x120000, 0x10000 }, { 0x130000, 0x10000 }, { 0x140000, 0x10000 }, { 0x150000, 0x10000 }, { 0x160000, 0x10000 }, { 0x170000, 0x10000 }, { 0x180000, 0x10000 }, { 0x190000, 0x10000 }, { 0x1A0000, 0x10000 }, { 0x1B0000, 0x10000 }, { 0x1C0000, 0x10000 }, { 0x1D0000, 0x10000 }, { 0x1E0000, 0x10000 }, { 0x1F0000, 0x10000 }, { 0x200000, 0x10000 }, { 0x210000, 0x10000 }, { 0x220000, 0x10000 }, { 0x230000, 0x10000 }, { 0x240000, 0x10000 }, { 0x250000, 0x10000 }, { 0x260000, 0x10000 }, { 0x270000, 0x10000 }, { 0x280000, 0x10000 }, { 0x290000, 0x10000 }, { 0x2A0000, 0x10000 }, { 0x2B0000, 0x10000 }, { 0x2C0000, 0x10000 }, { 0x2D0000, 0x10000 }, { 0x2E0000, 0x10000 }, { 0x2F0000, 0x10000 }, { 0x300000, 0x10000 }, { 0x310000, 0x10000 }, { 0x320000, 0x10000 }, { 0x330000, 0x10000 }, { 0x340000, 0x10000 }, { 0x350000, 0x10000 }, { 0x360000, 0x10000 }, { 0x370000, 0x10000 }, { 0x380000, 0x10000 }, { 0x390000, 0x10000 }, { 0x3A0000, 0x10000 }, { 0x3B0000, 0x10000 }, { 0x3C0000, 0x10000 }, { 0x3D0000, 0x10000 }, { 0x3E0000, 0x10000 }, { 0x3F0000, 0x02000 }, { 0x3F2000, 0x02000 }, { 0x3F4000, 0x02000 }, { 0x3F6000, 0x02000 }, { 0x3F8000, 0x02000 }, { 0x3FA000, 0x02000 }, { 0x3FC000, 0x02000 }, { 0x3FE000, 0x02000 }, } }; struct memmap_s *memmaps = &map_63x64_8x8; // Default B-Sample device struct device_s device_fujitsu_dl323t = { 0, ALGORITHM_AMD, MANUFACT_FUJITSU, 0x2250, "MBM29DL323DT", 0, 0, &map_63x64_8x8 }; // Default C-Sample device struct device_s device_amd_dl322t = { &device_fujitsu_dl323t, // link to next (previous) device defintion ALGORITHM_AMD, MANUFACT_AMD, 0x2255, "Am29DL322DT", 0, 0, &map_63x64_8x8 }; struct device_s *devices = &device_amd_dl322t; /****************************************************************************** * Device file reading and parsing ******************************************************************************/ #define INBUF_SIZE 1024 static char inbuf[INBUF_SIZE]; static char *pin; static FILE *fp; static int linenum; static char string[1024]; static int length; static int number; enum ParserTokens { TOKEN_EOF, TOKEN_STRING, TOKEN_NUMBER, TOKEN_KEYWORD }; enum ParserKeywords { KEYWORD_NONE, KEYWORD_DEVICE, KEYWORD_MEMMAP }; void parser_error(int error) { fprintf(stderr, "At line %d, ", linenum); main_fatal(error); } void file_read_devices(char *filename) { int token, i, n = 0; struct device_s *device; struct memmap_s *memmap; flowf(BLABBER, "Reading '%s': ", filename); // First look for file in current directory. Then look for it in the // directory where the fluid executable was found. if ((fp = fopen(filename, "rt")) == NULL) { char buf[256]; if (pathname_make(buf, sizeof(buf), argv_0, filename) < 0) main_fatal(E_BUFFER); flowf(DEBUG, "(looking for '%s') ", buf); if ((fp = fopen(buf, "rt")) == NULL) { fprintf(stderr, "WARNING: file '%s' not found. Using default device database.\n", filename); return; } } devices = (struct device_s *) 0; memmaps = (struct memmap_s *) 0; pin = inbuf; inbuf[0] = '\n'; linenum = 0; // Each loop represents one block/statement of the file while ((token = get_keyword()) != E_PARSER_EOF) { switch (token) { case KEYWORD_MEMMAP: tr(TrBegin|TrParser, "keyword: memmap {\n"); if ((token = get_string()) < 0) parser_error(token); if ((memmap = malloc(sizeof(struct memmap_s) + length + 1)) == NULL) parser_error(E_MEMORY); memmap->name = (char *) memmap + sizeof(struct memmap_s); strcpy(memmap->name, string); if ((token = get_token()) != '{') parser_error(E_PARSER_SYNTAX); i = 0; while ((token = get_token()) == TOKEN_NUMBER) { memmap->sectors[i].addr = number; if ((token = get_number()) < 0) parser_error(token); memmap->sectors[i].size = number; i++; } if (token != '}') parser_error(E_PARSER_END_BRACE); memmap->size = i; // Append to linked list memmap->next = memmaps; memmaps = memmap; tr(TrEnd|TrParser, "}\n"); break; case KEYWORD_DEVICE: tr(TrBegin|TrParser, "keyword: device {\n"); if ((token = get_string()) < 0) parser_error(token); if ((device = malloc(sizeof(struct device_s) + length + 1)) == NULL) parser_error(E_MEMORY); device->name = (char *) device + sizeof(struct device_s); strcpy(device->name, string); if ((token = get_number()) < 0) parser_error(token); device->manufacturer_id = number; if ((token = get_number()) < 0) parser_error(token); device->device_id = number; if ((token = get_string()) < 0) parser_error(token); device->algorithm_id = algorithm_id_lookup_by_name(string); if (device->algorithm_id == 0) parser_error(E_PARSER_ALGORITHM); if ((token = get_string()) < 0) parser_error(token); device->memmap = memmap_lookup_by_name(string); if (device->memmap == 0) parser_error(E_PARSER_MEMMAP); // Append to linked list device->next = devices; devices = device; tr(TrEnd|TrParser, "}\n"); break; default: parser_error(E_PARSER_KEYWORD); } n++; } flowf(BLABBER, "(%d blocks read) ok.\n", n); } int get_next_line(void) { int result; result = (fgets(inbuf, INBUF_SIZE, fp) != NULL); pin = inbuf; linenum++; tr(TrParser, "get_next_line() (%d) %d ", result); return result; } int get_token(void) { char *pin_start, *pin_end; int whitespace; { char tmp[8]; for (whitespace = 0; whitespace < 7; whitespace++) tmp[whitespace] = (pin[whitespace] < ' ' ? '.' : pin[whitespace]); tmp[7] = 0; tr(TrParser, "get_token() ('%s...')", tmp); } whitespace = 1; while (whitespace) { if (*pin == ' ' || *pin == '\t' || *pin == '\n') { // Skip white-space tr(TrParser, " skip white-space {"); while (*pin == ' ' || *pin == '\t' || *pin == '\n') { while (*pin == ' ' || *pin == '\t') pin++; // If end of line, read the next line if (*pin == '\n') { if (get_next_line() == 0) return TOKEN_EOF; } } tr(TrCont|TrParser, "}"); } else if (pin[0] == '/' && pin[1] == '*') { // Skip comment tr(TrParser, " skip comment {"); while (pin[0] != '*' || pin[1] != '/') { while ((pin[0] != '*' || pin[1] != '/') && *pin != '\n') pin++; // If end of line, read the next line if (*pin == '\n') { if (get_next_line() == 0) return TOKEN_EOF; } else { pin += 2; break; } } tr(TrCont|TrParser, "}"); } else { whitespace = 0; } } { char tmp[8]; for (whitespace = 0; whitespace < 7; whitespace++) tmp[whitespace] = (pin[whitespace] < ' ' ? '.' : pin[whitespace]); tmp[7] = 0; tr(TrCont|TrParser, " ('%s...')\n", tmp); } // See if token is a string if (isalpha(*pin) || *pin == '_') { pin_start = pin; while (isalnum(*pin) || *pin == '_') pin++; length = pin - pin_start; strncpy(string, pin_start, length); string[length] = 0; return TOKEN_STRING; } // See if token is a number if (isdigit(*pin)) { number = (int) strtol(pin, &pin_end, 0); pin = pin_end; if (*pin_end == 'k') { number *= 1024; pin++; } return TOKEN_NUMBER; } // Token is a character return *pin++; } int get_keyword(void) { int token; token = get_token(); tr(TrParser, "get_keyword() (%d) ", token); if (token == TOKEN_EOF) return E_PARSER_EOF; if (token != TOKEN_STRING) return E_PARSER_KEYWORD; if (strcmp("memmap", string) == 0) token = KEYWORD_MEMMAP; else if (strcmp("device", string) == 0) token = KEYWORD_DEVICE; else token = E_PARSER_KEYWORD; tr(TrCont|TrParser, "%d\n", token); return token; } int get_string(void) { int token; token = get_token(); tr(TrParser, "get_string() (%d) ", token); if (token == TOKEN_EOF) return E_PARSER_EOF; if (token != TOKEN_STRING) return E_PARSER_STRING; tr(TrCont|TrParser, "'%s'\n", string); return 0; } int get_number(void) { int token; token = get_token(); tr(TrParser, "get_number() (%d) ", token); if (token == TOKEN_EOF) return E_PARSER_EOF; if (token != TOKEN_NUMBER) return E_PARSER_NUMBER; tr(TrCont|TrParser, "0x%X\n", number); return 0; } /****************************************************************************** * Functions ******************************************************************************/ // Estimate the time taken for erasure and programming of the flash // device. <bytes> is the number of bytes to program. int time_compute(struct device_s *device, int sectors, int bytes, int chunks, int *time_erase, int *time_program, int *time_transfer) { int te = 0; // sector erase time in milli seconds int tp = 16; // 16-bit word program time in micro seconds int tdt, tco, trp; switch (device->algorithm_id) { case ALGORITHM_AMD: te = 700; break; case ALGORITHM_INTEL: te = 800; break; case ALGORITHM_INTEL_BW: te = 1300; break; case ALGORITHM_MITSUBISHI: te = 40; break; case ALGORITHM_SST: te = 20; break; } *time_erase = te * sectors; // Data transmission time: with 12 bytes per chunk tdt = (bytes + 12 * chunks) / (arg_uart_baudrate / 10) * 1000; // Communication overhead time: 2 waits of 10ms per chunk. tco = chunks * 2 * 10; *time_transfer = tdt + tco; // Raw programming time: *time_program = trp = (bytes / 2) * tp / 1000; tr(TrUtility, "tdt = %d\n", tdt); tr(TrUtility, "tco = %d\n", tco); tr(TrUtility, "trp = %d\n", trp); return *time_erase + *time_transfer; } void device_print(struct device_s *device, char format) { int device_size = (device->memmap->sectors[device->memmap->size - 1].addr + device->memmap->sectors[device->memmap->size - 1].size) / (1024 * 1024 / 8); if (format == 'l') { printf("%s %s (0x%02X, 0x%04X). %dMb in %d sectors, %s algorithm", manufacturer_name_lookup_by_id(device->manufacturer_id), device->name, device->manufacturer_id, device->device_id, device_size, device->memmap->size, algorithm_name_lookup_by_id(device->algorithm_id)); } else if (format == 's') { printf("(0x%02X, 0x%04X) %s %s", device->manufacturer_id, device->device_id, manufacturer_name_lookup_by_id(device->manufacturer_id), device->name); } } void devices_list(void) { struct device_s *device = devices; while (device != NULL) { device_print(device, 'l'); putchar('\n'); device = device->next; } } struct device_s *device_lookup_by_id(int m, int d) { struct device_s *device = devices; while (device != NULL) { if ((m & 0xFF) == device->manufacturer_id && d == device->device_id) return device; device = device->next; } return (struct device_s *) 0; } struct device_s *device_lookup_by_name(char *name) { struct device_s *device = devices; while (device != NULL) { if (strcmp(name, device->name) == 0) return device; device = device->next; } return (struct device_s *) 0; } struct memmap_s *memmap_lookup_by_name(char *name) { struct memmap_s *memmap = memmaps; while (memmap != NULL) { if (strcmp(name, memmap->name) == 0) return memmap; memmap = memmap->next; } return (struct memmap_s *) 0; } char *manufacturer_name_lookup_by_id(int id) { int i = 0; while (manufacturers[i].id != 0) { if (manufacturers[i].id == id) return manufacturers[i].name; i++; } return manufacturers[i].name; } int manufacturer_id_lookup_by_name(char *name) { int i = 0; while (manufacturers[i].id != 0) { if (strcmp(manufacturers[i].name, name) == 0) return manufacturers[i].id; i++; } return 0; } char *algorithm_name_lookup_by_id(int id) { int i = 0; while (algorithms[i].id != 0) { if (algorithms[i].id == id) return algorithms[i].name; i++; } return algorithms[i].name; } int algorithm_id_lookup_by_name(char *name) { int i = 0; while (algorithms[i].id != 0) { if (strcmp(algorithms[i].name, name) == 0) return algorithms[i].id; i++; } return 0; }